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Abstract. Computer models are ubiquitous tools used to rep-

resent systems across many scientific and engineering do-

mains. For any given system, many computer models ex-

ist, each built on different assumptions and demonstrating

variability in the ways in which these systems can be rep-

resented. This variability is known as epistemic uncertainty,

i.e. uncertainty in our knowledge of how these systems op-

erate. Two primary sources of epistemic uncertainty are

(1) uncertain parameter values and (2) uncertain mathemati-

cal representations of the processes that comprise the system.

Many formal methods exist to analyse parameter-based epis-

temic uncertainty, while process-representation-based epis-

temic uncertainty is often analysed post hoc, incompletely,

informally, or is ignored. In this model description paper

we present the multi-assumption architecture and testbed

(MAAT v1.0) designed to formally and completely analyse

process-representation-based epistemic uncertainty. MAAT

is a modular modelling code that can simply and efficiently

vary model structure (process representation), allowing for

the generation and running of large model ensembles that

vary in process representation, parameters, parameter val-

ues, and environmental conditions during a single execution

of the code. MAAT v1.0 approaches epistemic uncertainty

through sensitivity analysis, assigning variability in model

output to processes (process representation and parameters)

or to individual parameters. In this model description pa-

per we describe MAAT and, by using a simple groundwater

model example, verify that the sensitivity analysis algorithms

have been correctly implemented. The main system model

currently coded in MAAT is a unified, leaf-scale enzyme ki-

netic model of C3 photosynthesis. In the Appendix we de-

scribe the photosynthesis model and the unification of multi-

ple representations of photosynthetic processes. The numer-

ical solution to leaf-scale photosynthesis is verified and ex-

amples of process variability in temperature response func-

tions are provided. For rapid application to new systems, the

MAAT algorithms for efficient variation of model structure

and sensitivity analysis are agnostic of the specific system

model employed. Therefore MAAT provides a tool for the

development of novel or “toy” models in many domains, i.e.

not only photosynthesis, facilitating rapid informal and for-

mal comparison of alternative modelling approaches.
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Table 1. Table of definitions employed in this paper.

System A complex of interconnected and interacting processes.

Process A biological, chemical, or physical mechanism.

Hypothesis A mechanistic description of how a particular process operates. A statement of cause and effect.

Model hypothesis A mathematical description of a hypothesis (also referred to as representation, process representation, or assumption).

Assumption Anything encoded in a model to represent part of the real world. Used synonymously with process representation.

Can include hypotheses, empirical observations of relationships to represent a process that is not fully understood,

or a simplification of a more detailed mechanism.

1 Introduction

Systems are composed of multiple interacting components

and processes and can exhibit complex behaviour. Mathe-

matical computer models are a valuable tool in the study of

systems behaviour, providing a quantitative approximation of

the main features and processes of a system. Computer mod-

els are used widely across many scientific and industrial do-

mains, for example to explore hypotheses on ecosystem pro-

cesses (e.g. Comins and McMurtrie, 1993), identify the bio-

physical factors controlling biological activity (e.g. Walker

et al., 2017a), interpolate sparse observations (e.g. Compo

et al., 2011), project responses of the Earth system to an-

thropogenic activity (e.g. Friedlingstein et al., 2014), predict

aerodynamic flow over new wing designs (e.g. Jameson et al.,

1998), and forecast the weather (e.g. Molteni et al., 1996).

Real-world processes (often how two or more variables are

related) are included in models using mathematical represen-

tations of mechanistic hypotheses or conceptual, simplifying,

or empirical assumptions (see Table 1 for our definition of

terms). When multiple plausible assumptions exist for a par-

ticular process, a model developer is faced with the choice of

which assumption to use in their model (Fig. 1). For a single

process, the consequences of this choice can be assessed in a

relatively simple way. However, when multiple assumptions

exist for multiple processes (e.g. Fig. 1) the options com-

bine in factorial to generate a large number of plausible sys-

tem models. This large number of plausible system models

characterizes process representation uncertainty and poses a

challenge to understanding and interpreting predictions for

the modelled systems (e.g. Medlyn et al., 2015; Friedling-

stein et al., 2014; Beven, 2006).

Process representation uncertainty, a component of epis-

temic uncertainty (Beven, 2016), is often referred to as model

structural uncertainty (e.g. Gupta et al., 2012; Beven, 2016)

or conceptual model uncertainty (e.g. Rojas et al., 2008;

Dai et al., 2017). While model structural uncertainty is a

broadly encompassing term (see Gupta et al., 2012, for an

in-depth discussion of the multiple facets of model structural

uncertainty), in this paper we use the term process repre-

sentation uncertainty as it implies hypotheses and assump-

tions and therefore connects more directly with the language

of experiment and observation. Often process representation

uncertainty is assessed by analysing the cross-model vari-

ability in the ensembles of model intercomparison projects

(MIPs) (Refsgaard et al., 2007; Friedlingstein et al., 2014;

Herger et al., 2018). These ensembles can be thought of as

ensembles of opportunity and capability (Tebaldi and Knutti,

2007); the ensemble members are determined by the oppor-

tunity and the capability of the modelling teams to contribute

results. A large body of literature has developed and em-

ployed formal statistical techniques for post hoc analysis of

these ensembles of opportunity (e.g. Refsgaard et al., 2006;

Herger et al., 2018; Knutti et al., 2009). These formal anal-

yses account for the non-independence of the models in the

ensemble (e.g. Masson and Knutti, 2011), can weight models

based on how well they reproduce observed data (e.g. Fang

and Li, 2015), and subset the ensemble for improved per-

formance and reduced uncertainty (e.g. Herger et al., 2018),

yielding a more robust estimate of the process representation

uncertainty of the ensemble. However, these ensembles do

not represent an a priori assessment of process representa-

tion uncertainty. A full a priori assessment of process rep-

resentation uncertainty involving clear delineation of which

representations to employ for each modelled process and a

factorial combination of these options to create an ensem-

ble of all possible models is rarely, if ever, done. More-

over, reduction of uncertainty (i.e. increased certainty) re-

quires that researchers identify the processes responsible for

cross-model variability in MIPs, which is challenging and

time-consuming (e.g. see De Kauwe et al., 2013; Medlyn

et al., 2015). Incomplete or out-of-date model documenta-

tion, modeller specific code, incomplete information for how

a particular simulation has been executed, and superficial

knowledge of how a model works all contribute to the dif-

ficulty of process-level analysis in MIPs. A primary reason

for this failure is that adequate tools to assess model sensitiv-

ities to variability in process representation are not available.

Variability in numerical model output comes from mul-

tiple sources, not solely from uncertain process knowledge.

Other sources of model variability are variable or uncertain

parameter values, input scenarios (boundary conditions), and

initial conditions (Beven, 2016, 2006; Vrugt et al., 2009).

Sensitivity analysis (SA) tests the response of model out-

puts to predefined variation in any of the above-mentioned

sources of model variability (Razavi and Gupta, 2015; Song

et al., 2015). Parametric uncertainty in models has many

established methods for its assessment and quantification.
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Figure 1. Schematic to illustrate a real-world system (yellow box) comprised of three processes (red shapes). Multiple hypotheses or as-

sumptions exist for each process: three for process A, two for process B, and three for process C. When a modeller is building a conventional

model of the system (blue box) they are faced with the choice of which hypothesis or assumption to use for each process in their model.

In this illustration, the model is composed of hypothesis A1 for process A, hypothesis B2 for process B, and hypothesis C3 for process C.

MAAT allows a modeller to use all available hypotheses for each process and compare them using formal and informal methods. In this

illustration, a total of 18 possible models exist. The addition of one more process with three alternative representations would increase the

number of possible models to 54.

These methods are often based on Monte Carlo (MC) tech-

niques that run large ensembles of model simulations that

sample parameter space, boundary condition space, and ini-

tial condition space (Saltelli et al., 2010; Song et al., 2015;

Dai and Ye, 2015). Some formal SA methods exist for the

assessment of model output sensitivity to variable process

representation (e.g. Dai et al., 2017) and are based on similar

MC techniques combined with model averaging. However,

methods to assess model sensitivity to variable process rep-

resentation are few and less extensively used.

To apply parametric SA methods requires a model of the

system of interest, a wrapper to sample parameter space and

run the model, and an interface to pass information (often

both ways) between the wrapper and the model. As with

parametric SA methods, the application of process represen-

tation SA methods requires a model of the system of inter-

est, a wrapper that samples the configuration of the ensemble

member, and an interface to pass information between the

wrapper and the model. The practical challenge in develop-

ing these methods is to design an interface that enables the

model to accept information on which process representa-

tions to use and to configure the model in a way that is com-

putationally efficient. Selecting among alternative assump-

tions can be achieved using switches and case (i.e. “if”) state-

ments. However, many large case statements that would be

required for extensive process representation variability com-

plicate readability and increase the runtime of the code. The

challenge is to represent an assumption simply, as a charac-

ter string, for example, that the system model can interpret to

directly access the code that represents the assumption. This

also requires a highly modular modelling code. Most models

are not built in this way, though thanks to recent efforts in

hydrology we have begun to see models with these capabil-

ities emerge (Downer and Ogden, 2004; Sierra et al., 2012;

Clark et al., 2015; Coon et al., 2016).

In this study we build on previous efforts and present a

modular modelling code designed explicitly to be system

model agnostic and for the generation of large model en-

sembles that differ in how each process within a system is

represented. We describe the multi-assumption architecture

and testbed (MAAT v1.0): a modelling framework that can

formally, systematically, and rigorously analyse variability

in system model output caused by variability in process rep-

resentation, as well as parameters and boundary conditions.

MAAT allows users to specify multiple process representa-

tions for multiple processes and can configure the ensemble

of all possible combinations of these choices during a single

execution. The main components of MAAT are a software

wrapper to generate and run the ensemble, an interface to

pass assumptions to a system model, and a system model. All

of these components are coded in R (R Core Team, 2017).

The system model is highly modular by design, allowing

for flexible model structure according to information passed

from the interface. Algorithms to analyse the sensitivity of

model outputs to variation in process representations and pa-

rameters are contained within the wrapper. While the ensem-

ble generation code is system model agnostic, allowing for

the analysis of any system model coded in the MAAT for-

malism, our primary domain of research is biogeosciences

and ecosystem ecology. Therefore MAAT v1.0 comes pack-

aged with a unified multi-assumption leaf-scale photosynthe-

sis model as its primary system model.

2 The multi-assumption architecture and

testbed (MAAT)

MAAT is designed to automate the configuration and imple-

mentation of model ensembles with a high degree of flexibil-

ity. The ensembles can vary in assumptions and hypotheses

(model structure), parameters (functional traits), and bound-

www.geosci-model-dev.net/11/3159/2018/ Geosci. Model Dev., 11, 3159–3185, 2018
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Figure 2. Schematic representing the basic software structure and execution process of MAAT. Panel (a) represents the operation of the first

two steps of a MAAT execution: (1) reading user input data from initialization files and (2) generating ensemble matrices from dynamic

variables. Panel (b) represents a single iteration of the “execution cascade”, which forms the third step of a MAAT execution. “Proto” objects

(light blue boxes) contain data structures (dark blue shapes) and functions (white rectangles). Blue arrows represent the transfer of data via a

read (dashed) or write (solid), and red arrows represent a function call. During the execution of the execution cascade, each execution function

is associated with a particular variable type (process representation, parameter, environment), reads a line of the variable type matrix, and

calls the model object configure function with the line from the matrix as an argument. The configure function writes the variable values to

the model object data structure, then the function calls the next function in the execution cascade. The final function in the cascade is the

model run function, which runs the model and writes output to the output data structure in the wrapper object.

ary conditions (environmental conditions). MAAT is written

in R (R Core Team, 2017), which has functions that allow

for simple and efficient operation of the code. The proto-

type style of object-oriented programming, specifically the

“proto” package in R (Kates et al., 2018), is used to code the

model and the wrapper objects. The “apply” family of func-

tions are used to execute the ensemble and the “get” function

is used to parse and call R objects from a character string. For

anyone wishing to develop models in MAAT we encourage

them to become familiar with the syntax of the R functions

“proto”, the “apply” family, and “get”. With knowledge of

this syntax a MAAT developer will be able to follow and

modify the code.

Flexibility and generality are achieved by code modular-

ity. As described in the Introduction, MAAT is composed

of a wrapper, an interface, a system model, and alternative

process representation functions. The wrapper interprets in-

put data and generates the model ensemble from those data.

Through the interface, the wrapper sequentially passes in-

formation for a particular ensemble member to the system

model and then runs the model (Fig. 2). The wrapper is a

separate object, the system model is a separate object, and the

process representations are individual R functions. Each pro-

cess is a separate function call in the system model code, al-

lowing multiple functions (i.e. hypotheses or assumptions) to

represent each process. Different ways to represent the over-

all system are also separated from the system model object,

allowing alternative system conceptualizations to be incor-

porated (e.g. light use efficiency versus enzyme kinetic mod-

els of photosynthesis). The alternative system functions and

process representation functions are called during model run-

time using character strings, avoiding the use of case state-

ments and parameters that act as switches. The avoidance of

case statements in process specification increases code read-

ability and is especially useful when adding new assumptions

for a process or new processes (by defining new system func-

tions). To add a new assumption, all that must be coded is

the function (i.e. no modification of case statements is nec-

essary). This simplicity facilitates rapid model development

and testing of new hypotheses and assumptions.

The modularity of MAAT is such that the wrapper code

contains no information that is specific to a particular system

model. All information specific to a particular system model

is contained with the system model and the input files. Thus

the wrapper is completely agnostic to the particularities of

the system model. This separation of information allows for

the development of new system models without the need to

alter the wrapper and with only slight modification of the

interface.

The MAAT source code is available on GitHub (https:

//github.com/walkeranthonyp/MAAT, last access: 7 Au-

gust 2018) and READMEs that come with the source code

provide the following: guidance on how to set up and run

MAAT; some examples of using MAAT to generate the data

and some of the figures presented in this paper; and details of

the MAAT formalism and how to code a new model object.

How to develop a new system model in MAAT is detailed

in these READMEs as is how to integrate new process repre-

Geosci. Model Dev., 11, 3159–3185, 2018 www.geosci-model-dev.net/11/3159/2018/

https://github.com/walkeranthonyp/MAAT
https://github.com/walkeranthonyp/MAAT


A. P. Walker et al.: Multi-assumption architecture and testbed (MAAT v1.0) 3163

sentations in an existing system model. We recommend start-

ing with the README in the highest-level directory of the

source code as this provides the very initial guidance needed

to set up MAAT and points to the other READMEs for more

advanced information.

2.1 Wrapper object

The wrapper object generates and executes an ensemble

specified by the user. The wrapper object can execute an en-

semble for a model object that describes any system, pro-

vided that the system model is written in the MAAT code

formalism. Thus the bottleneck for application to models of

different systems is that the model object and associated pro-

cess functions must be coded in R using the MAAT formal-

ism and “proto” syntax. This coding is required due to the

high degree of modularity of the code, which is not common

in existing models. Assuming a model is coded in another

language with hyper modularity, R functions could be written

to call these modules written in other languages from within

MAAT.

The wrapper object contains a data structure, a function

that generates the ensemble and then calls a cascade of “ap-

ply” style functions that execute the ensemble and output

integrating functions. The wrapper is built and called by a

script that also reads user-specified command line arguments

and input file(s), interprets this information, and passes it to

the wrapper. According to the type of ensemble and analysis

specified, the wrapper integrates input information to gener-

ate the ensemble and then executes the ensemble.

An ensemble is characterized by two things: the variables

that vary across an ensemble (called “dynamic” variables)

and the type of ensemble (e.g. factorial, process sensitivity

analysis). Variables that do not vary across the entire ensem-

ble are referred to as “static” variables. Defining the ensem-

ble requires the definition of static variables, dynamic vari-

ables, their values, and the ensemble type. Static variables

and their values are read from a default values file or speci-

fied by the user in the input file. A user need only provide the

static variable values that differ from the defaults and a com-

plete list of all static variable values is not required. Dynamic

variables and their multiple values are simply specified by

the user in the input file. According to the ensemble type, the

wrapper generates the ensemble by combining the dynamic

variables into matrices that describe the ensemble with vari-

ables in columns and values in rows. These matrices are sep-

arate for process representations, parameters, and environ-

ment. Finally, and according to ensemble type, the wrapper

calls the appropriate ensemble execution cascade (algorithm)

that executes the specified ensemble type.

The ensemble execution cascade is a set of functions with

a nested call structure that are designed to be called by the

“apply” family of R functions. Each function in the execution

cascade passes a line of its associated variable matrix to the

model configuration function, then calls the next function in

the cascade. The final function in the cascade runs the model

by calling the model object run function.

Due to the large ensembles needed to run global sensi-

tivity analyses, MAAT has been designed to run on high-

performance computing (HPC) systems using the “mclap-

ply” function from the “parallel” R package. This package

uses the forking method of parallel computing, which re-

lies on shared memory. Therefore MAAT ensembles are cur-

rently limited to a single node of multiple cores with shared

memory. With the current generation of HPC systems that

have a large number of cores per node, parallel processing

in MAAT can yield substantial increases in speed compared

with serial processing. For example, a leaf photosynthesis en-

semble with 100 million members runs in around 5 h on 32

cores with a combined CPU time of around 172 h. However,

the current requirement for shared memory precludes scala-

bility across nodes of an HPC system and we will return to

this in the Discussion.

2.2 Model object

This section details the model object and how it is struc-

tured, outlining the MAAT formalism to describe how to ap-

proach coding a model object in MAAT. The model object

is an R “proto” object composed of a data structure, a con-

figuration function (the interface), a run function, an output

function, unit testing functions, and process representation

functions (these are external to the “proto” object and are

individual R functions). The data structure contains multi-

ple lists of named variables. Three lists contain the details

of the ensemble member; these are a list of character string

values representing each process within the system (labelled

“fnames” in MAAT code), a list of numerical values repre-

senting model parameters (labelled “pars”), and a list of nu-

merical values representing model boundary conditions (la-

belled “env”). These three ensemble member description lists

do not vary throughout a single model run. Two additional

lists describe the model state at each time step. These two

lists are both of numeric values and are lists of state vari-

ables (labelled “state”) and secondary state variables that can

be thought of as dynamic parameters (labelled “state_pars”).

A useful way of thinking about the distinction is that a sec-

ondary state variable could be assumed as a fixed parame-

ter (though functions to simulate it dynamically are avail-

able). The primary state variables are the primary variables

intended to be predicted by the model.

The configure function acts as the interface between the

wrapper and the model. The “configure” function is passed

values for the three ensemble member description lists by the

ensemble execution cascade in the wrapper object. The con-

figure function is also model agnostic and does not require

additional coding for a new system model. Each ensemble

execution function passes the configure function a vector of

named values and the configure function searches either the

“fnames”, “pars”, or “env” list for named elements and as-
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signs values when the named elements are found. The object-

oriented method and assignment by variable name provides

flexibility in input specification by allowing variable assign-

ment of only the variables that are varied in the ensemble

(called dynamic variables). Variables that do not vary across

all ensemble members (called static variables) are assigned

by the configure function at the very beginning of an ensem-

ble execution. Thus static variable specifications are over-

written by dynamic variable specifications. Once the con-

figure function has been called by each of the functions in

the ensemble execution cascade and values assigned to the

three ensemble member description lists, the ensemble mem-

ber has been completely defined. The final function in the en-

semble execution cascade then calls the model run function.

The model “run” function in the model object runs a sin-

gle instance of the model by calling the model system func-

tion (written as a separate R function in the same way as

other process representation functions) and then the model

output function. If a meteorological dataset exists, a function

is called that “applies” the run function sequentially to each

time point in the meteorological dataset. The model system

function represents the structure of the system, primarily the

order in which the system processes are called and executed.

A key component of MAAT’s flexibility, and an advantage

over most other models and modelling frameworks, is that

all system functions and process hypotheses are written as

separate R functions. The assumption to use for a particu-

lar ensemble member is specified using a character string

that is the name of the R function that represents that spe-

cific hypothesis or assumption. These function name charac-

ter strings allow the functions to be called using the “get”

function in R, avoiding the need for case statements to select

the code to be used to represent a process. All of the process

hypothesis functions have an object as their first argument,

i.e. the model object that contains parameter and boundary

condition values that the function may need to access. Pass-

ing the model object to the function allows for simple argu-

ment passing to the functions and relatively clear coding of

the system framework.

The output function is written into the model object to al-

low different combinations of model state and other variables

to be output based on an input character string. Unit testing

functions are designed to test the operation of the run func-

tion under specific conditions and to compare alternative hy-

potheses for various process.

2.3 Initialization

An initialization script is executed from the command line

and command line arguments can be passed to select various

options defining the ensemble. The model to run can be spec-

ified as a command line argument; currently only a leaf-scale

photosynthesis model and a simple groundwater model are

available. Any model object coded in the correct R format

could be provided. The initialization script loads the wrapper

object and the model object.

The specifics of the model ensemble are then read by

the initialization script from either standardized R scripts or

XML files, specified on the command line. These initializa-

tion files mimic the three lists in the model object data struc-

ture: “fnames”, “pars”, and “env”, described in the above

section. A minimum of two initialization files are required

and read by the initialization script. The first is the default

variable values, an XML file that exactly mimics the three

model object lists. This default XML comes packaged with

the source code. The other initialization file(s) are user de-

fined and contain the static and dynamic variable values for

the ensemble. Values to be passed to the wrapper object are

specified in these initialization files and must be named ex-

actly as they appear in the model object data structure.

For the dynamic file, variables can be assigned snippets of

R code as a character string, and these will be parsed by the

wrapper and the variable assigned the output value of the R

code snippet. The use of R code snippets allows variables to

be assigned values that are samples drawn from various dis-

tributions of dynamic parameters with a user-defined sample

number. The initialization script also allows for some flex-

ibility in the specification of dynamic boundary conditions,

such as a time series of meteorological data, though the files

must currently be in comma-separated ASCII format. The

column names of the dynamic boundary condition file are as-

signed the model object boundary condition names using an

XML file similar to the above described files. These dynamic

boundary conditions are applied for each ensemble member

and are different from the boundary conditions that are varied

as part of the ensemble.

3 Ensemble types

The following section details the ensemble types that can be

generated within MAAT and shows results that verify that

the sensitivity analysis algorithm is working as intended.

3.1 Factorial combination

The simplest type of ensemble is a complete factorial combi-

nation of options. In this case, processes with multiple repre-

sentations, parameters with multiple values, and environment

variables with multiple values are specified in the input file.

From these inputs three matrices are configured representing

process, parameter, and environment combinations. Each of

these matrices is a factorial combination of the values spec-

ified for each variable, with variables arranged in columns

and their values on the rows. The run cascade in the wrapper

object is then called. Each run function in the run cascade

passes a row of its associated matrix to the model object con-

figure function and calls the next function in the run cascade

(Fig. 2b). The model object configure function places the

Geosci. Model Dev., 11, 3159–3185, 2018 www.geosci-model-dev.net/11/3159/2018/



A. P. Walker et al.: Multi-assumption architecture and testbed (MAAT v1.0) 3165

variable values in the model object data structure. For a facto-

rial simulation the process run function is called first, which

then calls the parameter run function, which then calls the

environment run function, which then executes the model.

On completion of the model execution, the environment run

function then passes the next row of the environment matrix

to the model and executes the model. This repeats until the

last row of the environment matrix is reached, then the pa-

rameter run function passes the next row of the parameter

matrix to the model object configure function and calls the

environment run function again. This is the nested nature of

the run cascade and the model is executed for every combi-

nation of the lines of the process matrix, parameter matrix,

and the environment matrix.

3.2 Sensitivity analysis algorithms and verification

Global variance-based sensitivity indices quantify the pro-

portion of variance in model output caused by variability

in parameters and processes. Specific algorithms (model en-

sembles) allow for the calculation of global parameter sen-

sitivity indices and global process sensitivity indices within

MAAT. For global parameter sensitivity analysis the algo-

rithm developed by Saltelli et al. (2010) is employed. As with

the parameter sensitivity index, the global process sensitivity

index (Dai et al., 2017) accounts for variability in parame-

ters while also accounting for variability caused by differ-

ent model structures and assumptions, i.e. the different ways

in which processes can be represented. The process sensitiv-

ity index calculates the proportion of model output variance

caused by variation in all of the parameters that feature in a

process and by variation in the ways in which to represent a

process. As an example, in the simplest case one may have

two models. Parameter sensitivity can account for the vari-

ance in output within each model, but not the variance in

model output caused by the two different models themselves

(i.e. the difference between the means of the output from the

two models). These different components of model output

variance can be thought of as within and between individual

model variance. The parameter sensitivity index accounts for

within-model variance only, while the process sensitivity in-

dex accounts for both within- and between-model variance.

The algorithms for the parameter and the process sensitiv-

ity indices are not simply factorial combinations of process

representations and parameters (Dai et al., 2017). Therefore

the configuration of the “fnames” and “pars” matrices and

the run cascade is different for each of the algorithms. The

algorithms are described in detail in Saltelli et al. (2010) and

Dai et al. (2017) so we do not go into great detail here.

For the parameter sensitivity algorithm (Jansen, 1999;

Saltelli et al., 2010), two parameter sample matrices are con-

structed, A and B, both with n rows and np columns, where

n and np are the number of samples and the number of pa-

rameters in the sensitivity analysis. Each row of these matri-

ces contains a sample from the distributions of each parame-

ter (columns) in the analysis. Further np parameter matrices,

A
(i)
B , are constructed by copying the A matrix and replacing

the parameter samples in column i of matrix A
(i)
B with col-

umn i from the B matrix. For a single model, the model is run

once for each row of the 2 + np parameter sample matrices

(A, B, and A
(i)
B ) using the parameter values in the row. The

first-order, Si , and total sensitivity, STi , indices are calculated

after Jansen (1999); see Table 2 (Saltelli et al., 2010).

Si =
V {Y } − 1

2n

∑n
j=1(f (Bj ) − f (A

(i)
B j

))2

V {Y }
, (1)

STi =
1

2n

∑n
j=1(f (A)j − f (A

(i)
B )j )

2

V {Y }
, (2)

where V {} is the variance function, f () is the model, and

Y = f (A,B) is the model output when evaluated across all

rows of matrices A and B.

When multiple models are available, the parameter sen-

sitivity indices are calculated for each model combination.

Each model combination is run over matrices A, B, and A
(i)
B .

As MAAT is designed to switch in alternative assumptions

(hypotheses, representations, or structures) for each process

in the analysis, the number of all possible models is

nk
∏

k=1

φk ,

where nk is the number of processes in the sensitivity analy-

sis and φk is the number of representations of process k. With

both variable processes and parameters, the total number of

individual model runs in this algorithm is (2 + np)n

nk
∏

k=1

φk .

The process sensitivity algorithm (Dai et al., 2017) is a set

of five nested loops. The outer (first) loop iterates over each

of the nk processes in the sensitivity analysis. The second

loop iterates over each of the φk representations of process

k. The third loop iterates over a parameter matrix A(k) of n

rows and npk columns, where n is the number of samples

and npk is the number of parameters in process k. The fourth

loop iterates over the factorial combination of the φ∼k repre-

sentations of all the other processes in the analysis. The fifth

(inner) loop iterates over parameter matrix A∼k of n rows

and np∼k columns, where np∼k is the number of parameters

in all other processes ∼ k. The total number of iterations in

the process sensitivity analysis is nkn
2

nk
∏

k=1

φk . The function

to evaluate the first-order process sensitivity index is as fol-

lows (Dai et al., 2017):

Sk = V {Y }k/V {Y }, (3a)

where Y is the array of model output evaluated across all

model combinations and parameter samples, and V {Y }k is

the partial variance in model output caused by variation in

process k:
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Table 2. Global first-order parameter sensitivity index (Si ) for hydraulic head calculated by the hydrology model described in Dai et al.

(2017); calculated using Saltelli’s algorithm. Results are presented from Dai and using MAAT in this study, demonstrating the correct

implementation of Saltelli’s algorithm in MAAT. The slight differences are caused by random sampling.

R1G1 R1G2 R2G1 R2G2

Si a K a K1K2 b K b K1K2

Head (Dai et al., 2017) 94.8 4.8 61.5 37.8 88.7 10.6 6.5 93.2

Head (this study) 94.8 4.9 61.5 38.3 88.7 10.8 6.6 93.4

V {Y }k =
φk
∑

l=1

Pk,l

(

EEk,l − Ek,l
2
)

, (3b)

where Pk,l is the probability of representation l of process k

(assumed equal across all representations).

EEk,l =
1

n

n
∑

j=1

Ek,l,j
2 (3c)

Ek,l =
1

n

n
∑

j=1

Ek,l,j (3d)

and

Ek,l,j =
1

n

∏

φ∼k
∑

m=1

P∼k,m

n
∑

o=1

fk,lf∼k,m

(

A
(k)
j ,A(∼k)

o

)

, (3e)

where Ek,l,j is an array of model output averaged across

dimension o (parameter samples from matrix A(∼k)).

fk,lf∼k,m

(

A
(k)
j ,A

(∼k)
o

)

represents a single model run using

representation l of process k and the combination of repre-

sentations m of processes ∼ k evaluated with the parameter

samples A
(k)
j and A

(∼k)
o . P∼k,m is the probability of the com-

bination of representation m of process ∼ k (assumed equal

across all combinations).

To verify that the algorithms are working correctly in

MAAT we employ the simple groundwater hydrology model

presented in Dai et al. (2017). The simple groundwater model

calculates hydraulic head across a vertical cross section of a

geographical domain. The model was encoded in MAAT and

consists of two processes: recharge and parameterization of

hydraulic conductivity through the underlying geology. Each

of these two processes is given two possible representations:

for recharge a power law (R1),

R1 = 5.04a(p − 355.6)0.5, (4)

and a linear model (R2),

R2 = b(p − 399.8), (5)

where a and b are scaling parameters and p is precipitation

in millimetres. The second process, parameterization of hy-

draulic conductivity through the underlying geology, used

Table 3. Global first-order process sensitivity index (Sk) for hy-

draulic head calculated by the hydrology model; calculated using

the algorithm described in Dai et al. (2017). Results are presented

from Dai and using MAAT in this study, demonstrating the correct

implementation of the algorithm in MAAT. As above, the small dif-

ferences are caused by random sampling.

Sk Recharge Geology

Head (Dai et al., 2017) 28.4 67.9

Head (this study) 29.1 71.6

a single homogeneous zone representation and a two-zone

representation. The parameters varied were a single value of

hydrological conductivity (K) for the single-zone represen-

tation and two values of hydrological conductivity (K1 and

K2) for the two-zone model. The study of Dai et al. (2017)

ran a parameter and process sensitivity analysis of this sim-

ple model assuming that a followed the normal distribution,

N (3.35, 1) (where 3.35 is the mean and 1 the standard devi-

ation), b the uniform distribution, U (0.1, 0.2), K the normal

distribution, N (15, 1), and K1 and K2 the normal distribu-

tions N (20, 1) and N (10, 1), respectively. Clearly there are

other parameters that could have been varied in this sensitiv-

ity analysis, but the analysis was run for illustrative purposes

comparing the parameter and process sensitivity indices. The

parameter sensitivity indices (Table 2) and process sensitiv-

ity indices (Table 3) calculated by Dai et al. (2017) and in

this study demonstrate that the MAAT algorithms are oper-

ating correctly. Convergence of the calculated process sen-

sitivity index is achieved with an n of around 200 (Fig. 3).

Moreover, the large differences in parameter sensitivities de-

pending on model combination clearly demonstrate the need

for multi-assumption modelling and tools like MAAT.

4 Multi-assumption photosynthesis code and

verification

Photosynthesis is a central process of the biosphere. At the

heart of many terrestrial ecosystem and biosphere models

(TBMs) are mathematical hypotheses describing the enzyme

kinetics of photosynthesis and the hypotheses and assump-

tions describing the associated processes, e.g. stomatal con-
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Figure 3. Standard deviation of calculated Sk showing convergence

characteristics as a function of sample size. Calculated by resam-

pling and subsampling a single ensemble 10 times for each subsam-

ple n. Decreasing standard deviation demonstrates convergence on

a solution. Dashed lines represent a standard deviation in Sk of 0.01

and 0.001.

ductance. Enzyme kinetic models lie at the core of TBMs in

order to accurately simulate the ecophysiological interaction

of terrestrial ecosystems with the interrelated carbon, water,

and energy cycles of the Earth system. Many studies have

demonstrated the sensitivity of TBM predictions to variation

in the parameters and assumptions used to represent these

core model processes (e.g. Zaehle et al., 2005; Rogers et al.,

2017; Anav et al., 2015; Bonan et al., 2011; Walker et al.,

2017b).

In Appendix A we describe in detail the unified, multi-

assumption model of leaf-scale photosynthesis. The current

focus is on enzyme kinetic models of photosynthesis (Far-

quhar et al., 1980; von Caemmerer, 2000) rather than light

use efficiency models. Enzyme kinetic and light use effi-

ciency models can be thought of as alternative conceptual-

izations of the leaf photosynthesis system (Fig. 1). Enzyme

kinetic models were the first photosynthesis conceptualiza-

tion to be built into MAAT as they are the most commonly

employed photosynthesis model by TBMs. Alternative rep-

resentations for individual processes are listed in Table 4.

In this section we present the results from some simula-

tions with MAAT. The purpose of these simulations is to

verify that the photosynthesis code is working as intended,

not to test various implementations against data, which we

will save for extensive evaluations in future research. The

use of both numerical and analytical solutions to the sys-

tem of simultaneous equations for photosynthesis, as well as

multiple instances of stomatal conductance equations (with

some designed for analytical solution), provides a testbed for

code verification. We also demonstrate a simple comparison

among the temperature response functions.

4.1 Verification of photosynthesis solver

Using both the numerical solution and the simple analyti-

cal solution should provide the exact same solutions for car-

bon assimilation when g0, rb, and ri are assumed zero. For

stomatal conductance hypotheses that include a g0 term, the

numerical solution should provide carbon assimilation rates

slightly higher than the simple analytical solution because

a non-zero g0 slightly decreases resistance to CO2 transport

and increases the Ci : Ca ratio. Using both the numerical so-

lution and the quadratic analytical solution should provide

the exact same solutions when only rb, and ri are assumed

zero.

Figure 4 shows net carbon assimilation against atmo-

spheric CO2 partial pressure (A-Ca curves) calculated us-

ing the analytical approximation and full numerical solu-

tion with five different representations of stomatal conduc-

tance and two values of g0. As described above, when g0

is zero the analytical approximations and the numerical so-

lution should yield the same results. The top row of panels

in Fig. 4a demonstrates this to be the case. When g0 equals

0.01 mol H2Om−2 s−1 the stomatal conductance representa-

tions developed to provide a simple analytical solution (Pren-

tice et al., 1993; Cox et al., 1998) again demonstrate equiv-

alence between the analytical approximation and the numer-

ical solution (Fig. 4a). The quadratic solution and numerical

solution for the semi-empirical or derived from optimality

stomatal conductance representations (Ball et al., 1987; Le-

uning, 1990; Medlyn et al., 2011) both show a slight increase

in A compared with the simple analytical solution because

stomatal conductance is higher when g0 is greater than zero.

MAAT also includes some additional diagnostic tools that

can be used to verify the results of the photosynthesis code

and to analyse photosynthesis more broadly. These tools in-

clude a calculation of the transition point, the value of Cc at

which Ac,g and Aj,g are equal. Plotting the transition point

(Cc,tran), which can be calculated analytically by

Cc,tran =
8Ŵ∗Vcmax/Jmax − Km

1 − 4Vcmax/Jmax
, (6)

on the curves (Fig. 4b) also demonstrates that the analyti-

cal and numerical solutions are finding the correct transition

point.

Another tool can be used to calculate photosynthesis as-

suming zero total resistance to CO2 transport, r , or assuming

zero stomatal resistance to CO2 transport, rs. Figure 5 shows

A-Ca curves calculated with the numerical solution and g0

equal to 0.01. It is clear from these plots that resistance to

CO2 diffusion to the site of carboxylation has a much larger

influence on A when the carboxylation rate is limiting com-

pared with when the electron transport rate is limiting.

4.2 Temperature response functions

Here we show the various temperature scaling assumptions

as an illustration of the decomposition into ascending and de-

scending components and as a simple illustration of MAAT’s

capability. It is not our intention here to rigorously investigate

the effect of parameters and modelling assumptions on the
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Table 4. Table of processes and representations.

Process Assumption and/or hypothesis Citation

RuBP-saturated potential gross carbon

assimilation rate

Michaelis–Menten enzyme kinetics Farquhar et al. (1980) Eq. (A3)

RuBP-limited potential gross carbon

assimilation rate

Michaelis–Menten enzyme kinetics Farquhar et al. (1980) Eq. (A4)

TPU-limited potential gross carbon as-

similation rate

Michaelis–Menten enzyme kinetics Farquhar et al. (1980) Eq. (A5)

Limiting rate selection Minimum rate Farquhar et al. (1980) Eq. (A2a)

Non-rectangular hyperbolic (quadratic)

smoothing

Collatz et al. (1991) Eqs. (A2b) &

(A2c)

Photorespiration rate at Tl Function of RuBisCO kinetic constants Farquhar et al. (1980) Eq. (A6)

Constant multiplied by Tl scalar Collatz et al. (1991) Eq. (A22a)

Electron transport rate Asymptotic Harley et al. (1992) Eq. (A8a)

Quadratic smoothing Farquhar and Wong (1984) Eq. (A8b)

Linear, no maximum Collatz et al. (1991) Eq. (A8c)

Resistance to CO2 diffusion Fick’s law Collatz et al. (1991) Eq. (A9)

Stomatal resistance Semi-empirical f (hr), inc. min. Ball et al. (1987) Eq. (A12b)

Semi-empirical f (D), inc. min. Leuning (1990) Eq. (A12c)

Optimization f (D), inc. min. Medlyn et al. (2011) Eq. (A12d)

Constant Ci : Ca, no min. Prentice et al. (1993) Eq. (A12e)

Based on Eq. (A12b), no min. Cox et al. (1998) Eq. (A12g)

Leaf boundary layer resistance Leaf width and wind speed Oleson et al. (2010) Eq. (A13)

Maximum carboxylation rate at Tr Linear function of leaf N Harley et al. (1992) Eq. (A17a)

Power function of leaf N Walker et al. (2014) Eq. (A17b)

Linear function of leaf N with biochem-

ical parameters

Oleson et al. (2010) Eq. (A17c)

Maximum electron transport rate at Tr Linear function of Vcmax Wullschleger (1993) Eq. (A18a)

Power function of Vcmax Walker et al. (2014) Eq. (A18b)

TPU rate at Tr Linear function of Vcmax Collatz et al. (1991) Eq. (A19)

Dark-adapted (night) respiration rate at

Tr

Linear function of Vcmax Collatz et al. (1991) Eq. (A20a)

Linear function of leaf N – Eq. (A17b)

Non-photorespiration (day) rate at Tr Equal to dark-adapted respiration

Constant ratio to dark-adapted respira-

tion

– Eq. (A21a)

Ratio to dark-adapted respiration is a

function of incident light

Brooks and Farquhar (1985) Eq. (A21b)

Biochemical rate scaling, increasing

with Tl

Arrhenius Medlyn et al. (2002) Eq. (A23a)

Q10 exponential Medlyn et al. (2002) Eq. (A23b)

Biochemical rate scaling, decreasing

with Tl

Modified Arrhenius Medlyn et al. (2002) Eq. (A24a)

Simplified modified Arrhenius Collatz et al. (1991) Eq. (A24b)

Simplified modified Arrhenius Cox et al. (1998) Eq. (A24c)

scalar. The ascending and descending components of temper-

ature response functions tend not to be presented separately.

However, for a clear demonstration of the difference among

the various assumptions, we present the ascending (Fig. 6a),

descending (Fig. 6b), and combined (Fig. 6c) temperature

response functions over the range 0–45 ◦C. Some of the as-

sumptions share parameters, while others do not. Ha and Topt

parameter values were manually adjusted to make the curves

as similar as possible and highlight primarily structural dif-

ferences among the assumptions. This calibration aligned the

ascending curves and the peak (maximum) of the tempera-

ture response.

Figure 6a shows that the Q10 and Arrhenius relationships

can be made to match pretty well, though the Arrhenius

relationship gives slightly higher values at the extremes of

the temperature range due to the slightly higher base. The

descending component of the temperature response shows

some slight differences. Collatz et al. (1991) and Cox et al.
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Figure 4. Comparison of carbon assimilation against (a) atmospheric CO2 (A-Ca) curves and (b) internal CO2 (A-Ci) curves produced

by the simple analytical solution (blue points and lines), the quadratic analytical solution (red points and lines), and the numerical so-

lution (black crosses) for five different representations of stomatal conductance, Eqs. (A12b)–(A12g), and two values of g0 (0.00 and

0.01 mol H2Om−2 s−1).

(1998) preserve the scalar at a value of 1 for the majority

of temperatures below the nominal or reference temperature.

However, they also do not preserve fd; at 1 at the nominal

temperatures, they both give lower values of 0.95 and 0.96,

respectively. The modified Arrhenius equation is the only

function that preserves fd at 1 at the nominal temperature.

However, it does this by having values of fd above 1 for tem-

peratures below the nominal temperature: 1.06 at 0 ◦C. This

effect is known and is why activation energy is often given

the notation Ea in the Arrhenius equation but is given the no-

tation Ha in the modified Arrhenius equation. Ha is related

to the activation energy but is not strictly the activation en-

ergy. Not shown in Fig. 6b is that at low temperatures the Cox

et al. (1998) assumption can allow a substantial decrease in

the scalar (e.g. when Tlow is 0 ◦C; for this simulation Tlow was

set to −20 ◦C). Above the reference temperature, the three

assumptions show similar declines with the Cox et al. (1998)

formulation declining at a slightly greater rate.

The differences in the ascending and descending compo-

nents are reflected in the composite temperature responses

(Fig. 6c). The modified Arrhenius assumption has higher val-

ues at intermediate temperatures, while the Cox et al. (1998)

values are lower at high temperature. The scalar from the

Collatz et al. (1991) assumption shows the lowest peak value.

While some differences in the scalar are apparently caused by

different assumptions, the similarity between the curves sug-

gests that parameter values are likely to be more influential

than the specific formulation chosen. However, it is also ap-

parent that parameter values are not entirely interchangeable

across assumptions and that choosing different assumptions

without proper calibration of parameters is likely to lead to

substantial differences in the value of the scalar.

5 Discussion

Mathematical computer models are used widely across many

scientific domains and industries, primarily for two general

purposes: (1) interpreting observations and (2) making pre-

dictions about the piece of the real world that the model

is intended to represent. These two modelling purposes are
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Figure 5. Comparison of A-Ca curves with and without stomatal resistance (limitation) to carbon assimilation for the five representations of

stomatal conductance; g0 equal to 0.01.
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Figure 6. Biochemical rate scalars for instantaneous temperature responses for (a) the ascending component of the response, (b) the de-

scending component of the response, and (c) the combined response. Arrhenius shown as blue squares (a) and in panel (c). Q10 shown as

red circles (a) and in panel (c). Descending components (b, c) from Collatz et al. (1991) are shown as yellow squares, Cox et al. (1998) as

green circles, and the modified Arrhenius relationship as blue triangles.

succinctly summarized by Rastetter (2017) as modelling for

understanding and modelling for numbers (i.e. prediction).

With the aim of deepening our understanding of compet-

ing assumptions and targeting uncertainty reduction in model

predictions, we have developed and built a set of software

codes: the multi-assumption architecture and testbed (MAAT

v1.0). MAAT facilitates the building and detailed analysis of

systems models when there are multiple assumptions (mech-

anistic hypotheses and empirical or simplifying assumptions)

to represent multiple processes. The component of MAAT

that is somewhat unique is a system model wrapper. The

wrapper is agnostic to the details of the system model, yet can

interpret system-model-specific input data to set up and run

ensembles of models that vary in their process representation,

parameter values, and boundary conditions. These ensembles

can be set up to perform formal and informal sensitivity anal-

yses of model output with variable model assumptions.

A number of existing modelling codes in the domain of hy-

drology have similar, multi-assumption capabilities (Downer

and Ogden, 2004; Clark et al., 2015; Coon et al., 2016).

These different hydrological codes have various purposes

and thus different strengths, but are all built to allow for

flexible model structure within a single overall code struc-

ture. The Gridded Surface Subsurface Hydrologic Analysis

(GSSHA) code (Downer and Ogden, 2004) is designed for

predictive application to specific watersheds. The structural

flexibility in GSSHA is primarily intended to allow the tailor-

ing of model structure to suit specific applications and spe-

cific watersheds that can differ in their dominant processes.

The Structure for Unifying Multiple Modeling Alternatives

(SUMMA) (Clark et al., 2015) is designed as a unifying

system to organize and compare alternative modelling ap-

proaches. Three main areas of model structure can be al-

tered and compared within SUMMA: (1) alternative mod-

elling domains and their discretization, (2) alternative pro-

cess representations, and (3) numerical solutions to the sys-

tem of process equations across the domain. The Advanced

Terrestrial Simulator (ATS) (Coon et al., 2016) is similar to

SUMMA but provides an additional capability in that the sys-

tem model need not be prespecified. ATS has the capacity

to build alternative system models that differ in complex-

ity based solely on the particular representation of process

that are selected. MAAT complements these other multi-

assumption modelling systems by being designed to con-

Geosci. Model Dev., 11, 3159–3185, 2018 www.geosci-model-dev.net/11/3159/2018/



A. P. Walker et al.: Multi-assumption architecture and testbed (MAAT v1.0) 3171

figure and run large ensembles for process-level sensitivity

analyses.

We previously identified process-level sensitivity analysis

methods that account for process representation variability

as not available and so developed a suitable method (Dai

et al., 2017). This sensitivity analysis method is incorporated

in MAAT but is computationally expensive (see Sect. 3) with

a single sensitivity analysis requiring millions of simulations

for convergence. For example, a sensitivity analysis of three

processes in the photosynthesis model required 100 million

simulations, taking 5 h on a single computer node of 32 cores.

We are pleased to have a 100 million ensemble runtime down

to 5 h, especially in a scripting language such as R. However,

with the current HPC method employed in MAAT we are

at the limit of computational scalability. A single instance

of the photosynthesis model runs quickly, and models of in-

creased complexity will require both longer runtimes for a

single ensemble member and more iterations due to larger

numbers of processes under investigation (ensemble number

is proportional to the number of processes in the analysis).

We are currently working to increase the computational effi-

ciency (reduce the ensemble number) of the sensitivity anal-

ysis algorithm and expand the capability of MAAT to operate

across multiple compute nodes of an HPC system.

Beven (2006) argues that equifinality in both parameters

and process representations is pervasive in models of com-

plex natural systems and must be embraced by shifting fo-

cus from a search for a single optimal model to determining

suites of “behavioural” models. Beven (2006) contends that

sets of models should be compared against data to determine

which models are behavioural depending on certain criteria

that score model output relative to the data, accounting for

uncertainty in the data. Models not behavioural should be re-

jected, while all models that are behavioural should be con-

sidered when making predictions about a system. The MAAT

modelling system provides a tool to incorporate equifinality

in day-to-day modelling activities. However, work remains

to be done to develop tools to facilitate the equifinality ap-

proach in MAAT.

From a practical standpoint, parameter estimation methods

and model selection and hypothesis rejection methods are

central to the equfinality thesis and the assessment of model

structural adequacy (Gupta et al., 2012). Moreover, when

multiple process representations are available for a given pro-

cess, parameters common to more than one representation

can often have different values depending on the particular

representation. This difference in values of common param-

eters is illustrated by the explicitly different labelling of the

g1 parameter in Eqs. (A12b), (A12c), and (A12d) and also

in the unification of the temperature response curves shown

in Fig. 6. MAAT currently does not contain parameter esti-

mation algorithms or model and hypothesis rejection algo-

rithms. We plan to include these methods as a priority devel-

opment. Markov chain Monte Carlo (MCMC) is a powerful

Bayesian technique to estimate parameters and that can be

used to select models, incorporating multiple sources of un-

certainty (e.g. Vrugt et al., 2009; Green, 1995; Beven and

Freer, 2001).

An additional practical limitation of MAAT is that models

must be coded in R in the MAAT formalism, which comes

at a cost. Currently, there is no interface for MAAT to in-

teract with existing model code though we are investigating

a possible C and Fortran interface. However, even if MAAT

could call existing model code, very often existing code is

nowhere near sufficiently modular to extract individual pro-

cess representations. This level of modularity is necessary

to fully explore process representation uncertainty, and thus

existing code very often (in our experience in the vast ma-

jority of cases) would require substantial recoding to achieve

the required level of modularity. We suggest that in many

cases, the time invested in recoding models into R in the

MAAT formalism is scientifically worthwhile. Once a sys-

tem model has been coded in MAAT, novel conceptualiza-

tions of processes and hypotheses are very simple to incor-

porate and examine in the systems context. New models and

modelling architectures are being developed all the time and

we argue that this agile and flexible style of software devel-

opment will help to rapidly and robustly develop and assess

new process representations. Currently MAAT can only be

applied to photosynthesis code, which runs relatively rapidly

and requires no spin-up of state variables. Eventually we en-

vision an ecosystem-scale model coded within MAAT. An

ecosystem-scale model with many, many processes and re-

quiring spin-up of state variables will increase model runtime

and MAAT may need to interface with compiled languages

to maximize computational efficiency.

More conceptually, MAAT cannot address all elements of

epistemic uncertainty in process knowledge and the equi-

finality thesis. Epistemic uncertainty in process knowledge

is necessarily restricted in MAAT to hypotheses and as-

sumptions that are coded into the modelling system. Alter-

native hypotheses may exist that have not been discovered

by MAAT developers, and MAAT certainly cannot gener-

ate hypotheses that may better describe the real-world pro-

cess or phenomenon than any currently existing hypothesis.

Therefore the full space of epistemic uncertainty cannot be

explored (Beven, 2016).

Scale and the multiple levels of organization in biological

systems adds a further dimension of complexity. What can

be considered a system at one level of organization can often

be represented as a single process at the level of organization

above. For example, the network of interactions that cause

an up-regulation of gene transcription in response to an ex-

ternal stimuli to modify a phenotype can often be considered

in terms of the environmental stimuli eliciting a phenotypic

response without explicitly modelling the system of genes

which effect the change in phenotype. Different levels of

complexity in the system model itself are also worth noting,

e.g. enzyme kinetic vs. light use efficiency or energy balance

and representation of leaf boundary layer. This is dealt with
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in MAAT by specifying the overarching system model as a

variable assumption and allows for the rapid development of

alternative conceptualizations of the system as a whole.

Additional work and conceptual limitations notwithstand-

ing, MAAT is a powerful new tool that can be used to un-

derstand the sensitivities of photosynthesis to variation in

assumptions and mechanistic hypotheses made to represent

photosynthetic processes. More broadly, the agnosticism of

the wrapper allows for the rapid incorporation of new as-

sumptions and development of new system models, without

any overhead in development of the wrapper. This model sys-

tem agnostic wrapper forms the core of MAAT and over time

we hope it will be used to facilitate the development and anal-

ysis of models in many different scientific domains. Once a

few simple rules are learned on how to write a system model

in the MAAT formalism, MAAT provides an ideal testbed

for novel model development and for developing stand-alone

components of more complex models, allowing for a full

analysis of internal model dynamics and response to bound-

ary conditions. Should researchers wish to develop system

models, “toy” models, and stand-alone components of larger

models, we encourage them to download the code and re-

sources.

6 Summary

The MAAT modelling system embraces the equifinality the-

sis, “the potential for multiple acceptable models as repre-

sentations of hydrological and other environmental systems”

(Beven, 2006). We also contend that no matter which side

of the debate one tends to take (the quest for a single opti-

mal model vs. the use of suites of behavioural models) there

are currently, and most likely will be for many years to come,

many different models used to simulate almost any given sys-

tem. So long as this multiplicity is the norm we need better

tools to understand the causes of differences among models

and to understand the consequences of adding new processes

or different process representations to a model. The multi-

assumption architecture and testbed has been developed as a

tool to facilitate and formalize this approach to modelling.

Code availability. Code is available on GitHub (https://github.com/

walkeranthonyp/MAAT; Walker et al., 2018), tag v1.0.

Data availability. Data used in this publication can be recreated us-

ing the code examples provided in the repository. For exact repro-

duction of the figures in this paper use tag v1.0.
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Appendix A: Unified multi-assumption model of

leaf-scale photosynthesis

In this Appendix we describe the unified, multi-assumption

model of leaf-scale photosynthesis, focusing on enzyme ki-

netic models of photosynthesis (Farquhar et al., 1980; von

Caemmerer, 2000). Our intention is to provide a comprehen-

sive review of the various processes and their associated as-

sumptions key to simulating leaf-scale photosynthesis. The

inclusion of assumptions is based primarily on the methods

used to simulate leaf-scale photosynthesis in TBMs, with

some augmentation from common or more recently defined

hypotheses and assumptions.

In drawing together in a single place and unifying the var-

ious hypotheses and assumptions commonly used in phys-

iological models and TBMs, we aim to provide a useful

resource for researchers and students alike, in addition to

providing a guide to how these processes are simulated in

MAAT. In this review and unification we draw upon Farquhar

et al. (1980), Collatz et al. (1991), von Caemmerer (2000),

Medlyn et al. (2002), and Gu et al. (2010), as well as many

other references. At times we may introduce notation that is

different from the notation in the original papers. In the few

cases in which we do change notation, the aim is an attempt

to integrate some of the disparate notation in the literature

by using the same symbol to refer to common variables. The

following sections are arranged by each process within leaf-

scale enzyme kinetic models of photosynthesis. Within each

section the various competing hypotheses and assumptions

are presented in unified definitions and units.

A1 Carbon assimilation

Enzyme kinetic models of leaf photosynthesis (Farquhar

et al., 1980; Collatz et al., 1991; von Caemmerer, 2000)

simulate net CO2 assimilation (A, µmol CO2 m−2 s−1) as the

gross carboxylation rate (Ag, µmol CO2 m−2 s−1) scaled to

account for the photorespiratory compensation point (Ŵ∗, Pa;

the chloroplast CO2 partial pressure at which the carboxyla-

tion rate is equal to the rate of CO2 release from oxygena-

tion), minus non-photorespiratory (“day”) respiration (Rd,

µmol CO2 m−2 s−1):

A = Ag(1 − Ŵ∗/Cc) − Rd, (A1)

where Cc is the chloroplast CO2 partial pressure (Pa). Ag

is a function of three potentially limiting gross carboxyla-

tion rates: the RuBisCO-limited rate (Ac,g), the electron-

transport-limited rate (Aj,g), and the triose-phosphate-use-

limited rate (Ap,g). We introduce this notation, using A to

always refer to carbon assimilation and subscripts as classi-

fiers, in an attempt to integrate some of the disparate notation

in the literature. To select the limiting rate, Farquhar et al.

(1980) used simply the minimum rate:

Ag = min{Ac,g,Aj,g,Ap,g}. (A2a)

To be precise, Farquhar et al. (1980) described only the first

two limiting rates, but their method can be used to include the

third. Collatz et al. (1991) introduced two quadratics to apply

non-rectangular hyperbolic smoothing among the potentially

limiting rates:

0 = θcjpA
2
g − (Acj,g + Ap,g)Ag + Acj,gAp,g (A2b)

and

0 = θcjA
2
cj,g − (Ac,g + Aj,g)Acj,g + Ac,gAj,g, (A2c)

where Acj,g is a latent variable, and θcjp and θcj are smooth-

ing parameters (β and θ in Collatz’s original notation). We

change the original notation to use θ for any smoothing pa-

rameter with subscripts as classifiers. Simply selecting the

minimum rate is a special case of the Collatz et al. (1991)

method in which θcjp and θcj are both equal to 1.

All potential gross carboxylation rates, Ac,g, Aj,g, and

Ap,g, are modelled as Michaelis–Menten functions of Cc. For

Ac,g, Vcmax (µmol CO2 m−2 s−1) determines the asymptote:

Ac,g =
VcmaxCc

Cc + Kc(1 + O/Ko)
, (A3)

where O is the chloroplast O2 partial pressure (kPa; assumed

to be atmospheric O2 partial pressure); Kc and Ko are the

Michaelis–Menten constants of RuBisCO for CO2 (Pa) and

O2 (kPa). For Aj,g, the asymptote is the electron transport

rate (J ; µmol m−2 s−1) divided by 4 to represent the four

electrons needed to reduce the NADP required for one car-

boxylation reaction:

Aj,g =
J

4

Cc

Cc + 2Ŵ∗
. (A4)

For Ap,g, the asymptote is proportional to the rate of triose

phosphate utilization (TPU; µmol m−2 s−1):

Ap,g =
3TPUCc

Cc + (1 + 3αT)Ŵ∗
, (A5)

where αT represents the fraction of triose phosphate exported

from the chloroplast that is not returned. Theoretically, αT

can take values between 0 and 1. In practice, values > 1 have

been observed (Gu, unpublished), suggesting that αT may

also be accounting for processes yet to be fully described.

Photorespiration releases a molecule of CO2 for every

two oxygenation reactions (catalysis of O2 and ribulose

1,5-bisphosphate by RuBisCO) (Farquhar et al., 1980), and

therefore oxygenation reduces the net carbon assimilation

rate. The Cc partial pressure at which carbon assimilation

equals CO2 release from photorespiration is known as the

photorespiratory compensation point, Ŵ∗, described above.

Ŵ∗ can be described by the kinetic properties of RuBisCO

(Farquhar et al., 1980):

Ŵ∗ =
KcOko

2Kokc
, (A6)
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where kc and ko are the respective turnover rates (s−1) of Ru-

BisCO for carboxylation and oxygenation. As described by

Eq. (A6), Ŵ∗ is determined by the ratio of these two param-

eters, ko : kc, the ratio of RuBisCO Michaelis–Menten con-

stants and the oxygen partial pressure. Collatz et al. (1991)

used

Ŵ∗ =
O

2τ
, (A7)

where τ is the CO2–O2 specificity ratio of RuBisCO and

is equal to Kokc
Kcko

. Therefore ko : kc = Ko
τKc

. Bernacchi et al.

(2001) introduced an independent Ŵ∗ and simply set Ŵ∗ as

a constant nominal or base rate at a reference temperature.

Many of the biochemical rates described above are deter-

mined by enzymes and are therefore sensitive to tempera-

ture. Commonly, to model these parameters the rates are de-

termined at a reference temperature and are then scaled us-

ing a temperature response function. We return to these in

Sects. A5 and A6 below.

A2 Electron transport

The electron transport rate (J ) is a function of incident pho-

tosynthetically active radiation (I ; µmol m−2 s−1). A num-

ber of formulations to represent J exist, and the most com-

monly used are the following three representations. Follow-

ing Smith (1937), two representations of J saturate at a max-

imum rate of electron transport (Jmax). One is formulated by

Harley et al. (1992),

J =
aαiI

[

1 +
(

aαiI
Jmax

)2
]0.5

, (A8a)

and the other by Farquhar and Wong (1984),

0 = θjJ
2 + aαiIJmaxJ + aαiIJmax, (A8b)

where θj is the non-rectangular hyperbola smoothing param-

eter. Collatz et al. (1991) proposed a linear light response

model with no maximum rate:

J = aαiI, (A8c)

where a is the leaf absorptance and αi is the intrinsic quan-

tum efficiency of electron transport (the product of a and αi

gives the apparent quantum efficiency of electron transport).

α has been used with various meaning in the three origi-

nal papers describing these three electron transport models.

Farquhar et al. (1980) did not use α, but instead they used

0.5(1 − f ) where f is the “fraction of light not absorbed by

chloroplasts”, defining I as the “absorbed photon flux”, and

0.5 accounts for the two photons needed to fully transport

a single electron to the thylakoid-membrane-bound NADP

reductase. This is the intrinsic quantum efficiency and equiv-

alent to αi in our notation. Harley et al. (1992) defined α as

the “. . . efficiency of light energy conversion on an incident

light basis”, which is equivalent to the apparent quantum ef-

ficiency, or a0.5(1 − f ) using the Farquhar et al. (1980) no-

tation. Collatz et al. (1991) defined α as the “. . . intrinsic

quantum efficiency for CO2 uptake”, which is equivalent to

0.5(1 −f )/4 using the Farquhar et al. (1980) notation and is

more correctly referred to as the intrinsic quantum yield.

Our choice of notation lends itself to consistent nota-

tion when modelling photosynthesis across leaf and canopy

scales because leaf absorptance, a, is equivalent to 1σ , where

σ is defined as the leaf-scattering coefficient (the sum of light

reflection and transmission) in many canopy radiative trans-

fer schemes (Spitters, 1986; Wang, 2003). However, our no-

tation is at odds with measuring leaf-scale photosynthesis as

measurements combine a and αi into a single term, i.e. the

apparent quantum efficiency, because leaf light absorptance

or reflection and transmission is not quantified. This incon-

sistency motivates our use of the subscript “i” on αi. For the

unified photosynthesis model in MAAT we avoid confusion

over the definition of α and use f as the parameter which

determines intrinsic quantum efficiency (αi = 0.5(1 − f )).

Specifically, f is the fraction of absorbed light not absorbed

by the light-harvesting complexes and accounts for light

spectral quality and light absorbtion by cell walls.

A3 CO2 diffusion and resistance

The partial pressure of CO2 at the site of carboxylation (Cc)

is simulated as a function of the rate of CO2 assimilation (A),

the atmospheric CO2 partial pressure (Ca, Pa), and the resis-

tance of the pathway to CO2 diffusion from the atmosphere

to the site of carboxylation (r; m2 smol−1 CO2). This is sim-

ulated by Fick’s law, an analogue of Ohm’s law for electrical

circuits:

Cc = Ca − rAp, (A9)

where p is atmospheric pressure (MPa). Often resistance is

presented in terms of its inverse, conductance (g). We opt

to use resistance as it linearizes Eq. (A9), and the total re-

sistance of a set of resistors in series is simply their sum. r

can be broken down into a number of different components

to the resistance pathway–leaf boundary layer resistance (rb;

m2 smol−1 H2O), stomatal resistance (rs; m2 smol−1 H2O),

and internal or mesophyll resistance (ri; m2 smol−1 CO2):

r = 1.4rb + 1.6rs + ri. (A10)

Note that by convention rb and rs are in H2O units as

they also determine plant water loss and are used in soil–

vegetation–atmosphere water transport models which are of-

ten built from analogous equations. The scalars, 1.4 and

1.6, represent the ratios of CO2 to H2O diffusion resistance.

Equation (A9) can be broken down for each of the resistance

terms.
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Cb = Ca − 1.4rbAp (A11a)

Ci = Cb − 1.6rsAp (A11b)

Cc = Ci − riAp (A11c)

Ci (Pa) is the CO2 partial pressure in the mesophyll airspaces

of the leaf; Cb (Pa) is the leaf boundary layer CO2 partial

pressure.

A3.1 Stomatal conductance

Stomatal resistance is the key process in the diffusion of CO2

from the atmosphere to the site of carboxylation, though in

recent years internal resistance has also been the focus of

much research. For consistency with the physiological lit-

erature (from which most stomatal research originates) we

present the following stomatal subsection in conductance,

noting that the MAAT code uses resistance by convention.

By adjusting stomatal conductance, gs (gs = 1/rs), a plant

can regulate the combined functions of water diffusion out of

the leaf and CO2 diffusion into the leaf. Thus, physiological

regulation of stomatal conductance is a key process that cou-

ples carbon and water cycles from local to global scales (e.g.

Medlyn et al., 2011; De Kauwe et al., 2013; Swann et al.,

2016). Carbon gain is of benefit to a plant, while water loss

is a cost in water-limited environments, which has led to a

large body of research and multiple equations that describe

how plants might adjust gs to balance this conflict. In this

section we focus primarily on equations derived from opti-

mization theory and empirical data that are used in TBMs,

recognizing that this is not a complete list of all hypotheses

on stomatal conductance in the literature (e.g. Buckley et al.,

2016; Wolf et al., 2016).

A general form for many stomatal conductance equations,

especially those commonly used in TBMs, is

gs = g0 + f (e)
A

Cb,m
, (A12a)

where A is net carbon assimilation; f (e) is a function of var-

ious environmental variables, often a metric of atmospheric

dryness and a slope parameter (g1) describing the change in

stomatal conductance in response to a change in e; and g0

is the minimum gs primarily due to cuticular conductance.

Cb,m is Cb in molar units (µmol mol−1; Cb,m = Cb/p).

A form of stomatal conductance commonly used by TBMs

is that of Ball et al. (1987):

gs = g0 + g1,bhr
A

Cb,m
, (A12b)

where hr is relative humidity (%) and g1,b is the g1 specific

to this formulation. Due to the different f (e) functions and

environmental variables used g1 does not take the same value

for all gs formulations.

Also used by some TBMs is the formulation by Leuning

(1990):

gs = g0 +
g1,l

(1 − Ŵ/Cb)(1 + D/D0)

A

Cb,m
, (A12c)

where Ŵ is the CO2 compensation point in the presence of

both photorespiration and non-photorespiration (Pa), D is

vapour pressure deficit (kPa), D0 is D at which gs is reduced

by half, and g1,l is the g1 specific to this formulation.

Based on the two above, semi-empirical models have been

followed more recently with a function derived from opti-

mization theory (Medlyn et al., 2011):

gs = g0 +
(

1 +
g1,m√

D

)

A

Cb,m
. (A12d)

We will present two more empirical assumptions related

to stomatal conductance that are commonly employed in

TBMs. These assumptions are based on observations that the

Ci : Ca ratio is often well conserved. These assumptions do

not include a g0 term and assume zero leaf boundary layer

resistance, which allows for an analytical solution to solving

these equations (described in Sect. A4). The first of these as-

sumptions, presented in Prentice et al. (1993) and used in the

Lund–Potsdam–Jena (LPJ) family of TBMs, is that Ci : Ca is

constant, often referred to as χ . Assuming that a leaf bound-

ary layer resistance of zero means Cb is equal to Ca, substi-

tuting χ into Eq. (A11b) gives

gs =
1.6

1 − χ

A

Cb,m
. (A12e)

Cox et al. (1998) derived an alternative formulation from

the Leuning model based on the work of Jacobs (1994)

and employed in the Joint UK Land Environment Simulator

(JULES):

Ci − Ŵ

Cb − Ŵ
= f0(1 − D/D∗), (A12f)

where f0 = 1 − 1.6/g1,l and D∗ = D0(g1,l/1.6 − 1). Rear-

ranging and substituting Eq. (A12f) into Eq. (A11b) gives

gs =
1.6

1 − Ŵ/Cb − f0(1 − Ŵ/Cb)(1 − D/D∗)

A

Cb,m
. (A12g)

A3.2 Boundary layer and internal resistance

While stomatal resistance is the process that receives the ma-

jority of attention from ecophysiologists, boundary layer re-

sistance and internal resistance are also important terms in

the resistance pathway of CO2 into the leaf and H2O out of

the leaf. rb determines the coupling of the leaf with the at-

mosphere in the canopy boundary layer and influences the

leaf energy balance. The strength of this coupling determines

how different leaf temperatures can be from air temperature,

with highly coupled leaves showing the smallest differences
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between leaf and air temperatures. The magnitude of this

coupling and its relationship to leaf heat or cold stress have

been shown to be a driver of leaf size globally (Wright et al.,

2017). rb is commonly simulated as a function of leaf size

and wind speed (Oleson et al., 2013):

rb = t−1
b (U/dl)

−0.5κr, (A13)

where tb is the turbulent transfer coefficient between the leaf

and the air (ms−0.5), U is wind speed across the plane of

the leaf (ms−1), dl is the leaf dimension in the wind direc-

tion (m), and κr converts resistance expressed in sm−1 to

m2 smol−1 (RTl,kp
−110−6).

Internal resistance, often also referred to as mesophyll re-

sistance, is a composite of multiple resistances (see Evans

et al., 2009, for a detailed description of these various com-

ponents). The response of ri is under investigation and has

been shown to respond to temperature (von Caemmerer and

Evans, 2014), light (Campany et al., 2016), and CO2 (Kolbe

and Cousins, 2018). While ri and its environmental responses

are active areas of research, most TBMs do not explicitly

include mesophyll resistance as a process. The absence of

explicit inclusion is because ri is implicit in most measure-

ments of biochemical rate parameters, especially Vcmax and

Jmax. Explicit inclusion of ri would also require these “appar-

ent” biochemical rates to be modified to their absolute rates.

Given the large body of research on “apparent” biochemical

rates and the diversity of ri responses that are not yet fully

understood, TBMs are likely to maintain the status quo and

implicitly account for ri in the near future. For this reason,

we only include ri as a parameter which, by default, is set to

zero. However, investigation of the impact of ri is possible

within MAAT and should researchers be interested in evalu-

ating the impact of various relationships of ri to environment,

they would be relatively trivial to incorporate.

A4 Numerical and analytical solution

Equations (A1), (A9), and (A12a) are a system of simulta-

neous equations with three interdependent unknowns, A, rs,

and Cc, that need solving for A. In MAAT, these equations

are combined into a single function (called the solver func-

tion in MAAT; more formally this is a residual function for

which a numerical solver finds the root) and are solved using

the “uniroot” function in R’s base package, which is based

on the Brent solver. The Brent solver has been shown to be

robust in solving these simultaneous equations (Jinyun Tang,

unpublished data). MAAT also contains a solver function that

assumes rs is zero, thus allowing for a calculation of the mag-

nitude of stomatal limitation on carbon assimilation.

A number of TBMs make three simplifying assumptions

to the above described set of simultaneous equations such

that A can be solved using a simple analytical solution. The

first and second simplifying assumptions are that rb and ri

are zero (to be accurate, most TBMs assume that ri is zero).

These assumptions mean that Cb = Ca, Cc = Ci, and that

Eq. (A10) collapses so that r = 1.6rs. With these assump-

tions, Eq. (A9) is identical to Eq. (A11b). The third simpli-

fying assumption is that g0 is zero. Making these assump-

tions allows A to cancel when Eq. (A12a) is substituted into

Eq. (A11b), yielding an equation for Cc that is independent

of A:

Cc = Ca

(

1 −
1.6

f (e)

)

. (A14)

Eq. (A14) and the unified expression of gs models in

Sect. A3.1 allows for the analysis of the impact of these

simplifying assumptions across all the stomatal conductance

models presented in Sect. A3.1.

An analytical solution that makes only the first and second

assumptions can also be derived to form a quadratic equation:

0 = aA2 + bA + c, (A15)

where

a = p

[

1.6 −
f (e)

Cb,m
(Ca + K)

]

, (A16a)

b =
[

− g0(Ca + K) + p
f (e)

Cb,m

(

V (Ca − Ŵ∗)

− Rd(Ca + K)
)

+ 1.6p(Rd − V )

]

, (A16b)

c = g0

[

V (Ca − Ŵ∗) − Rd(Ca + K)
]

, (A16c)

where V and K are the asymptote and half-saturation param-

eters of Eqs. (A3), (A4), and (A5) depending on which lim-

iting rate is being calculated. We found that the larger root to

the quadratic was the solution for A.

A cubic solution that requires no simplifying assumptions

is also possible (Baldocchi, 1994; Yin and Struik, 2009).

However, the cubic solution is rarely employed by TBMs as

it is not always clear which root provides the correct solution.

For the sake of brevity we do not include the cubic solution

here.

A5 Nominal biochemical rates

Many of the biochemical rates presented in Sect. A1 are en-

zymatically controlled and are therefore temperature sensi-

tive. Commonly these rates are presented normalized to a

nominal rate at a common reference temperature which is

often, but not always, 25 ◦C. In this section we describe the

methods used to set various nominal biochemical rates at a

reference temperature. In Sect. A6 we present methods used

to scale these rates from reference temperatures to leaf tem-

perature. The simplest method to set these nominal rates is

to define them as input parameters that do not vary during

the course of the simulation, and this is possible in MAAT.

Also included are a number of functions which describe re-

lationships among the various biochemical traits, primarily

with leaf nitrogen on an area basis (Na; g m−2) or in relation
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to (Vcmax). In the following functions we use a and b to re-

fer to the intercept and slope of a linear relationship and n

and e to refer to the normalization constant and exponent in

a power-law relationship (i.e. the intercept and slope, respec-

tively, of a linear relationship of log-transformed variables).

We use subscripts to identify the relationships to which these

parameters belong (see Table A1 for reference).

A5.1 Vcmax

Vcmax is the maximum rate of carboxylation by the enzyme

RuBisCO. The N content of RuBisCO in a leaf contributes

a substantial proportion of total leaf N (Evans, 1989). There-

fore, Vcmax is often simulated as an empirical function of leaf

N, either as a linear relationship (e.g. Harley et al., 1992),

Vcmax,Tr = avn + bvnNa, (A17a)

a power-law relationship that results from a linear regression

of log-transformed variables (e.g. Walker et al., 2014),

Vcmax,Tr = nvnNa
evn , (A17b)

or as a linear relationship with parameters that have more

physiological meaning (e.g. Oleson et al., 2010):

Vcmax,Tr = flnrfnrRsaNa, (A17c)

where flnr is the fraction of leaf N invested in RuBisCO, fnr

is the fraction of RuBisCO that is N, and Rsa is the specific

activity of RuBisCO (i.e. the carboxylation rate per gram Ru-

BisCO; µmol CO2 g−1 RuBisCO).

Alternative methods and hypotheses for predicting Vcmax

exist, such as the coordination hypothesis (Chen et al., 1993;

Maire et al., 2012), optimizations constrained by coordi-

nation, leaf N partitioning, and empirical relationships (i.e.

LUNA Ali et al., 2016), and empirical relationships to envi-

ronment (Verheijen et al., 2013). For a more in-depth discus-

sion and evaluation of these various methods see Walker et al.

(2017b). Currently MAAT only employs the Vcmax assump-

tions that are represented with the explicit functions above.

A5.2 Jmax

Commonly Jmax is simulated as an empirical function of

Vcmax. This is because the relationship between these two

photochemical rates is tight (Wullschleger, 1993; Wohlfahrt

et al., 1999; Walker et al., 2014), especially considering the

common level of variation in other trait–trait relationships.

Commonly employed is the classic linear relationship of

Wullschleger (1993),

Jmax,Tr = ajv + bjvVcmax,Tr , (A18a)

often with a zero intercept (e.g. Medlyn et al., 2002). More

recently, Walker et al. (2014) presented evidence that showed

the relationship may be better described by a power law:

Jmax,Tr = njvVcmax,Tr
ejv . (A18b)

A5.3 TPU

Triose phosphate utilization is commonly set as a linear func-

tion of Vcmax:

TPUTr = atv + btvVcmax,Tr , (A19)

with the intercept commonly set to zero and the slope to 1/6.

Given Eq. (A1), Eq. (A5), and αT, the slope value of 1/6 is

equivalent to the value of TPU given in Collatz et al. (1991).

A5.4 Rd

Commonly leaf daytime respiration is simulated as a linear

function of either Vcmax with

Rd,Tr = arv + brvVcmax,Tr (A20a)

or leaf N with

Rd,Tr = arn + brnNa. (A20b)

As a function of Vcmax, respiration is commonly simulated

with zero intercept. Also of interest is that Rd is often ob-

served to be smaller during the day or in the light when com-

pared with Rd in dark conditions. The processes that result in

the reduction of Rd in the light are not clear and there is some

discussion surrounding potential bias in the measurement of

how Rd changes when conditions go from light to dark. For a

comprehensive review of these discussions see Farquhar and

Busch (2017) and Tcherkez et al. (2017). A fixed ratio of Rd

to respiration in the dark Rdark can be selected:

Rd,Tr = brRdark,Tr . (A21a)

br can be simulated as a function of incident light intensity

following Brooks and Farquhar (1985) and popularized by

Lloyd et al. (1995).

br = 1, 0 ≤ I ≤ 10

br = (0.5 − 0.05ln{I }), 10 < I
(A21b)

A6 Temperature scaling

A number of hypotheses and assumptions exist to describe

the instantaneous temperature scaling of the above described

biochemical rates. Rate increases with temperature are usu-

ally described with an exponential function. And commonly

for respiration, a monotonic increase with temperature is all

that is considered. For the other three rates, a decrease with

higher temperatures is also often observed. Often in the lit-

erature the increase and decrease with temperature are pre-

sented as a single function. However, the terms that describe

an increase with temperature and a decrease with temperature

can often be separated and some of the diversity of tempera-

ture scaling comes from mixing separate assumptions on the

increase and decrease with temperature.

www.geosci-model-dev.net/11/3159/2018/ Geosci. Model Dev., 11, 3159–3185, 2018



3178 A. P. Walker et al.: Multi-assumption architecture and testbed (MAAT v1.0)

Instantaneous temperature scaling is an immediate

metabolic response. Plants also respond to temperature vari-

ation over timescales of days to weeks, commonly referred to

as acclimation. These acclimatory temperature responses are

commonly represented by describing some of the parameters

in the instantaneous response as a function of mean temper-

atures experienced by the leaf over a predefined period. In

the following subsections we first present hypotheses and as-

sumptions for instantaneous temperatures scaling, then for

longer-term acclimation of the temperature response.

A6.1 Instantaneous temperature scaling

All hypotheses and assumptions in this section are presented

as functions of leaf temperature (Tl,
◦C) and reference tem-

perature (Tr,
◦C; i.e. the temperature at which the nominal

base rate is measured or calculated, described in Sect. A5).

The result of all the functions is a scalar such that the prod-

uct of the scalar and the rate at the nominal temperature (ρr)

gives the rate at leaf temperature (ρl):

ρl = ρrf (Tl,Tr). (A22a)

In many cases the function to calculate the scalar can be de-

composed into a component that increases with temperature

and a component that decreases as temperature increases:

f (Tl,Tr) = fi(Tl,Tr)fd(Tl,Tr). (A22b)

The two commonly used scalar functions that increase with

temperature are the Arrhenius equation,

fi(Tl,Tr) = exp

{

Ha(Tl,k − Tr,k)

RTl,kTr,k

}

, (A23a)

and the Q10 function,

fi(Tl,Tr) = Q
Tl−Tr

10

10 , (A23b)

where Ha is the activation energy (Jmol−1), exp is the ex-

ponential function, the subscript k refers to temperature

in Kelvin (K), R is the universal gas constant (8.31446,

Jmol−1K−1), and Q10 is the factor by which ρl increases

for each 10 ◦C increase in Tl.

In some cases and for some variables (e.g. Rd), simply in-

creasing with temperature is often all that is assumed and

f (Tl,Tr) is equal to fi(Tl,Tr). However, for some rates there

is a decrease associated with increasing temperatures once a

temperature optimum has been exceeded. A commonly used

function for the decrease is a modification of the Arrhenius

equation (Medlyn et al., 2002; Kattge and Knorr, 2007):

fd(Tl,Tr) =
1 + exp

{

Tr,k1S−Hd)

RTr,k

}

1 + exp

{

Tl,k1S−Hd)

RTl,k

} , (A24a)

where Hd describes the decrease with temperature (Jmol−1),

as does 1S (Jmol−1K−1), which is referred to as an entropy

term (Medlyn et al., 2002). 1S and Hd are related to the

optimum temperature (Topt) where ρl is at its maximum:

Topt =
Hd

1S − R ln

{

Ha
Hd−Ha

} . (A24b)

A simplified form of Eq. (A24a) was introduced in Collatz

et al. (1991):

fd(Tl,Tr) =
1

1 + exp

{

Tl,k1S−Hd)

RTl,k

} . (A24c)

And another alternative was introduced in Cox et al. (1998):

fd(Tl,Tr) =
1

[1 + exp{σ(Tl − Tupp)}][1 + exp{σ(Tl − Tlow)}]
, (A24d)

where σ is a scaling exponent, and Tupp and Tlow represent

high and low leaf temperatures that bound the temperature

response.

Brooks and Farquhar (1985) introduced a quadratic func-

tion for scaling Ŵ∗ with temperature, which we modify here

to result in a scalar:

f (Tl,Tr) = 1 + bT (Tl − Tr) + aT (Tl − Tr)
2/cT . (A25)

The quadratic function combines both the ascending and de-

scending component of the temperature response.

Tjoelker et al. (2001) demonstrated that the logarithm of

respiration plotted against measurement temperature was not

a linear function. The inference was made that Q10 was a

function of measurement temperature. This is somewhat con-

fusing as the Q10 function describes the response to tempera-

ture. Our interpretation of the evidence presented in Tjoelker

et al. (2001) is that the Rd temperature response was not a

true exponential function and therefore a Q10 function is not

the correct representation of the Rd temperature response.

We include the Tjoelker et al. (2001) function that describes

the parameter Q10 as a function of leaf temperature for com-

pleteness as it is used in some TBMs.

Q10 = aQ10t + bQ10tTl (A26)

A6.2 Acclimation of instantaneous temperature scaling

To allow for acclimation to past temperatures, parameters

in the above equations can be assumed as functions of

mean past leaf temperature Tl, and Kattge and Knorr (2007)

showed that 1S is also a linear function of past leaf temper-

ature:

1S = a1St + b1StTl. (A27)
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In both of these cases, the slope was negative and both Q10

and 1S decrease with temperature, indicating that the sensi-

tivity to instantaneous temperature increase is lower as plants

experience higher temperatures. The decrease in 1S with

past temperature also indicates that Topt increases with tem-

perature. In addition to modifying temperature scaling pa-

rameters, Kattge and Knorr (2007) noticed that temperature

acclimation also changed the slope of a linear Jmax to Vcmax

relationship:

Table A1. Table of notations.

Symbol Unit Description

avn µmol CO2 m−2 s−1 Intercept of Vcmax,Tr
to leaf N relationship. Eq. (A17a)

bvn µmol CO2 m−2 s−1 g−1 N Slope of Vcmax,Tr
to leaf N relationship. Eq. (A17a)

nvn µmol CO2 m−2 s−1 g−1 N Normalization constant of Vcmax,Tr
to leaf N power law. Eq. (A17b)

evn – Exponent of Vcmax,Tr
to leaf N power law. Eq. (A17b)

ajv µmol em−2 s−1 Intercept of Jmax,Tr
to Vcmax,Tr

relationship. Eq. (A18a)

bjv eCO2
−1 Slope of Jmax,Tr

to Vcmax,Tr
relationship. Eq. (A18a)

njv eCO2
−1 Normalization constant of Jmax,Tr

to Vcmax,Tr
power law. Eq. (A18b)

ejv – Exponent of Jmax,Tr
to Vcmax,Tr

power law. Eq. (A18b)

atv µmol CO2 m−2s−1 Intercept of TPUTr
to Vcmax,Tr

relationship. Eq. (A19)

btv – Slope of TPUTr
to Vcmax,Tr

relationship. Eq. (A19)

arv µmol CO2 m−2s−1 Intercept of Rd,Tr
to Vcmax,Tr

relationship. Eq. (A20a)

brv – Slope of Rd,Tr
to Vcmax,Tr

relationship. Eq. (A20a)

arn µmol CO2 m−2 s−1 Intercept of Rd,Tr
to leaf N relationship. Eq. (A20b)

brn µmol CO2 m−2 s−1 g−1 N Slope of Rd,Tr
to leaf N relationship. Eq. (A20b)

br – Slope of Rd,Tr
to Rdark,Tr

relationship. Eqs. (A21a)–(A21b)

aQ10t – Intercept of Q10 to leaf temperature relationship. Eq. (A26)

bQ10t
◦C−1 Slope of Q10 to leaf temperature relationship. Eq. (A26)

a1St – Intercept of 1S to previous leaf temperature relationship. Eq. (A27)

b1St
◦C−1 Slope of 1S to previous leaf temperature relationship. Eq. (A27)

ajvt – Intercept of bjv to previous leaf temperature relationship. Eq. (A28)

bjvt
◦C−1 Slope of bjv to previous leaf temperature relationship. Eq. (A28)

a – Leaf absorptance, proportion of incident light absorbed by leaf. Eqs. (A8a)–(A8c)

aT
◦C−2 Coefficient of quadratic temperature scaling. Eq. (A25)

bT
◦C−1 Coefficient of quadratic temperature scaling. Eq. (A25)

cT – Coefficient of quadratic temperature scaling. Eq. (A25)

A µmol CO2 m−2 s−1 Net carbon assimilation rate. Eq. (A1)

Ag µmol CO2 m−2 s−1 Gross (of photorespiration and non-photorespiration) carbon assim-

ilation rate.

Eqs. (A1) & (A2a)–(A2c)

Ac,g µmol CO2 m−2 s−1 RuBP-saturated potential gross carbon assimilation rate. Eqs. (A2a)–(A2c) & (A3)

Aj,g µmol CO2 m−2 s−1 RuBP-limited potential gross carbon assimilation rate Eqs. (A2a)–(A2c) & (A4)

Ap,g µmol CO2 m−2 s−1 TPU-limited potential gross carbon assimilation rate. Eqs. (A2a)–(A2c) & (A5)

Acj,g µmol CO2 m−2 s−1 Potential gross carbon assimilation rate once RuBP limitation

and/or saturation has been accounted for.

Eq. (A2c)

Ca Pa Atmospheric CO2 partial pressure. Eqs. (A9), (A11a)–(A11c),

(A14), & (A16a)–(A16c)

Cb Pa Leaf boundary layer CO2 partial pressure. Eqs. (A11a)–(A11c)

Cb,m µmol CO2 mol Leaf boundary layer CO2 molar mixing ratio. Eqs. (A12a)–(A12g),

(A14), & (A16a)–(A16c)

Ci Pa Internal leaf airspace CO2 partial pressure. Eqs. (A11a)–(A11c)

Cc Pa Leaf chloroplastic CO2 partial pressure. Eqs. (A1), (A3), (A4), (A5),

(A9), (A11a)–(A11c), &

(A14)

bjv = ajvt + bjvtTl. (A28)

The slope of this function is also negative, indicating a de-

crease in Jmax relative to Vcmax at higher temperature. Cur-

rently in MAAT, Tl is simply the leaf temperature represent-

ing steady-state acclimation.
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Table A1. Continued.

Symbol Unit Description

D kPa Leaf boundary layer H2O vapour pressure deficit. Eqs. (A12a)–(A12g)

D0 kPa Vapour pressure deficit scaling parameter. Eqs. (A12a)–(A12g)

D∗ kPa Vapour pressure deficit scaling parameter related to D0 and g1,l. Eqs. (A12a)–(A12g)

dl m is the leaf dimension perpendicular to the wind direction. Eq. (A13)

e – A vector of variables to which stomatal conductance responds. Eqs. (A12a)–(A12g), &

(A16a)–(A16c)

f – Fraction of light absorbed by leaf not absorbed by photo systems. Eqs. (A8a)–(A8c)

f0 – Stomatal conductance parameter related to g1,l. Eqs. (A12a)–(A12g)

flnr – Fraction of leaf N in RuBisCO. Eq. (A17c)

fnr – Fraction of RuBisCO that is N. Eq. (A17c)

gs mol H2Om−2 s−1 Stomatal conductance, inverse of rs. Eqs. (A12a)–(A12g)

g0 mol H2Om−2 s−1 Minimum stomatal (and cuticular) conductance. Eqs. (A12a)–(A12g)

g1,b %−1 Stomatal conductance slope from Ball et al. (1987). Eqs. (A12a)–(A12g)

g1,l – Stomatal conductance slope from Leuning (1990). Eqs. (A12a)–(A12g)

g1,m kPa−0.5 Stomatal conductance slope from Medlyn et al. (2011). Eqs. (A12a)–(A12g)

hr – Leaf boundary layer relative humidity. Eqs. (A12a)–(A12g)

Ha Jmol−1 Activation energy for biochemical rate. Eqs. (A23a) & (A24c)

Hd Jmol−1 Parameter describing decrease in biochemical rate with tempera-

ture.

Eqs. (A24a)–(A24d)

I µmol photons m−2 s−1 Light incident on the leaf. Eqs. (A8a)–(A8c)

J µmol e m−2 s−1 Electron transport rate. Eqs. (A4) & (A8a)–(A8c)

Jmax µmol e m−2 s−1 Maximum electron transport rate at Tl. Eqs. (A8a)–(A8c)

Jmax,Tr
µmol e m−2 s−1 Maximum electron transport rate at Tr. Eqs. (A18a)–(A18b)

K Pa Michaelis–Menten half-saturation parameter(s) from Eqs. (A3),

(A4) & (A5)

Eqs. (A16a)–(A16c)

Kc Pa Michaelis–Menten half-saturation constant for RuBisCO carboxy-

lation.

Eqs. (A3) & (A6)

Ko kPa Michaelis–Menten half-saturation constant for RuBisCO oxygena-

tion.

Eqs. (A3) & (A6)

kc s−1 Turnover rate for RuBisCO CO2 carboxylation. Eq. (A6)

ko s−1 Turnover rate for RuBisCO O2 oxygenation. Eq. (A6)

O kPa Atmospheric O2 partial pressure. Eqs. (A3), (A6), & (A7)

Na gm−2 Leaf N on an area basis. Eqs. (A17a)–(A17c) &

(A20b)

p MPa Atmospheric pressure. Eqs. (A9), (A11a)–(A11c),

& (A16a)–(A16c)

Q10 – Scalar on biochemical rate for a 10 ◦C increase in temperature. Eqs. (A23b) & (A26)

Rd µmol CO2 m−2 s−1 Non-photorespiration (day) rate at Tl. Eq. (A1)

Rd,Tr
µmol CO2 m−2 s−1 Non-photorespiration (day) rate at Tr. Eqs. (A20a)–(A20b) &

(A21a)–(A21b)

Rdark,Tr
µmol CO2 m−2 s−1 Dark-adapted (night) respiration rate at Tr. Eqs. (A21a)–(A21b)

Rsa µmol CO2 m−2 s−1 g−1 RuBisCO specific activity. Eq. (A17c)

R JK−1 mol−1 Universal gas constant. Eqs. (A23a)–(A23b) &

(A24a)–(A24d)

r m2 smol−1 CO2 Resistance to CO2 diffusion from the atmosphere to the site of car-

boxylation.

Eqs. (A9) & (A10)

rb m2 smol−1 H2O Leaf boundary layer resistance to H2O diffusion from the atmo-

sphere to the leaf boundary layer.

Eqs. (A11a)–(A11c) &

(A13)

rs m2 smol−1 H2O Stomatal resistance to H2O diffusion from the leaf boundary layer

to the internal leaf airspace.

Eqs. (A11a)–(A11c) &

(A12a)–(A12g)

ri m2 smol−1 CO2 Internal and/or mesophyll resistance to CO2 diffusion from the leaf

internal airspace to the site of carboxylation.

Eqs. (A11a)–(A11c)
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Table A1. Continued.

Symbol Unit Description

Tr
◦C Reference temperature for nominal biochemical rate. Eqs. (A22a)–(A22b),

(A23a)–(A23b), & (A24a)–

(A24d)

Tl
◦C Leaf temperature. Eqs. (A22a)–(A22b),

(A23a)–(A23b), & (A24a)–

(A24d)

Tr,k K Reference temperature for nominal biochemical rate. Eqs. (A23a), (A24a), &

(A24c)

Tl,k K Leaf temperature. Eqs. (A23a), (A24a), &

(A24c)

Topt
◦C Optimum temperature for biochemical rate. Eq. (A24b)

Tupp
◦C Upper temperature parameter for biochemical rate. Eq. (A24d)

Tlow
◦C Lower temperature parameter for biochemical rate. Eq. (A24d)

TPU µmol CO2 m−2 s−1 Triose phosphate utilization rate at Tl. Eq. (A5)

TPUTr
µmol CO2 m−2 s−1 Triose phosphate utilization rate at Tr. Eq. (A19)

tb ms−0.5 Turbulent transfer coefficient between the leaf and the air. Eq. (A13)

U ms−1 Wind speed across the plane of the leaf. Eq. (A13)

Vcmax µmol CO2 m−2 s−1 Maximum RuBisCO carboxylation rate at Tl. Eq. (A3)

Vcmax,Tr
µmol CO2 m−2 s−1 Maximum RuBisCO carboxylation rate at Tr. Eqs. (A18a)–(A18b),

(A19), & (A20a)

V µmol CO2 m−2 s−1 Asymptote parameter(s) from Eqs. (A3), (A4) & (A5) Eqs. (A16a)–(A16c)

αi e photon−1 Intrinsic quantum efficiency, number of electrons transported

through the electron transport chain per unit of absorbed light.

Eqs. (A8a)–(A8c)

αT – Fraction of exported triose phosphate not returned to chloroplast. Eq. (A5)

Ŵ∗ Pa Photorespiratory compensation point, Cc at which CO2 release

from photorespiration equals Ag.

Eqs. (A1), (A3)–(A7)

Ŵ Pa Respiratory compensation point, Cc at which CO2 release from

photorespiration and non-photorespiration equals Ag.

Eqs. (A12c), (A12f), &

(A12g)

1S Jmol−1 K−1 Entropy parameter related to peak of biochemical rate response to

temperature.

Eqs. (A24a)–(A24c)

θcj – Non-rectangular hyperbolic smoothing parameter for Ac,g and Aj,g. Eq. (A2b)

θcjp – Non-rectangular hyperbolic smoothing parameter for Acj,g and

Ap,g.

Eq. (A2c)

θj – Non-rectangular hyperbolic smoothing parameter for electron trans-

port.

Eq. (A8b)

κr m3 mol−1 A conversion factor for resistance expressed in sm−1 to

m2 smol−1.

Eq. (A13)

ρr variable Nominal biochemical rate at reference temperature. Eqs. (A22a)–(A22b)

ρl variable Biochemical rate at leaf temperature. Eqs. (A22a)–(A22b)

σ – Scaling parameter for biochemical rate temperature response. Eq. (A24d)

τ – CO2–O2 specificity ratio of RuBisCO. Eq. (A7)

χ – Ci : Cb ratio. Eq. (A12e)
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