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The Mullins-Sekerka instability in directional solidification
of quasi-azeotropes

C. Misbah

Groupe de Physique des Solides de l’Ecole Normale Supérieure, associé au Centre National
de la Recherche Scientifique, Université Paris VII, 2, place Jussieu, 75251 Paris Cedex 05, France

(Reçu le 3 décembre 1985, accepté le 21 fivrier 1986)

Résumé. 2014 Nous étudions la stabilité du front plan lors de la solidification directionnelle d’un quasi-azéotrope.
Nous montrons que la forme du diagramme de phase donne lieu à une forte réduction d’échelle de la courbe de
bifurcation qui rend possible son exploration complète dans les expériences de solidification directionnelle usuelles.
Nous montrons de plus, que, comme les azéotropes ne sont pas des mélanges dilués, il apparaît un « terme capillaire
chimique » dans l’equation reliant les concentrations à l’interface. Nous estimons l’importance de cet effet : il est
très faible dans les azéotropes métalliques mais, devrait être important dans le mélange 3He-4 He et pourrait donner
lieu à un changement qualitatif de la forme de la courbe de bifurcation. A l’aide d’un développement au troisième
ordre en amplitude, nous étudions la nature (normale ou inversée) de la bifurcation. Nous montrons que, pour les
alliages métalliques, et grâce à la réduction d’échelle du diagramme d’instabilité, le régime de bifurcation normale
2014 qui n’est pas facilement explorable avec les mélanges dilués 2014 devrait devenir accessible si on utilise des mélan-
ges quasi-azéotropes.

Abstract. 2014 We investigate the stability of the planar front during directional solidification of a quasi-azeotrope.
We show that the corresponding shape of the phase diagram induces a strong reduction of the scale of the bifur-
cation curve which makes its complete exploration feasible in standard directional solidification experiments.
We show that the finite concentration of azeotropic mixtures results in a « chemical capillary term » in the equation
relating interface concentrations. This effect, which turns out to be negligibly small for metallic azeotropes, should
be significant for the 3He-4 He azeotrope where it might give rise to a qualitative change of the bifurcation curve.
We study the nature (normal or inverted) of the bifurcation with the help of a third order amplitude expansion.
We show that, for metallic alloys, thanks to the reduction of scale of the instability diagram, the normal bifurcation
regime 2014 which cannot be easily reached with dilute mixtures 2014 becomes accessible to standard experiments.

J. Physique 47 (1986) 1077-1090 JuIN 1986,

Classification

Physics Abstracts
61.SOC - 64.70

1. Introduction

When dilute binary mixtures are submitted to direc-
tional solidification (i.e. the sample is pulled at constant
velocity in an external thermal gradient (see Fig.1)),
the liquid-solid interface undergoes, when V exceeds
a critical value Ve, a transition from the planar confi-
guration to a periodic cellular one. This morpholo-
gical instability results from the competition bet-
ween the destabilizing effect of solute diffusion and the
stabilization due to the external thermal gradient
and to capillary forces.
In directional solidification experiments, the three

external control parameters are the drawing velocity
of the sample V, the applied thermal gradient G and
the concentration Coo of the liquid far from the
solidification front

For a given Coo, the shape of the bifurcation curve,
first analysed by Mullins and Sekerka [1] (see also
Wollkind and Segel [2]), is drawn in the (G, Y) plane
in figure 2. The maximum critical velocity, usually
called the « absolute stability limit », 17.a. and the
thermal gradient Gmax are respectively given by [3] :

a and b are functions of the thermodynamic properties
and the transport coefficients of the alloy. A rough
estimate for typical materials [3] shows that a and b
are respectively in the 10 and 101 ranges, with V in
cm/s, 0 in K/cm and Coo in atomic per cent
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Fig. 1. - Directional solidification set up. f m is the melting
temperature of the alloy.

In standard solidification experiments (1), the

velocity of the sample may reasonably reach 10-1 cm/s.
Lowering 17max down to this order of magnitude would
take extremely dilute mixtures with Coo of order at
most 10- 2 %. So, directional solidification experi-
ments have only explored the small V, small 6 part
of the instability curve (see Fig. 2).

Furthermore, recent experiments [6] performed on
impure CBr4 have shown that the bifurcation is
subcritical (i.e. exhibits a finite hysteresis). This means
that, when the pulling velocity is increased, the front
deformation jumps from zero to a finite amplitude at
the instability threshold (as does the order parameter
at a first order phase transition). This result agrees
with the prediction of Wollkind and Segel [2] and
Caroli et al. [3] ; it entails that non linear perturbation
expansions, which result in the amplitude equation,
cannot be used to calculate cellular front shapes close
to threshold, since such expansions are not valid at
finite deformation amplitudes.
As shown by Wollkind and Segel [2], for dilute

mixtures, it is only at large velocities beyond the reach
of standard experiments that the bifurcation can be
expected to become normal (i.e. with a front deforma-

(1) In rapid solidification experiments, which use a pulsed
laser [4] or electron beam [5] to melt a spot in the surface
region, the resolidification velocity, which is directly related
to that of the beam, can reach values larger than Vmax.
In particular, and as predicted by Mullins and Sekerka [1],
a « restabilization » of the planar front has been observed
for such large velocities. However, the thermal profile is not
well controlled in these experiments, which are therefore
not well suited (at least up to now) to give a full quantitative
characterization of the bifurcation.

Fig. 2. - Schematic plot of the bifurcation curve in the
(6, $j plane. 6 is the physical temperature gradient and V
the velocity of the sample. The square near the-origin repre-
sents the accessible region in standard directional solidifica-
tion experiments.

tion amplitude increasing continuously from zero
above Vc).

So, it seems quite desirable to find physical systems
which would allow experimental access to the normal
bifurcation regime. Indeed, this would permit to

compare cellular front shapes close above threshold in
the normal and subcritical situations, and thereby, to
settle important open questions, in particular :
- are the cusp singularities of cellular fronts close

above threshold observed up to now a general feature,
or are they due to the subcriticality of the bifurcation ?
- is the wavelength selection above threshold

strongly modified by a change in the nature of the
bifurcation ?

Experimental answers to such questions are, in our
opinion, of major importance to guide further pro-
gress in the theoretical analysis.

In this article, we show that quasi-azeotropic
binary mixtures are good candidates to the experi-
mental observation of normal Mullins-Sekerka bifur-
cations.
The corresponding equilibrium phase diagram is

sketched in figure 3. It immediately appears that the
main difference, for our purpose, between this and the
dilute case lies in the quadratic dependence of the
equilibrium interface temperature on concentration
(as measured from the azeotropic one, C0).
We show, from the linear stability analysis of the

planar front, that this feature results in a strong
reduction of the scale of the bifurcation curve. Namely,
for departures from C0 in the atomic % range, the
absolute stability limit P Max and the maximum thermal
gradient omax are reduced (as compared with dilute
mixtures with Coo. - 1 %), by factors of order, respec-
tively, 102 and 104. This should make the complete
exploration of the bifurcation curve experimentally
feasible.
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Fig. 3. - Schematic plot of the phase diagram of the alloy
in the (t, C) plane. (To, Co) is the azeotropic point, of.
is the (imposed) concentration in the liquid phase far from
the solidification front.

Besides the phase diagram shape effect, there is
another difference between the azeotropic and dilute
cases : for mixtures of finite concentration, there

appears, in the equation relating the concentrations
of the two phases at the interface, a contribution
proportional to the interface curvature, that we call
from now on « chemical capillary term ». This term,
which results from the conditions of local thermody-
namic equilibrium of the two species at the inter-
face (2), is strictly zero only when the solute concen-
tration in the reference state vanishes.
We show that the presence of a non-negligible

capillary term may give rise to a qualitative change
in the shape of the Mullins-Sekerka bifurcation curve.
Indeed, at zero « chemical capillarity », changing
Coo - C0 into its opposite leaves this curve invariant
When the magnitude of the chemical capillary term
increases, there appears an asymmetry between the
« hyper » and the « hypoazeotrope » with equal
I Coo - C0 I; namely, in the high velocity part of the
bifurcation curve, the planar front state is stabilized or
destabilized, depending on the sign of (Coo - Co). This
asymmetry becomes maximum at a critical value
of the chemical capillarity, beyond which the desta-
bilized bifurcation curve no longer has a limit of
absolute stability.
From our semi-quantitative estimates of the magni-

tude of the chemical capillary parameter, it appears
that this effect should be practically negligible for most
azeotropes. However, it will probably be significant
for 3He- 4He quasi-azeotropic mixtures, on which

experiments can be expected to be carried out in the
near future.

(2) We only consider materials with atomically rough
liquid-solid interfaces, for which interface kinetics can safely
be taken as instantaneous (as compared with the diffusive
time scale).

In order to study the nature of the Mullins-Sekerka
bifurcation, following Wollkind and Segel [2], we
perform a non-linear analysis up to third order in the
front deformation amplitude. From this, we get the
analytic expression of the Landau constant ai (the
coefficient of the cubic term in the amplitude expan-
sion), the sign of which determines whether the bifur-
cation is normal or subcritical. We have calculated a1
numerically in the limit, appropriate for metallic

azeotropes, of zero chemical capillarity. We find that, in
spite of the quadratic concentration dependence of the
quasi-azeotrope interface equilibrium temperature,
al exhibits a behaviour qualitatively similar to that
for dilute systems. Namely, the bifurcation becomes
normal above a velocity of order, typically, V max/IO.

This means that, thanks to the above-mentioned
scale reduction of the bifurcation curve, the normal
bifurcation regime should become accessible to stan-
dard directional solidification experiments.
The scheme of this paper is as follows. In section 2,

we write down the basic equations of the problem and
compare them briefly to those for dilute mixtures.
In section 3, we study the linear stability of the planar
front and derive the bifurcation equations. Then, we
discuss in some detail the order of magnitude of the
chemical capillary term for metallic azeotropes and
for helium mixtures, and the shapes of the correspond-
ing bifurcation curves. In section 4, we perform the . 
third order amplitude expansion and present the

numerical results relative to metallic azeotropes. Our
results and conclusions are summed up in section 5.

2. Basic equations.

We consider the following situation (Fig. 1) : a binary
mixture Ac B1-c (C is the mass fraction of component
A in the liquid phase) is pulled in the ( - z) direction
at constant velocity V. The concentration far ahead of
the solidification front is fixed at a value Coo close
to the azeotropic composition Co (Fig. 3). The system
is quasi-infinite (on the scale of all wavelengths of
interest) in the (X, y-) directions. The temperatures in
the liquid and the solid are denoted by T Land Ts res-
pectively, the concentration in the solid by Cs. All the
extensive thermodynamic quantities are defined per
unit mass.
As usual, we neglect mass diffusion in the solid, since

the corresponding diffusion coefficient Ds - 10-11
10-11 cm2/s, while in the liquid DL - 10- 5 cm2/s.
The temperature fields in both phases are assumed

to be in a quasi-steady state and satisfy Laplace’s
equation. This assumption is justified by the fact that
thermal diffusivities are several orders of magnitude
larger than chemical diffusivities, so that the tempera-
ture fields relax very quickly to their steady state
values (2). One must however point out that this

assumption remains valid only if the wavelengths of
the « most dangerous » modes are small compared
with the thermal diffusion length (DL,s/V, DL;s being
the heat diffusivity in the liquid or the solid phase.
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We shall see later that this is satisfied except for pulling
velocities very close to the absolute stability limit
(if any).

Following Wollkind and Segel [2] (WS), we only
study the stability against the simplest type of inter-
facial deformations, namely 1-dimensional ones.

From now on, we use the following dimensionless
variables :

where the tilted variables denote the physical ones.
DL is the concentration diffusion coefficient in the

liquid, T0 the azeotropic temperature and K the
equilibrium concentration distribution coefficient;
K = (aL/as), where aL and as are the curvatures
of the liquidus and solidus at C = CO and T = To :
, 

1 d2TL,S
aL’S 2 dC2 c=o2 L,S c=ëo
Let z = eç(x, t) be the (reduced) position of the

interface in the laboratory frame, s being a smallness
parameter. The equations governing mass and heat
transport are then :

On the interface (for z = BÇ(X, t)), temperature
continuity and mass (1) and heat balance take the
form :

where n is the unit normal to the interface pointing
into the liquid, V, is the velocity of the interface and
n - KS/KL ; Ks and KL are the heat diffusion coef-
ficients in the solid and liquid respectively.
These interface conditions must be supplemented

with kinetic equations relating the mass currents of
the two species to the chemical potential differences
across the interface.
We assume that the interface is microscopically

rough, and therefore that the kinetic is fast enough
for local chemical equilibrium to be realized at the
solid liquid interface. That is :

(3) We neglect, for simplicity, all hydrodynamic effects [7].
This implies, in particular, that we neglect the density
difference between the two phases.

Then, developing the chemical potentials piL and
around the reference azeotropic point ’f = To, C = C0,
and p = po (po is the azeotropic pressure), we show
in appendix A that equations (5) can be rewritten :

where

ps is the solid density, t the latent heat of fusion per
unit mass of the azeotrope, x the surface curvature
defined as positive for a convex solid AS’ z St - SS
where SL and Ss are the partial entropies of species i
in the liquid and solid phases respectively and are
related to the specific entropies SL,S of the mixture by
Euler’s theorem :

Let us point out that equation (6a) contains a
capillary term which is absent in the case of dilute
binary mixture. Indeed, in that case, the natural refe-
rence state has zero concentration and (Oi4lDC) -+ oo
for Co - 0, while the term in square brackets in

equation (7) remains finite.
The order of magnitude of this term for different

types of materials will be discussed at the end of this
section. Let us simply mention at this stage that doc
may, in principle, be either positive or negative.
Note also, that the concentration-dependent term

in the Gibbs-Thomson equation (6b) is quadratic.
This is simply due to the fact that the reference state
corresponds to an extremum of the coexistence curves
in the (T, C) plane.
We finally impose the following boundary condi-

tions :

(i) the temperature is fixed at the two thermal

contacts, namely :

The dimensions Ll,2 of « the thermal box » are
assumed to be much smaller than the thermal diffusion

length [3] ; 
(ii) the concentration is fixed at a value Coo far ahead

of the front in the liquid phase - i.e., at a distance
much larger than DL/V. So, for all practical purposes,
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this amounts to :

The set of equations (3)-(10) completely describes
the motion of the solidification front. These equations
admit a simple solution, namely the steady state

planar interface one. It is given by :

G, the reduced temperature gradient in the liquid
phase is given by :

3. Linear stability analysis.

We study the regression of fluctuations by considering
solutions of form :

where v = (TL, uL, Ts) and vo is the planar interface
solution given by equations (11).
The interface position is given by :

Substituting equation (13) into equations (3), one
gets to first order in B :

with

The solutions of these equations can be written as :

where

with

In expressions (17b) and (17c), we have neglected
the reflection of temperature fluctuations at j I z = L1,2,

since, as mentioned above, we assume that the length
of the sample is much larger than the wavelengths
of interest : qLI,2 :"&#x3E; 1.

Substituting equations (13)-(14) in the interface

boundary conditions (4) and (6) and expanding these
resulting equations about z = 0 to first order in e,

one obtains :

The conditions of compatibility for system (18)
gives the dispersion equation relating a and q :

where:

Note that, compared with the dilute case [2], the
dispersion equation (19) contains an additional con-
tribution which stems from the capillary term of
equation (6a). In addition, the dimensionless parame-
ters band p involve a factor M proportional to U200
(see Eq. (7)), while the corresponding factor for dilute
mixtures [2] is proportional to uoo. As we shall see
below, this difference is the source of the scale reduction
of the bifurcation diagram.
The linear stability analysis completely follows that

of WS. The stability of the planar front is determined
by the sign of Re a. Since we look for the instability
threshold; we are only interested in studying the
condition of existence of neutral modes, defined by
Re a = 0.
We will first prove that equation (19) entails that,

if Re Q = 0, then 1m (J = 0. For this purpose, let us set:

Substituting equation (21) into equation (19) and
assuming a,, = 0, we find :
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As shown in references [2, 3], the factor multiplying
ai in equation (22b) is non-zero for all q’s, so equa-
tion (22b) implies :

and when looking for the instability threshold, we
can simply set a = 0 in equation (19). The condition
of neutral stability thus reads :

where mo - m(a = 0). 
The minimum of 1)c(q2) in the physical region 1)  1,

if it exists, defines the bifurcation from the stationary
planar front to a one dimensional front structure.
Therefore, the position of the bifurcation is determined
by the parametric equations (24) and :

It is shown in appendix B that :

- for N  Pmax K(I I + ’1)’ -Gc (ql) has one single
minimum in the physical region;
- for fl &#x3E; Pmax’ bc(q2) &#x3E; 1 for all q’s.
Therefore, for fixed fl  Pmax’ the system exhibits

a bifurcation from the planar front state; for j8 &#x3E; Pmax’
the planar front is always linearly stable. Pmax defines
the «absolute stability limits. The corresponding
bifurcation curve G = Gc(V) is drawn in figure 4a.

(ii) If q  - 1 : bc(q2) always has one single mini-
mum in the physical region, whatever the value of P.
So, in this case, there is no absolute stability limit
The shape of the corresponding bifurcation curve is
represented in figure 4b.
Note that, for n &#x3E; - 1, the qualitative shape of the

bifurcation curve is the same as in the dilute case.
It is shown in appendix B that the effect of the « che-
mical capillary term » is very small in the small 17
(fl « 1) region. It becomes important in the region
fl gg Pax, ie. in the region of large critical wavelengths,
where it either stabilizes or destabilizes the planar
front depending on whether tj &#x3E; 0 or q  0.

For tj  - 1, the chemical capillary term gives rise
to a qualitative change in the shape of the instability
curve : no absolute stability limit exists. Gc(V) increases
monotonously with IT, and behaves like V2 for large
17(P &#x3E;&#x3E; 1).

3.2 SCALE AND SHAPE OF THE BIFURCATION CURVE
FOR METALLIC AZEOTROPES. - In order to determine
which kind of bifurcation should be expected for
various types of quasi-azeotropic mixtures, we will

Fig. 4. - Schematic plot of the bifurcation curve in the
(G, V) plane in the two cases tj &#x3E; - 1 (a) and il  - 1 (b)
(see text).

try to estimate the order of magnitude of q. From
equation (20) and equation (7) :

In general, :8 OPS  1. In addition, T0 I ASB -ASA Ps 3C
is roughly of the order of a latent heat of solidification,
Le. of order C. So, the second term in the square brackets
can be reasonably neglected
The quantities aL, K, C0, To can be obtained from

the experimental determination of the equilibrium
phase diagram.
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Quantities such as SL,s and ðJ4/ðC are not known
in general for real solutions. In order to calculate them,
one would need a complete microscopic description.
So, we will only estimate them with the help of very
simple approximations.
For real solutions, one usually defines a chemical

activity a§ for species i in phase q5 by :

where p/§/° is a standard chemical potential depending
on temperature and pressure only, R is the gas constant
and Mi is the molar mass of species i ; the activity d§
is equal to Ci Mj/(Ci Mj + Cj Mi) for an ideal solution
and measures, in some sense, the deviation from idea-

lity. From activity measurements on various metallic
alloys, including some which form azeotropes [8],
it appears that at/ { Ci Mj/( Ci Mj + Cj Mi)} is a

regular function of Ci, which never departs, noticeably
from 1. So, one can safely for an order of magnitude
write :

as in an ideal alloy.
On the other hand, in order to estimate ASB - ASA,

we make use of the usual regular solution approxi-
mation [9]. That is, the change of entropy due to the
formation of the solution is assumed to be equal to
that for an ideal mixture. This approximation is known
to be rather satisfactory for many real solutions.

Then, at the azeotropic point (4) : ASB _ASA -
ASIB_ASIA, S’i being the partial entropy of species i
in their pure states evaluated at the reference point :
( To, P0). Then:

where Tio and Ei are the melting temperature and
latent heat of fusion at pressure PL. The latent heat
contribution is always much larger than the specific
heat one, so that, roughly :

Equation (26) then becomes :

(4) This is true only at the azeotropic points, where the
configurational entropics are equal in the two phases,
since CS = CL.

For metals To is of order 500 K at least, aL is
typically in the 102 to 103 K range and K is usually
of order 1. On the other hand, for most metallic

azeotropes Co I CO(MB-MA)+MA IILB-LA I/RTo is
smaller than one (the azeotropic composition is,
typically, of order 50 %).

Thus :

with iU. in atomic %.
We have made a more precise evaluation of q in the

case of the Pb-Tl azeotrope [10], which due to its

rather low melting point, seems to be a good candidate
for experiments. Using the thermodynamic quantities
listed in table I, we find that il - + 2 x 10- 3 Uoo.

So, it seems that, for metallic materials, ?I I  1
and the chemical capillary correction to the bifurcation
diagram is, in practice, negligible. Then, as shown in
§ 3 . I, the shape of the bifurcation curve remains the
same as for dilute systems. However, the scale of this
curve is strongly reduced in the quasi-azeotropic
situation. Indeed, from equation (25), the maximum
velocity on the bifurcation diagram is given by :

i.e.

where r = y/ps t is the usual capillary length.
In the lhnit q = 0, from equations (24), (25), one

can calculate exactly the value of Gmax :

where

Table I. - The values of thermodynamic quantities of
Pb-TI needed in the calculation of the coefficient fl.
The quantity ðb/ðè is, with a good precision, equal
to that for an ideal alloy [11].
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Vmax and G max are respectively proportional to

E£ and E£, while in dilute mixtures they are propor-
tional toil and u2oo ; it is this change in the Uoo depen-
dences 09- and which is responsible for thedences of Vmax and G Max which is responsible for the
scale reduction. Typically, DL N 10- 5 cm2/s, Fro -
10- 5 cm. K, K - 1, OCL - 102-103 K. One then finds
that :

with 17 in cm/s, G in K/cm and uoo in atomic %.
When the departure of the imposed concentration,

Coo from the azeotropic composition C0 is in the atomic
% range, ’7max and omax are typically reduced by
factors 102 and 104 as compared with their values for
dilute systems.
For example, for the Pb-T 1 quasi-azetropic mixture

with

we obtain the following estimates :

Such values of V and G are in the range accessible to
actual directional solidification experiments, there-

fore, using quasi-azeotropic mixtures should make the
complete exploration of the Mullins-Sekerka bifurca-
tion curve possible.

3. 3 THE 3He- 4He AZEOTROPE. - In view of the
above discussion, the question naturally arises of
whether there exists any material with non negligible
chemical capillarity. From equation (26), for the

magnitude of tj to be significant, the material must have
a small T0. This leads one to consider the case of the
3He- 4He azeotrope [12] at po = 24 atm. (a pressure at
which the phase diagram is known with good accuracy
near the azeotropic point).
The specific heat measurements of Edwards et

al. [13] show that 3He-4He mixtures behave, to a good
approximation, as regular solutions. So, we have
determined OG:IDC from the corresponding expression
of the Gibbs function given in reference [ 14].
As mentioned in 3.2, for a regular solution, at the

azeotropic point åSJ = AS§. At Po = 24 atm., neither
3He nor 4He are solid, whatever the temperature. So,
in order to calculate the entropy differences of the

pure species at To, po, we write :

where is the melting pressure of the pure (y species
at T = lo, vi its specific volume. ðv/ðT = vi vi
where vi is the thermal expansion coefficient.
Both V3 and V4 vary smoothly in the pressure range

(po, Pi). So, the integral terms in the r.h.s. of equa-

tion (35) are of order ð.(:; ) (Pi - po). The values ofva-’r) 
Pi(T 0)’ Li’ Vi. vi are given in table II. Since Vi "-I 10- 3 K-1,
and E4("O) " L3(To), the quantity åSO(3) - åSO(4) is,
to a good approximation equal to L3/To.
We, then, find :

This estimate, though rough, shows that, in the
3He- 4He mixture, chemical capillarity should be non
negligible.

Since 11 is proportional to ii., its sign changes with
that of uoo. It follows from the analysis of the subsec-
tion 3 .1 that there should be a measurable asymmetry
between the bifurcation curves for the « hyper » and
« hypoazeotrope », with equal I ft. 1, the observation
of which would permit to estimate directly the value of
11.
As mentioned in § 3 .1, the chemical capillary effect is

important in the large velocity regime (V ~ 17m..).
Thus, for the difference between the two curves to be
measurable, one should work at large velocities

V ; 17m... The maximum velocity is given by :

Table II. - The values of thermodynamic quantities of
3He-4He needed in the calculations of the coefficient q.
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where the subscripts + and - correspond respectively
toil. &#x3E; 0 and Uoo  0.
The latent heat of fusion £ = Co C3 + (1 - Cho) C4,

the diffusion coefficient DL N 10-3 to 10-4 cm2/s [15].
In the absence of measurements of the solid-liquid
interface tension for 3He 4He mixtures, we take, for an
order of magnitude of y, the value measured for

4He[18] : y - 4 x 10-9 cal/cm2.
We then find, for the 3He 4He azeotrope at po =

24 atm., and for uoo = 1 %

with

Growth velocities of this order of magnitude have
already been reached in solidification experiments on
pure 4He [ 19]. So, since the ratio Y- /Y+ is significant
(due to the importance of tl), the 3He-4He azeotrope
seems to be a good candidate on which to perform
experiments and measure the effect of the chemical
capillary term.

4. Non linear stability analysis.

We now want to study the nature of the bifurcation.
That is, we need to perform a non-linear analysis up to
third order in the amplitude of front deformations [2].
For this purpose, we follow the approach of Woll-

kind and Segel [2]. That is, we look for solutions of
equations ((3)-(5)) of the form :

and assume that :

where v 1 (z) is the solution of the linearized problem.
Inserting equations (39), (40) into the basic equa-

tions, one straigthforwardly deduces that :

etc...

From this one easily [2] checks that the time depen-
dent amplitude A(t) of mode q must satisfy an equation
of the form :

where a is the relaxation rate of mode q, given by the
dispersion equation (19).
The Landau constant ai, the sign of which deter-

mines the nature of the bifurcation, will now be
calculated from the full third order expansion.

Following Caroli et al. [3], the solutions v2o, V22 of
the second order problem are (in the « small thermal
box » case, we consider here)

where

The values of (X20, ..., {322’ obtained from the second
order expansion of the interface equations, are listed in
appendix C.

In order to calculate a,, we only need to calculate
the v31 terms. They are given by [2, 3] :

where

The interface boundary conditions (4) and (6) lead,
in the limit a = 0, to the following system :

The values of di are listed in appendix C.
One then easily checks that the determinant of the

system (45) is identical to that of the linearized system
(18) for 6 = 0, which precisely vanishes at the bifurca-
tion.

One, therefore, must write a condition of compatibi-
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lity for equations (45), which reads :

In equation (46), 1), fl, q (and mo) are understood to
be evaluated at the bifurcation. They are related to
each other by the parametric equations (24)-(25). Thus,
al is in fact a function of a single variable, for instance
(i.e. of the critical pulling velocity).

However, due to the number of independent para-
meters (K, il, n, Lt / L2) involved in expression (46), it
would be unfeasibly heavy to try to scan the complete
parameter space numerically.

In the absence of experiments on azeotropic sys-
tems, we have performed illustrative numerical ana-
lysis of the variation of al. For this purpose, we
choose values for Ll/L2, il, n, which are plausible for
experiments on metallic azeotropes. That is :

(i) on the basis of the estimates performed in 3.2, we
neglect chemical capillarity, i.e. take q = 0;

(ii) we take for the thermal conductivity ratio n,
the typical value n = 2 ;

(iii) we assume that the experimental set up is

adjusted so that L1 = L2. We have checked numeri-
cally that changing Ll/L2 by a factor 2 only induces
negligible variation of al.
Under these assumptions, we have computed at,

as a function of 17 (where Y runs along the bifurcation
curve) for various values of the distribution coefficient
K. Positive al’s (resp. negative al’s) correspond to a
normal (resp. subcritical) bifurcation [2]. We list in
table III, for different values of K, the range of values
of V/V Max in which the bifurcation should be normal

Table III. - Numerical values of Landau’s constant a,.

(at&#x3E; 0). It is seen that, for K  0.64, the bifurcation
is inverted everywhere along the instability dia-

gram. When K increases above this value, normal
bifurcation range develop on the large V side of the
diagram, and extends very rapidly towards low V’s ;
for K &#x3E; 1.5, the bifurcation should be normal practi-
cally everywhere. Note that the most frequent situation
for metallic azeotropes correspond to values of K
larger than 1 [20].

5. Conclusioa

Our major results can be summarized as follows :

(i) The quadratic shape of the phase diagram of the
binary mixture around an azeotropic point gives rise to
an important reduction of the scale of the Mullins-
Sekerka bifurcatibn diagram. Our estimates indicates
that directional solidification experiments should be
able to explore this diagram completely. In particular,
it would be interesting to check whether the high
velocity front state (in the  restabilized &#x3E;&#x3E; region)
depends or not on the path followed by the system in
the G, V plane.

(ii) For not too small values of the distribution
coefficient K (typically K &#x3E; 0.7), the normal bifurca-
tion regime should become accessible. As discussed in
§ 1, such experiments would provide very valuable
informations to guide further progress in the under-
standing of the shape of cellular fronts. It might even be
possible to find materials in which, by moving along
the bifurcation curve, one could compare front shapes
close above threshold in the normal and subcritical

regimes.
(iii) As discussed in § 3. 3, the chemical capillary

correction is very likely negligible in practice for

ordinary azeotropes. However, it should be of impor-
tance in the 3He- 4He case, where it might give rise to
a noticeable difference between the bifurcations curves
for systems with opposite values of Coo - Co.

Finally, it may be worth mentioning that being able
to explore the upper part (17 - Vmax) of the bifurcation
curve would give access to the « boundary-layer
regime » (21), in which the critical wavelength becomes
much larger than the diffusion length. Indeed, as can be
seen from equation (25), qc -&#x3E; 0 for V - Vmax (qc
is the critical wavenumber). Experiments in this regime
would be useful to check the semi-empirical local
model - analogous to that built up by Ben Jacob et
al. [21] for dendritic growth in an undercooled melt-
recently proposed by Karma and Goldenfeld [22].

Note, however, that, in the immediate vicinity of
Vmax’ our linear stability calculation should be
extended to include the reflection of temperature fluc-
tuations on the external boundaries. It may be checked
that this effect might be non negligible for (V max -
V)/Vmax - 10-2..
Moreover, in this regime, our amplitude expansion

ceases to be valid Indeed, since qc -&#x3E; 0, harmonics of
the fundamental mode qc are quasi-neutral, and their
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contribution can no longer be neglected So, one should
either resort to the semi-empirical boundary - layer
approach or develop a singular expansion analogous
to the one performed by Sivashinsky [23] for dilute
systems with very small segregation coefficients.

So, it seems, from our calculations, that quasi-
azeotropic mixtures should give access to a wider
range of physical behaviours than is the case for dilute
mixtures. Therefore, they appear as very interesting
systems on which to perform systematic directional
solidification experiments.
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Appendix A.

In this appendix, we derive the conditions of chemical
equilibrium at the interface (Eqs. (6a, b)). Let ,uL,s be
the chemical potential of species i (i = A, B) in the
liquid or solid phase. Local chemical equilibrium on
the interface implies :

where A,s is the pressure on the liquid or solid side of
the interface.
We expand equation (A .1 ) about the reference state

(TO, P0, CO) where we choose for po the fixed liquid
pressure A and to, Co are the temperature and
concentration of the azeotropic point at pressure po
(they correspond to equilibrium between solid and
liquid with a planar interface). To first order in
ðT = f - To and bps - Ps - P0, and to second
order (5) in ðC == C - C0, we obtain :

where

and where we have made use of Laplace’s law : ps -
A = yk ; y is the interfacial tension and k the surface
curvature defined as positive for a convex solid

(5) Due to the fact that 6f - ðC2 at equilibrium, one
has to expand ilLs up to second order in bC.

One easily checks that the two equations (A. 2) are
equivalent to :

where we have used the Gibbs-Duhem conditions :

For a planar front, near the azeotropic point, to
lowest order in 6CL,s :

with

Equations (A. 5), (A. 6) must hold for a planar inter-
face (R = 0). This entails :

For a curved interface, one then gets from (A. 4) :

Inserting equation (A . 9) into equation (A. 5) neglect-
ing higher order terms (e.g. - k ðè) and using equa-
tions (A. 8), we obtain :

We now want to express 6 f and bCs in terms of more
usual thermodynamic quantities. For that purpose,
we make use of the fact that the partial entropy density
S relative to species is related to the total entropy
density (per unit mass) S by Euler’s theorem (Eq. (8)).
Analogous expressions’ hold for the densities of all
extensive quantities, e. g. the specific volume.

This allows us to rewrite equations (A. 9), (A. 10)
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as follows :

where C is the latent heat of fusion per unit mass and

ps is the solid density. Equations (A. 11), (A. 12) can
be reduced to non dimensional forms, they then
reduce to expressions (6a, b).

Appendix B.

The bifurcation is defined by the parametric equations
(24), (25). For a given fl, the minimum ofbc(q2) (if it
exists) in the physical region b  1 defines the bifur-
cation from the planar to a deformed front state.

The condition for the existence of a minimum is

expressed by equation (24), which can be rewritten :

with

(i) If(1 + n) K &#x3E; - 1, g(mo) increases monoto-

nously from K2(1 + q) for mo = 1 (q = 0) to

+ oo for m0 -&#x3E; + oo (q - oo). So :
- if (1 + yy) &#x3E; 0, equation (B.1) has one single

solution for P  1/(K(1 + il)) and no solution for
p &#x3E; 1/K(1 + il).

- if (1 + il)  0, equation (B. 1) always has one
solution.

(ii) If (I + q) K  - 1, g(mo) has one minimum
for mo = MO min = - K(I + r¡)]/3 &#x3E; 1. Since

g(mo = 1) = K2(1 + q)  0, g(m0min)  0. That is

g(mo) increases monotonously in the region where
it is positive, and since K/ P &#x3E; 0, equation (B . 1) always
has one single solution.
One can restate the above results under the following

form :

(i) If q &#x3E; - I
- for fl  II[K(I + il)], bc(q2) has one single

minimum in the physical region; 
- for P &#x3E; 1/[K(1 + il)], bc(q2) &#x3E; 1 for all q’s.

In this case, there is no bifurcation, the planar front
is linearly stable at all 13’s (i.e. at all thermal gradients).
Pmax = 1/[ K (1 + q)] is the limit of « absolute stabi-
lity ».

(ii) If q  - 1 : bc(q2) always has one single mini-
mum in the physical region whatever the value of P.
We will now study rapidly the shape of the bifurca-

tion curve in the two cases il &#x3E; - 1 and q  - 1.

(i) ?I &#x3E; - 1 : P varies in the range (0, Pmax). The
dimensionless critical wavenumber qc(P) given by
equation (B .1 ) verifies :

For small V’s (fl « 1, q, &#x3E; 1) one gets, from a
Taylor expansion of equations (24), (25) and by using
definitions (20) of l3 and P, that :

Note that the coefficient of 17 in the r.h.s. of(B.3)
is il-independent This means that the chemical capil-
lary effect is negligible in the small 17 regime. For large
17 (17 - V max qc  1) one finds :

F =- y(CPS)-l is the usual capillary length.
From equations (24) and the definition of l3 (Eq. (20)), one easily shows that dC,, ,/d)7vanishes if and only if :

This equation has one solution in the physical region mo &#x3E; 1. That is to say Gc(V) has a single maximum.
In the limit = 0, the solution of equation (B. 5) is mo =1(3 + 1 + 8 K). The corresponding value of

Y is given by :
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and the maximum thermal gradient G max is given by :

with

(ii) r  - I : fl varies from 0 to 00. The critical wavenumber qc(P) is infinite for j8 = 0 and has a finite value
for P = 00.

For small V, Gc(V) is given by equation (B. 3). In the large V regime (V --&#x3E; oo), one checks from the para-
metric equations (24), (25) that Gc(V) oc V2. In this case, equation (B. 5) has no solution with mo &#x3E; I, i.e.

Gc(V) increases monotonously with V.

Appendix C.

We list here the various amplitudes appearing in the first and second order contributions to the temperature and
concentration fields.

One finds to first order (Eqs. (17)) :

The amplitudes of the second order terms (Eqs. (43)) are at the bifurcation :

with :

where ho - h’( (1 = 0), and ho = h( (1 = 0).
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Finally, in the limit 6 = 0, the coefficients di appearing in the r.h.s. of equations (45) are given by :
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