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The Multi-cluster Two-Wave Fading Model
Juan P. Peña-Martı́n, Maryam Olyaee, F. J. Lopez-Martinez and Juan M. Romero-Jerez

Abstract—We introduce and characterize a natural generaliza-
tion of Durgin’s Two-Wave with Diffuse Power (TWDP) fading
model, by allowing that the incident waves arrive in different
clusters. The newly proposed model, referred to as the Multi-
cluster Two-Wave (MTW) fading model, generalizes both the
TWDP and the κ-µ models under a common umbrella. The
special case on which the model parameters reach extreme
values is also analyzed, aimed to model harsh fading conditions
reported in experimental measurements obtained in enclosed
environments. The chief probability functions of both the MTW
and the MTW Extreme fading models are obtained, including the
probability density function, the cumulative distribution function
and the generalized moment-generating function. A number of
applications for these models are exemplified, including outage
probability in interference-limited scenarios, energy detection,
and composite fading modeling.

Index Terms—Multicluster, Fading, Generalized Moment Gen-
erating Function, Energy Detection, Outage Probability, Compos-
ite Fading.

I. INTRODUCTION

THe new use cases defined for 5G/6G wireless cellular

communications systems, as well as the use of new

spectral bands, including millimeter-wave (mmWave) and ter-

ahertz radio signals, give rise to new propagation scenarios

not considered until now. Also, the massive deployment of

wireless sensor networks involve some extreme environments,

including underwater, underground, enclosed or harsh indus-

trial scenarios (e.g., shipping containers, oil/gas pipelines and

platforms, etc.) where the propagation conditions largely differ

from the assumptions considered in the derivation of tradi-

tional stochastic wireless models. Therefore, new statistical

wireless fading models are necessary for the design, planning

and performance evaluation of the foreseen wireless networks.

Rice (or Rician) fading has been traditionally used to model

line-of-sight propagation scenarios, as it consists of a single

cluster of waves, made up of a multitude of weakly scattered

components, plus an additional constant-amplitude specular

(dominant) wave with arbitrary power. The Rice fading model
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has been generalized in a number of ways in the literature:

for instance, the κ-µ fading model was originally proposed in

[2] and considers a signal composed of µ clusters of waves

each of which may contain a specular component as in the

Rice model. Within any cluster, the phases of the waves are

random and have very small (negligible, in practice) delay

times, while the delay times among the different clusters

show greater differences, in such a way that each cluster can

independently be resolved and combined at the receiver, i.e,

this physical description of the κ-µ fading implies that it can

be used to model frequency-selective wireless channels. The

number of clusters µ should be, in principle, a positive integer;

however, a better fit to experimental data is facilitated if µ
is allowed to take any positive real value [3]. It must be

remarked that the mathematical description of the κ-µ model

is a function, among other factors, of the total aggregate power

of the specular components, but it is oblivious to the power

of the individual specular components and how many clusters

incorporate them.

On the other hand, the Two-Wave with Diffuse Power

(TWDP) fading model was originally proposed in [4] and

provides an alternative generalization of the Rice model. It

considers two specular components with random phases plus

a diffuse component, representing a single cluster of multi-

ple scattered waves. This model includes a wide variety of

propagation conditions ranging from very favorable to worse

than Rayleigh fading (hyper-Rayleigh fading) [5]. The TWDP

fading model has been used to model propagation conditions

in the mmWave band, and has been shown to provide a better

match than the Rice fading in indoor wireless channels at 60

GHz [6].

In this work, we introduce a Multi-cluster Two-Wave

(MTW) fading model, which generalizes the Rice fading in

two ways: by considering both multiple clusters of waves (in

a κ-µ fashion), and also by allowing more than one specular

component within one of the given clusters (in a TWDP

fashion). Specifically, the MTW fading model consists of an

arbitrary number of wave clusters, where the first received

cluster incorporates two specular components: one typically

resulting from a direct link between transmitter and receiver

and another from a strong reflection. The remaining clusters

are assumed to reach the receiver from multiple reflections

and are therefore composed of a number of scattered waves in

which a specular component may also be present. This model

has physical meaning in rich scattering environments, giving

rise to many propagation paths, with a line-of sight in the

transmitter-receiver link, resulting in the aforementioned two

dominant components in the first received cluster.

It is worth noting that the proposed MTW fading model

unifies both the κ-µ and TWDP models in the same mathe-

matical framework. Encapsulating such relevant models, that

http://arxiv.org/abs/2305.05342v1
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have already been extensively empirically validated by field

measurement campaigns, in the same formulation is another

key novel contribution of this work. This permits to integrate

many results previously obtained for the aforementioned mod-

els, which have been studied up until now separately and

whose results are scattered throughout the technical literature.

Moreover, the proposed MTW model is more general than the

κ-µ and the TWDP models alone, and expands to other pos-

sible wireless environments not included in any of them when

considered separately. Strikingly, this generalization does not

come at the prize of an increased mathematical complexity.

To further demonstrate its flexibility, and inspired by the κ-

µ Extreme distribution [3], [7], we additionally introduce and

characterize the MTW Extreme distribution, which is obtained

when the MTW model parameters µ and K reach their extreme

values, i.e. µ → 0 and K → ∞, for a given fading severity

quantified by the Amount of Fading, i.e. keeping Kµ constant.

These extreme distributions find applicability in very severe

fading conditions such as enclosed environments, namely

tunnels, shipping containers (which could host wireless sen-

sors) and public transportation vehicles, including airplanes,

trains, and buses. In these and other extreme environments,

the Central Limit Theorem (which classical statistical fading

models generally assume) may not hold due to the low number

of radio paths. In some cases, severe channel variations may

result in a non-negligible probability that the received signal is

below the receiver sensitivity [7], resulting in null reception.

This feature is also captured by the MTW Extreme distri-

bution, rendering a versatile and general model for extreme

environments propagation. In other instances, the Two-Ray

fading model [5] is also a good candidate to model these

harsh propagation conditions. Noteworthy, the Two-Ray model

is also a particular case of the proposed MTW Extreme model,

so that a wider set of propagation conditions can be captured

by this model.

We derive easy-to-compute exact expressions for the prob-

ability density function (PDF) and the cumulative distribution

function (CDF) of the received signal-to-noise ratio (SNR)

under MTW and MTW Extreme fading. Additionally, the

generalized moment generating function (GMGF) of both

models is given in closed-form, which allows to obtain many

different performance metrics of wireless communications

systems undergoing the new proposed models. In particular,

closed-form expressions are obtained for the outage probabil-

ity in interference-limited and noise-limited scenarios, and for

the energy detection probability. We also exemplify how the

MTW model can be further generalized to include the effect

of shadowing, in a straightforward way [8].

The rest of this paper is organized as follows: In Section

II, the MTW channel model is presented, and the PDF, CDF,

and generalized MGF are derived. These statistical functions

are also derived for the MTW Extreme fading in Section

III. In Section IV, different performance metrics for the pro-

posed models are presented, including the outage probabilities,

energy detection and composite fading modeling. Numerical

results are given in Section V, followed by the concluding

remarks in Section VI.

II. MTW CHANNEL MODEL

The Multi-cluster Two-Wave fading model results from the

combination of multiple signal clusters, being one of them,

typically the first one received, accompanied by two specular

components representing dominant waves, while the remaining

clusters may include one specular component. Let us assume

that µ signal clusters are received. The complex baseband

signal amplitude of the first cluster can be expressed as

Z1 = V1,1 exp (jφ1,1) + V1,2 exp (jφ1,2) +X1 + jY1, (1)

while for the other (µ− 1) clusters we have,

Zi = Vi exp (jφi) +Xi + jYi, i = 2, . . . , µ, (2)

where V1,k and φ1,k indicate, respectively, the k-th specular

component (k = 1, 2) amplitude and uniformly distributed

random phase in the interval [0, 2π), φ1,k ∼ U [0, 2π), of the

first cluster; while Vi and φi indicate, respectively, the specular

component amplitude and phase, φi ∼ U [0, 2π), of the i-th

cluster, (i = 2, . . . , µ). On the other hand, (Xn + jYn), (n =
1, . . . , µ), are complex Gaussian random variables (RVs) with

Xn, Yn ∼ N (0, σ2), representing the contributions due to the

combined reception of numerous weak scattered waves.

In the MTW fading model, the delay-time spreads of the

different clusters are assumed to be relatively large, and the

received power is a result of the summation of the different

clusters powers. Thus, we can write W = R2 =
∑µ

i=1 |Zi|2,

where W and R represent the received power and signal

envelope, respectively.

A. Probability distribution (PDF and CDF)

In the following, the PDF of the SNR of the MTW fading

model is derived. Let us define the following two random

variables:

θ , φ1,1 − φ1,2

d2θ , (V1,1 cosφ1,1 + V1,2 cosφ1,2)
2

+ (V1,1 sinφ1,1 + V1,2 sinφ1,2)
2
+

µ
∑

i=2

V 2
i

= V 2
1,1 + V 2

1,2 + 2V1,1V1,2 cos θ +

µ
∑

i=2

V 2
i .

(3)

Note that d2θ represents the total power of the specular com-

ponents in terms of the RV θ, which follows a triangular

distribution in the interval [−2π, 2π), and which is equivalent

to a uniform distribution in [0, 2π) due to the 2π periodicity

of the phases.

The signal complex amplitude of the first cluster given in

(1) can be rewritten in terms of θ as

Z1 = ejφ1,2
(

V1,1e
jθ + V1,2

)

+X1 + jY1. (4)

Thus, for a given particular realization of variable θ, (4) is

equivalent to the signal of a cluster with a single specular

component with amplitude |V1,1 exp (jθ) + V1,2|. Thus, the set

of clusters forms a κ-µ channel as in [3] when conditioned on
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θ. Hence, the conditional PDF of the received signal power

for a given θ, Wθ , will be expressed as

fW |θ(w) =
1

2σ2

(

w

d2θ

)
µ−1
2

exp

(

− w

2σ2
− d2θ

2σ2

)

× Iµ−1

(√
w
dθ
σ2

)

,

(5)

where Iν is the modified Bessel function of the first kind with

order ν. Introducing the parameter

κθ ,
d2θ

2σ2µ
, (6)

which represents the ratio between the specular components

power, conditioned on θ, and the total average diffuse power

from all the clusters, we can write the average conditioned

power as

Wθ = d2θ + 2σ2µ = 2σ2µ(1 + κθ). (7)

Thus, by combining (6) and (7), we can write,

d2θ =
Wθ

(1 + κθ)
κθ. (8)

Let us now introduce the random variable γ , WEs/N0

representing the received SNR, where Es is the symbol energy

and N0 is the one-sided AWGN power spectral density. Thus,

denoting by γθ the conditioned, on θ, average SNR, we have

that Es/N0 = γθ

Wθ
, and

γ|θ = Wθ
γθ

Wθ

. (9)

Thus, from (5) and considering (9), the PDF of the conditioned

SNR will be

fγ|θ(x) =
Wθ

γθ
fW |θ

(

Wθ

γθ
x

)

=
µ(1 + κθ)

µ+1
2

γθeµκθ

(

x

γθκθ

)
µ−1
2

e
−

µ(1+κθ)
γθ

x

× Iµ−1

(

2µ

√

κθ (1 + κθ)

γθ
x

)

.

(10)

As the expected unconditional power is W = V 2
1,1 + V 2

1,2 +
µ
∑

i=2

V 2
i + 2σ2µ and Es/N0 = γθ

Wθ
= γ

W
, we can write

γθ = γ
Wθ

W

= γ

V 2
1,1 + V 2

1,2 + 2V1,1V1,2 cos θ +
µ
∑

i=2

V 2
i + 2σ2µ

V 2
1,1 + V 2

1,2 +
µ
∑

i=2

V 2
i + 2σ2µ

= γ









1 +
2V1,1V1,2 cos θ

V 2
1,1 + V 2

1,2 +
µ
∑

i=2

V 2
i + 2σ2µ









,

(11)

The MTW fading model can be conveniently described in

terms of parameters K and ∆, defined as

K ,

V 2
1,1 + V 2

1,2 +
µ
∑

i=2

V 2
i

2σ2µ
,

∆ ,
2V1,1V1,2

V 2
1,1 + V 2

1,2 +
µ
∑

i=2

V 2
i

,

(12)

where K represents the ratio between the average power of

the specular components and the diffuse components power

from all the clusters; and ∆+1 is the peak-to-average ratio of

specular powers, verifying 0 ≤ ∆ ≤ P1/(P1 + P0) ≤ 1 with

P1 , V 2
1,1 + V 2

1,2 and P0 ,
µ
∑

i=2

V 2
i denoting, respectively, the

average specular power of the first cluster and the specular

power of the rest of the clusters. The more similar the

amplitude of the specular components of the first cluster the

higher the value of ∆, while ∆ = 0 is attained when only one

specular component is present in the first cluster. When all the

specular power is concentrated in the first cluster, or it is the

only one received, then ∆ = 1 can be reached, indicating that

both specular components have the same amplitude.

After some manipulations, (11) can be written in terms of

parameters K and ∆ as

γθ = γ
1 +K (1 + ∆cos θ)

1 +K
, (13)

and with the help of (6) and (3) we can write

κθ = K (1 + ∆cos θ) . (14)

Therefore, from (13) and (14) we can conclude that

1 + κθ

γθ
=

1 +K (1 + ∆cos θ)

γ 1+K(1+∆cos θ)
1+K

=
1+K

γ
, (15)

which shows that the ratio (1+κθ)/γθ is invariant with respect

to θ. Substituting (13), (14) and (15) into (10), the conditional

PDF of the SNR becomes

fγ|θ (x) =
µ(1 +K)

µ+1
2

γeµκθ

(

x

γκθ

)
µ−1
2

× e−
µ(1+K)

γ
xIµ−1

(

2µ

√

κθ (1 +K)

γ
x

)

.

(16)

The unconditional PDF of the SNR γ can be obtained by

averaging over the realizations of the RV θ, which yields the

result given in the following lemma.

Lemma 1: Let γ represent the received SNR in an MTW

fading channel. Then, the PDF of γ is given by

fγ(x) =
µ

π

(

1 +K

γ

)
µ+1
2

e−µK
( x

K

)
µ−1
2

e−µ 1+K
γ

x

×
∫ π

0

e−µK∆cos θ (1 + ∆cos θ)
1−µ
2

× Iµ−1

(

2µ

√

1 +K

γ
K(1 + ∆cos θ)x

)

dθ.

(17)
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Proof: Taking into account that cos θ is symmetric around

π, and the fact that the PDF of θ is fθ(θ) =
1
2π , constant in

the interval [0, 2π), (17) is obtained by considering (14) and

averaging (16) with respect to θ.

Although (17) is not strictlwy a closed-form expression, it is

given in terms of a definite integration of a smooth integrand.

Therefore, its numerical computation is straightforward, sim-

ilarly to the case of TWDP fading [9]. For µ = 1, the MTW

model collapses to the TWDP one, and (17) is equivalent to [9,

eq. (26)]. On the other hand, if ∆ = 0, (17) is equivalent to [3,

eq. (2)] and we obtain the κ-µ channel model (note that in this

case the integration is trivial and can be solved in closed-form).

To the best of our knowledge, no other previously proposed

statistical fading model contains such different models such as

κ-µ and TWDP as special cases, which gives a great versatility

to the MTW fading model. Note also that both models have

been used independently to fit different wireless environments,

thus justifying the validity of the general MTW model, as it

encompasses both of them as special cases.

Corollary 1: The CDF of the received SNR γ in an MTW

fading channel is given by

Fγ(x) = 1− 1

π

∫ π

0

Qµ

(

√

2µK(1 + ∆cos θ),
√

2xµζ
)

dθ,

(18)

with ζ , 1+K
γ and where Qν(a, b) is the ν-th order general-

ized Marcum Q-function as defined as [10, eq. (4.60)]

Qν(a, b) = a1−ν

∫ ∞

b

xν exp

[

−x2 + a2

2

]

Iν−1(ax)dx.

(19)

Proof: Considering

Fγ(x) =

∫ x

0

fγ(t)dt = 1−
∫ ∞

x

fγ(t)dt, (20)

and introducing (17) into (20), the result given in (18) is

obtained, after some manipulation, by changing the integration

order of variables θ and t and performing the transformation

t = z2

2µζ .

B. Generalized moment generating function

The generalized MGF of the SNR is defined as [11]

φ(n)
γ (s) , E {γneγs} =

∫ ∞

0

xnexsfγ (x) dx, (21)

where E {·} denotes the expectation operator. In the sequel,

we will assume n ∈ N. In this case, the generalized MGF

coincides with the n-th order derivative of the MGF.

Lemma 2: Let γ represent the received SNR in an MTW

fading channel. Then, the generalized MGF of γ, φ
(n)
γ (s), is

given by (22).

Proof: See Appendix A.

Unlike the PDF or the CDF, the generalized MGF of the

SNR under the MTW fading channel has a closed-form ex-

pression in terms of a finite number of well-known functions.

This enables an exact analysis of different performance metrics

without increasing the analytical complexity when compared

to simpler cases, such as for TWDP or κ-µ fading.

Corollary 2: The MGF of the SNR γ in an MTW fading

channel is given by

Mγ(s) =

(

µ (1 +K)

µ (1 +K)− γs

)µ

× exp

(

µKγs

µ (1 +K)− γs

)

I0

(

µK∆γs

µ (1 +K)− γs

)

.

(23)

Proof: The MGF is defined as Mγ(s) , E {eγs} =

φ
(0)
γ (s). Thus, substituting n = 0 in (22), (23) is obtained.

Corollary 3: The n-th order non-central moment of the SNR

γ is given by

νn =

(

γ

µ (1 +K)

)n

Γ (µ+ n)

n
∑

q=0

(

n
q

)

(µK)
q

Γ (µ+ q)

×
q
∑

r=0

(

q
r

)(

∆

2

)r r
∑

l=0

(

r
l

)

δ2l,r,

(24)

where δ2l,m is the kronecker delta function.

Proof: The proof follows from (22) by considering that

νn = φ
(n)
γ (0) and noting that I0(0) = 1 and Iν(0) = 0 for

ν 6= 0.

It is easy to check that ν0 = 1 and ν1 = γ, as expected.

The amount of fading (AoF) is a fading metric introduced

in [12] as the SNR variance normalized to its squared mean,

i.e.,

AoF =
Var(γ)

(E[γ])2
=

ν2 − γ2

γ2 . (25)

The AoF for the MTW can be calculated as stated in the next

corollary.

Corollary 4: The AoF in an MTW fading channel is given

by

AoF =
1

(1 +K)2

[

1 + 2K

µ
+

K2∆2

2

]

. (26)

Proof: The proof follows from (24) and (25) by simple

substitution.

In the literature, it is frequent to use the fading parameter

m = 1/AoF, by similarity to the Nakagami-m fading param-

eter, as the AoF of this latter model is, precisely, 1/m.

C. Asymptotic CDF and diversity order

An asymptotic expression of the CDF in the high SNR

regime is useful to obtain insight of the effect of system

parameters on performance, as the CDF is closely related to

the outage probability, as we will later show. To obtain such

expression we first note that, by taking the limit s → ∞ in

the MGF given in (23), the following expression holds:

|Mγ(s)| =
µµ (1 +K)

µ

eµK
I0 (µK∆)

1

γµ |s|µ + o
(

|s|−µ
)

.

(27)

Then, from Propositions 3 and 5 in [13] the asymptotic CDF

can be expressed as

Fγ(x) =
µµ (1 +K)µ

Γ (µ+ 1) eµK
I0 (µK∆)

(

x

γ

)µ

+ o
(

γ−µ
)

. (28)

It is clear from (28) that the diversity order of the MTW model

is µ.
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φ(n)
γ (s) =γnΓ (µ+ n) exp

(

µKγs

µ (1 +K)− γs

) n
∑

q=0

(

n
q

)

(µK)
q

Γ (µ+ q)

(µ (1 +K))
µ+q

(µ (1 +K)− γs)
µ+q+n

×
q
∑

r=0

(

q
r

)(

∆

2

)r r
∑

l=0

(

r
l

)

I2l−r

(

µK∆γs

µ (1 +K)− γs

)

.

(22)

III. MTW EXTREME DISTRIBUTION

The MTW Extreme distribution is derived from the MTW

distribution for the case when K → ∞ (very strong dominant

components) and µ → 0 (almost no multipath clustering),

while the product Kµ remains constant, which results in the

AoF being fixed.

A. Probability distribution (PDF and CDF)

From the AoF of the MTW fading (26), and considering the

parameter values defined for the MTW Extreme distribution,

the AoF (i.e., 1/m) will be given in this case by

1

m
=

2

Kµ
+

∆2

2
. (29)

Note that for the κ-µ Extreme distribution, equality κµ = 2m
holds [7], which is actually the result in (29) for ∆ = 0 (single

specular component). Note also that the model parameters

m and ∆ are related, as the more balanced the specular

components of the first cluster (∆ closer to 1), the more severe

the fading (lower m and higher AoF). This is due to the fact

that, the higher the value of ∆ the more similar are the specular

components, and therefore the higher is the probability that the

specular components cancel each other, yielding to deep signal

fades.

For the sake of compactness, in the subsequent mathemat-

ical expressions of the MTW Extreme model, instead of m,

the following parameter will be used

ξ , Kµ =
2m

1−m∆2

2

. (30)

Note that for the parameters to make physical sense (i.e.,

in order to avoid the singularity and negative values for the

product Kµ) the condition m < 2
∆2 must be satisfied.

Lemma 3: The CDF of the SNR γ in an MTW Extreme

fading channel is given by

FγE(x) = u(r)

[

1− 1

π

×
∫ π

0

Q0

(

√

2ξ(1 + ∆cos θ),

√

2xξ

γ

)

dθ

]

.

(31)

Proof: The proof follows by applying the extreme con-

ditions (Kµ = ξ being a constant, with K → ∞ and µ → 0)

to (18).

Note that the Heaviside step function u(r) is always implicit

in the distributions of non-negative variables, but it is not

necessary to make it explicit when the function is continuous

at 0, which is not the case here as there is a certain probability,

given by FγE(0), that no signal is received.

Corollary 5: The PDF of the SNR γ in an MTW Extreme

fading channel is given by

fγE(x) =
ξ

π
√
xγ

exp

[

−ξ

(

1 +
x

γ

)]

×
∫ π

0

√
1 + ∆cos θ exp [−ξ∆cos θ]

I1

(

2ξ

√

x
1 + ∆cos θ

γ

)

dθ + Cδ(x),

(32)

with C = e−ξI0 (ξ∆) and where δ(·) is the Dirac delta

function.

Proof: The PDF is obtained by applying the extreme

conditions (K → ∞, µ → 0 and Kµ = ξ) to (17) or,

equivalently, as the derivative of (31). However, care must

be taken when considering limit values in the parameters of

a probability distribution as a discontinuity may appear in the

CDF. This is precisely our case, where there is a discontinuity

at the origin of the CDF that will yield the appearance of a

Dirac Delta function at the origin of the PDF. For a PDF to

be valid, it must verify
∫∞

0
fRE(r)dr = 1. As the derivative

of the step function is a Dirac Delta function, this function

appears in the PDF expression with a weight factor C in order

to meet the aforementioned requirement. Again, this means a

non-zero probability that a null signal is measured, that is, the

received power is below the detection limits of the receiver. It

is clear that C = FRE(0
+).

The expression of C can be obtained by considering the

extreme conditions (K → ∞, µ → 0 and Kµ = ξ) in (28),

as this equation is the asymptotic behavior of the CDF of the

SNR at the origin, yielding

C = e−ξI0 (ξ∆) . (33)

B. Generalized moment generating function

We now obtain a closed-form expression for the GMGF of

the SNR in an MTW Extreme channel.

Corollary 6: The GMGF of the SNR γ in an MTW Extreme

fading channel is given by (34).

Proof: This result is obtained by applying the extreme

conditions to (22),

Corollary 7: The MGF of the SNR γ in an MTW Extreme

fading channel is given by

MγE(s) = exp

(

ξγs

ξ − γs

)

I0

(

ξ∆γs

ξ − γs

)

. (35)
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φ(n)
γ (s) = γnΓ (n) exp

(

ξγs

ξ − γs

) n
∑

q=0

(

n
q

)

1

Γ (q)

ξ2q

(ξ − γs)
n+q

q
∑

r=0

(

q
r

)(

∆

2

)r r
∑

l=0

(

r
l

)

I2l−r

(

ξ∆γs

ξ − γs

)

. (34)

Proof: This result can be obtained by applying the ex-

treme conditions to (23) or, equivalently, by setting n = 0 in

(34).

Corollary 8: The n-th order non-central moment of the SNR

γ in an MTW Extreme fading channel is given by

νn =

(

γ

ξ

)n

Γ (n)

n
∑

q=0

(

n
q

)

ξq

Γ (q)

×
q
∑

r=0

(

q
r

)(

∆

2

)r r
∑

l=0

(

r
l

)

δ2l,r.

(36)

Proof: This result is obtained by applying the extreme

conditions to (24) or, equivalently, by setting s = 0 in (34).

C. Two-Ray fading model

The Two-Ray fading model was proposed in [5] for severe

fading conditions, providing in some cases even better fitting

results than the κ-µ Extreme model [7]. The Two-Ray fading

model (with hyper-Rayleigh behavior) consists of two waves

of approximately the same amplitude (so that they can be-

come completely deconstructive) without diffuse component;

therefore, it can be obtained from the MTW distribution by

setting ∆ ≈ 1, and letting K → ∞ and any positive real

value of µ. Therefore, this model can also be obtained from

the MTW Extreme distribution for ∆ = 1 and m = 2, with

both conditions implying ξ → ∞. The MGF of an N -Ray

model with arbitrary powers was given in [14, eq. (17)], from

which the MGF for the Two-Ray model can be obtained. The

GMGF and non-central moments of the Two-Ray model can be

expressed in closed-form as shown in the following corollary,

where the MGF is also provided for the sake of completeness.

Corollary 9: The GMGF, MGF and n-th order non-central

moment of the SNR γ in the Two-Ray fading model are given,

respectively, by

φ(n)
γ (s) = γn exp (γs)

n
∑

r=0

(

n
r

)(

1

2

)r

×
r
∑

l=0

(

r
l

)

I2l−r (γs) ,

Mγ (s) = exp (γs) I0 (γs) ,

νn = γn
n
∑

r=0

(

q
r

)(

1

2

)r r
∑

l=0

(

r
l

)

δ2l,r.

(37)

Proof: These results are obtained by considering ξ → ∞
and ∆ = 1 in, respectively, (34), (35) and (36).

IV. APPLICATIONS TO WIRELESS COMMUNICATION

SYSTEMS

The analytical results obtained in the previous sections for

the MTW and MTW Extreme fading models are now used

to derive expressions for different performance metrics in

wireless communication systems.

A. Outage probability

The channel capacity per unit bandwidth is known to be

given by

C = log2(1 + γ). (38)

The outage probability is defined as the probability that C falls

below a predefined threshold Rs (rate per unit bandwidth), and

is calculated as [15, eq. (31)]

Pout = Fγ(2
Rs − 1), (39)

where Fγ(·) is given in (18) and (31) for the MTW and MTW

Extreme fading models, respectively. Note that when the order

of the Marcum-Q function is an integer in (18), its numerical

computation is much easier since in this case this function is

built-in in the main computational software packages.

B. Outage probability in interference-limited scenarios

We now evaluate the outage probability (OP) in an

interference-limited scenario, considering an N -branch Max-

imal Ratio Combining (MRC) receiver and L interfering

signals with the same average power PI . The received signal-

to-interference ratio (SIR) can be written as SIR = X
Y ,

where, assuming that the interferers undergo Rayleigh fading,

X is the sum of N independent random variables modeling

the combiner output signal from the transmitter and Y is

the sum of L independent exponential random variables with

equal powers modeling the total interference power. The OP

is defined as the probability that the SIR falls bellow a given

threshold β, and can be calculated in terms of the generalized

MGF of the desired signal as [16, eq. (15)]

Po =

L−1
∑

k=0

1
(βPI)k

∑

ΩA

N
∏

n=1

1
qn!

φ(qn)
γn

(s)
∣

∣

∣

s=− 1
βPI

, (40)

where γn represents in this case the received power

of the desired signal at antenna n affected by MTW

fading and ΩA is the set of N-tuples such that

ΩA =
{

(q1, · · · , qN ) : qn ∈ N,
∑N

n=1 qn = k
}

. Thus, by

using the GMGF given in (22), (34) or (37) for the MTW,

MTW Extreme and Two-Ray fading models, respectively,

the outage probability under interference is obtained in

closed-form. Note that γ in the computation of the GMGF

represents in this case the average power per receive antenna,

i.e., we identify γ = W .

C. Average energy detection probability

The average probability of energy detection Pd of an

unknown deterministic signal in the presence of noise in a

wireless fading channel can be calculated as [17]

Pd =

∫ ∞

0

Qu

(

√

2γ,
√
η
)

fγ(γ)dγ, (41)
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where u = TW , representing the the number of samples

obtained in the energy detection, is the product of the one-

side bandwidth W and the observation time interval T , which

can be easily adjusted to get u ∈ N, and η is the energy

detection threshold. Leveraging the approach in [18], the

average detection probability can be given in terms of the

generalized MGF as

Pd =

∞
∑

n=0

u+n−1
∑

q=0

(η

2

)q e−η/2

n!q!
φ(n)
γ (s)

∣

∣

∣

s=−1
. (42)

The average detection probability of an energy detector in

MTW fading can be obtained by plugging (22) or (34) into

(42), for the general and the extreme cases, respectively.

The so-called receiver operating characteristic (ROC) curve

is obtained by representing Pd vs. Pf , for different values of

u and η, where Pf is the false alarm probability, which is

given by

Pf = e−η/2
u−1
∑

k=0

(η/2)k

k!
, (43)

that is, the detection, in the absence of signal, of noise which

is erroneously considered to be signal. On the other hand, a

complementary ROC curve is obtained by representing Pm =
1 − Pd, defined as the probability of missed detection (i.e.,

failing to detect a signal which is present in the channel) vs.

Pf .

A useful method to evaluate and compare the system

performance for energy detection is the area under the ROC

curve (AUC) [19]. The average AUC can be expressed in terms

of the generalized MGF as [20, (eq. 13)]

A = 1−
u−1
∑

q=0

q
∑

n=0

(

q + u− 1

q − n

)(

1

2

)n+q+u
1

n!
φ(n)
γ (s)

∣

∣

∣

s=− 1
2

,

(44)

thus obtaining the average AUC for MTW fading by plugging

the GMGF in (22) or (34), depending on the case, into (44).

These results can be extended to include multiple receive

antennas performing MRC diversity for non-coherent energy

detectors. In this case, if N is the number of antennas, the

instantaneous combined SNR is given by γ =
∑N

k=1 γk, where

γk is the instantaneous SNR at the k branch. Assuming that

the receive signals at every branch are independent, with the

help of the multinomial theorem we can write

φ(n)
γ (s) =

∑

τ(n,N)

n!
q1!q2!···qN !φ

(q1)
γ1

(s) · · ·φ(qN )
γN

(s),
(45)

where τ(n,N) is defined as the set of N-tuples such

that τ(k,N) =
{

(q1, q2, · · · , qN ) : qm ∈ N,
∑N

m=1 qm = k
}

.

Thus, introducing (45) into (42) and (44) together with the

GMGF expressions in (22) or (34), depending on the case,

the performance of the energy detector for MRC diversity in

MTW fading is obtained.

D. Composite IG/MTW Fading Model

We now show that the presented statistical characterization

of the MTW and MTW Extreme fading models can be used to

further extend these wireless models to incorporate shadowing.

In particular, we consider the effect of shadowing to be

modeled by the Inverse Gamma (IG) distribution, which has

been shown in [8], thorough empirical validation, to yield a

good fit to data measurements, particularly in the cases of

mild and moderate shadowing conditions. The received power

when IG shadowing and multipath fading are simultaneously

considered will be written as

Q = Q̄GV , (46)

where Q̄ = E{Q}, and G and V are independent RVs with

normalized power. G is an IG random variable with shape

parameter λ representing shadowing, and V represents an

MTW (or MTW Extreme) fading with γ̄ = 1 (note that

γ represents power in this case). We now show that the

PDF, CDF, and outage probability of the composite IG/MTW

channel model can be obtained in closed-form.

Using the closed-form GMGF in (22) or (34), depending on

the considered fading case (MTW or MTW Extreme), together

with [8, eq. 12], the PDF of the received power Q is obtained

as

fQ(q) =
Q̄λ(λ − 1)λ

qλ+1Γ(λ)
φ(λ)
γ (s)

∣

∣

∣

s= (1−λ)Q̄
q

, (47)

and the CDF of Q for integer λ is expressed as

FQ(q) =
λ−1
∑

n=0

Q̄n(λ − 1)n

qnΓ(n+ 1)
φ(n)
γ (s)

∣

∣

∣

s=
(1−λ)Q̄

q

. (48)

Besides, the outage probability is given by [21]

P
IG/MTW
out (γth) , P (γQ < γth)

= FγQ
(γth)

= FQ

(

Q̄× γth
γ̄Q

)

, (49)

where γQ = qγ̄Q/Q̄ is the SNR at the receiver, γ̄Q = E{γQ},

γth is the SNR threshold for reliable communication, and

FQ(q) is the CDF given in (48).

V. NUMERICAL RESULTS

Numerical results are now presented for the proposed fad-

ing models using the derived expressions in the previous

sections, including the representation of the PDF and CDF

of the SNR. Different performance metrics under MTW and

MTW Extreme fading are computed and verified by simula-

tions, including the outage probabilities in noise-limited and

interference-limited scenarios and the average energy detection

probability. Also, the outage probability for the composite

IG/MTW model, including the extreme case is provided. The

distribution parameters are {K,∆, µ} for the general model,

and {∆,m} for the extreme model. In the following figures

we can observe the influence of these parameters.

In Figs. 1 and 2, the PDF and CDF, respectively, of the

MTW fading model are plotted for different values of µ,

including the case µ = 1, which corresponds to the TWDP

fading model. The numerical results obtained from (17) and

(18) are verified by Monte-Carlo simulations, showing an
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Figure 1. Analysis and simulation results for the PDF of SNR under the
MTW fading model with parameters K = 1, γ̄ = 1, ∆ = 0.8 and different
values of µ = 2, 5, 10, 50.
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Figure 2. Analysis and simulation results for the CDF of SNR under the
MTW fading model with parameters K = 1, γ̄ = 1, ∆ = 0.8 and different
values of µ = 2, 5, 10, 50.

excellent match. It is clear from Fig. 1 that parameter µ has a

relevant impact on the shape of the probability distribution,

even to the point that, for high values of this parameter

(µ = 50) the distribution shows a bimodal behavior, i.e.,

two local maxima appear in the PDF, while for lower values

(µ = 2, 5, 10) only one local (and therefore global) maximum

appears. It is also interesting to note that, for the selected

parameter values, the case µ = 1, i.e., TWDP fading, yields

a monotonic decreasing PDF, with a maximum at the origin.

In the CDF curves depicted in Fig. 2, the bimodal behavior

is manifested in the appearance of multiple inflection points,

which do not appear for the TWDP case (µ = 1) for the

selected parameters values. Therefore, parameter µ alone gives

the model a great flexibility to fit to different propagation

conditions.

In Fig. 3, the PDF (solid lines) and CDF (dashed lines) of
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Figure 3. PDF and CDF of the MTW Extreme fading for different m =

0.1, 0.2, 0.5, 1, and with parameters γ̄ = 2 and ∆ = 0.8.
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Figure 4. Outage probability Pout vs. average SNR for MTW fading,
asymptotic behavior in high SNR and the extreme case considering different
number of clusters (µ = 1, 2, 5, 10) and m = 0.5, 1 for the extreme case,
and parameters K = 1, ∆ = 0.8, and Rs = 1.

the MTW Extreme fading model, which is analyzed in Section

III, are presented for different values of m. A remarkable fact

in this case is the appearance of the Dirac delta function in the

PDF, as justified in the theoretical analysis. This is useful to

model field-realistic measurements, as it captures the fact that

no signal is received at all (γ = 0) with a non-zero probability.

Therefore, the corresponding CDF has the same value at the

origin as the weight factor of the Dirac delta function in the

PDF. It can be observed that the higher the value of m the

lower the probability of no signal reception. This is a result

of m being equal to 1/AoF, i.e., the higher the value of m
the lower the channel variations.

Figs. 4 and 5 present the outage probability without inter-

ference and considering the interference effect, respectively.

Fig. 4 shows the outage probability vs. average SNR under
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Figure 5. Outage probability Po vs. average SIR per branch according to
(40) for MTW fading considering different number of clusters (µ = 1, 2, 10)
and interferers (L = 1, 2), and parameters K = 10, ∆ = 0.8, N = 3, and
β = 10.
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Figure 6. Outage probability Po vs. average SIR per branch according to (40)
for MTW Extreme fading considering different fading severity (m = 0.2, 0.5)
and number of interferers (L = 1, 2, 3), and parameters ∆ = 0.8, N = 3,
and β = 10.

MTW fading, and the asymptotic behavior and the extreme

case are also shown considering different numbers of clusters

µ = 1, 2, 5, 10, and fading severity parameter m = 0.5, 1 for

the extreme case. It be observed that the outage probability

decreases by raising the number of clusters µ in the general

case and the fading parameter m in the extreme case. The

asymptotic curves clearly show the effect of the diversity order

(higher slope in the high SNR regime as µ increases). It it

worth noting that the diversity order in the extreme case is

zero, and therefore the outage probability tends to a constant

value in the high SNR regime. Fig. 5 depicts the outage

probability vs. the average SIR per branch, W/(L · PI), in

an interference-limited scenario with N branch MRC under

MTW fading and L interferers experiencing Rayleigh fading
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Figure 7. ROC curve (average Pd vs. average Pf ) under MTW fading for
different numbers of receive diversity branches N and number of samples u,
when K = 10 and µ = 5. MTW Extreme fadign results are also given for
different fading severity m and u. ∆ = 0.3 and γ̄ = 1.
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Figure 8. Outage probability of the composite IG/MTW model vs. SNR
threshold (γth) with parameters µ = 5, K = 10, ∆ = 0.3, γ̄ = 1, and
Q̄ = 1.

with equal average power PI . The figure shows analytical

results, obtained using (40), which are verified by Monte-

Carlo simulations, considering parameter values µ = 1, 2, 10
and L = 1, 2. It can be observed that parameter µ of the

MTW channel model has a significant impact on the outage

probability, especially for high average SIR. It can also be seen

that the outage probability decreases by increasing µ, i.e., it

is more beneficial that the signal power is distributed among

different clusters. Also, increasing the number of interferers

raises the probability of outage, and the system performance

worsens, which could be compensated by exploiting the MRC

technique by increasing the number of antennas at the receiver.

Fig. 6 shows the outage probability for the MTW Extreme

fading under interference, where the impact of parameters
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Figure 9. Outage probability of the composite IG/MTW Extreme model vs.
SNR threshold (γth) with parameters ∆ = 0.3, γ̄ = 1, γ̄Q = 1 and Q̄ = 1.

L and m on performance is depicted. Raising the number

of interferers increases the outage probability, and higher

m, which represents lower severity fading and therefore less

channel variations, increases the outage probability for the

considered parameters values, as a result of a lower probability

that the desired signal is received with high power.

Fig. 7 presents ROC curves (Pd vs. Pf ) to analyze the effect

on an energy detector of parameter u (number of samples) and

the number of receive antennas at the MRC receiver when

the channel undergoes MTW fading. The average probability

of energy detection (Pd) and false alarm probability (Pf ) are

given in (42) and (43), respectively. It can be observed that

the ROC curves rise noticeably when the number of MRC

branches increases and, for a given number of branches in the

MRC receiver, lower u shows a better result. Thus, increasing

the number of samples u decreases the AUC for a given SNR

per branch. ROC curves are also shown in this figure when

the channel undergoes MTW Extreme fading for different

values of parameters m and u. Again, decreasing u yields

a better result, while increasing m (less severe fading) yields

an increase in the energy detection probability.

Finally, Fig. 8 presents numerical results of the outage

probability for the IG/MTW channel model, while Fig. 9

shows results for the extreme case. The outage probability in

(49) is plotted as a function of the SNR threshold for different

values of the IG parameter λ = 2, 3, 4 and for average SNR

γ̄Q = 1, 2. As expected, the outage probability increases by

rising the SNR threshold and, for a given threshold, increasing

the average SNR reduces the outage probability. Also, low γth
and high values of the shape parameter of the IG distribution

λ yields a lower outage probability. The composite outage

probability for the extreme case is plotted for different values

of the IG parameter λ = 2, 4 and the fading severity parameter

m = 0.2, 0.5, 1 in Fig. 9. It can be seen that the shape

parameter λ yields a similar behavior in the extreme case as

for the general. Also, rising m increases the outage probability

for the selected parameter values.

VI. CONCLUSIONS

We have presented the Multi-cluster Two-Wave fading

model, by defining its physical model and deriving its chief

probability functions. The unique features of the MTW model

allow to simultaneously control both the diversity order and the

distribution bimodality, encompassing the well-established κ-µ
and TWDP fading models as special cases. Special attention

has been paid to the extreme behavior of the MTW fading

model, providing additional compact expressions for all the

statistics functions describing the model. The derived expres-

sions for the MTW and MTW Extreme models, which are

given in closed-form for the case of Laplace-domain statistics,

and in simple finite-range integral form for the PDF and CDF,

can be directly applied for performance analysis purposes and

have been consequently exemplified.

The MTW fading model can be further extended to include

fluctuations of the specular components [22], thus connecting

with the popular Fluctuating Two-Ray (FTR) and κ-µ shad-

owed fading models [15], [23]. However, we note that the

formulation in [22] only connects with the MTW fading in a

limit case by letting one of the parameters grow to infinity,

while the derivations here presented have compact form and

a reduced number of parameters.

APPENDIX A

PROOF OF LEMMA 2

To prove Lemma 2, we first introduce (17) into (21),

yielding

φ(n)
γ (s) =

µ

π

(

1 +K

γ

)
µ+1
2
(

1

K

)
µ−1
2

e−µK

×
∫ π

0

e−µK∆cos θ (1 + ∆cos θ)
1−µ
2

×
[
∫ ∞

0

xn+ µ−1
2 e−x(µ 1+K

γ
−s)

× Iµ−1

(

2µ

√

1 +K

γ
K (1 + ∆cos θ)

√
x

)

dx

]

dθ.

(50)

The inner integral in (50) is a Laplace transform that can be

solved, with the help [24, (3.15.2.9)], as

L
{

xn+ ν
2 Iν

(

a
√
x
)

; z
}

=
(a

2

)ν

n! z−ν−n−1 e
a2

4z Lν
n

(−a2

4z

)

,
(51)

where ℜ(ν) > −n− 1, ℜ(z) > 0, |arg(a)| < π and Lν
n(·) is

the generalized Laguerre function [25, (22.3.9)]

Lν
n(z) =

n
∑

q=0

(−1)q
(

n+ ν

n− q

)

zq

q!

=

n
∑

q=0

(−1)q
Γ(ν + n+ 1)zq

Γ(ν + q + 1)(n− q)!q!
.

(52)
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After substitution, developing the binomial with ∆cos θ and

some manipulations, we obtain

φ(n)
γ (s) =

Γ(µ+ n)

π
exp

(

sµK

µ 1+K
γ − s

)

×
n
∑

q=0

(

n

q

)

µµ+2q

Γ(µ+ q)

(

1 +K

γ

)µ+q

×Kq

(

µ
1 +K

γ
− s

)−µ−n−q q
∑

m=0

(

q

m

)

∆m

×
∫ π

0

(cos θ)m exp

(

sµK∆

µ 1+K
γ − s

cos θ

)

dθ.

(53)

With the help of [26, eq. (14)], the integral in (53) can be

solved in closed-form as

I =

∫ π

0

(cos θ)m exp (α cos θ) dθ

= π
1

2m

m
∑

l=0

(

m

l

)

I2l−m(α)
(54)

where α = µK∆s

µ 1+K
γ

−s
. Then, by introducing (54) into (53), (22)

is obtained.
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S. Schwarz, and M. Rupp, “Better than Rician: modelling millimetre-
wave channels as two-wave with diffuse power,” EURASIP Journal on

Wireless Communications and Networking, vol. 2019:21, pp. 1–17, 2019.
[7] G. S. Rabelo and M. D. Yacoub, “The κ−µ extreme distribution,” IEEE

Trans. Commun., vol. 59, no. 10, pp. 2776–2785, Oct. 2011.
[8] P. Ramı́rez-Espinosa and F. J. Lopez-Martinez, “Composite fading

models based on inverse gamma shadowing: Theory and validation,”
IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5034–5045, 2021.

[9] M. Rao, F. Lopez-Martinez, M. Alouini, and A. Goldsmith, “MGF
approach to the analysis of generalized two-ray fading models,” IEEE

Trans. Wireless Commun., vol. 14, no. 5, pp. 2548–2561, May 2015.
[10] M. K. Simon and M.-S. Alouini, Digital Communications over Fading

Channels, 2nd ed. John Wiley & Sons, Inc., 2005.
[11] J. P. Peña Martı́n, J. M. Romero-Jerez, and F. J. Lopez-Martinez,

“Generalized MGF of Beckmann fading with applications to wireless
communications performance analysis,” IEEE Trans. Commun., vol. 65,
no. 9, pp. 3933–3943, Sep. 2017.

[12] U. Charash, “Reception through Nakagami fading multipath channels
with random delays,” IEEE Trans. Commun., vol. COM-27, no. 4, pp.
657–670, Apr. 1979.

[13] Z. Wang and G. Giannakis, “A simple and general parameterization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. 51, no. 8, pp. 1389–1398, Aug. 2003.

[14] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. P. Peña-Martı́n, and
A. Abdi, “Stochastic fading channel models with multiple dominant
specular components,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp.
2229–2239, 2022.

[15] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. J. Gold-
smith, “The fluctuating two-ray fading model: Statistical characterization
and performance analysis,” IEEE Trans. Wireless Commun., vol. 16,
no. 7, pp. 4420–4432, Jul. 2017.

[16] J. M. Romero-Jerez and A. J. Goldsmith, “Receive antenna array
strategies in fading and interference: an outage probability comparison,”
IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 920–932, 2008.

[17] F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy detection of
unknown signals over fading channels,” IEEE Trans. Commun., vol. 55,
no. 1, pp. 21–24, Jan. 2007.

[18] A. Annamalai, O. Olabiyi, S. Alam, O. Odejide, and D. Vaman, “Unified
analysis of energy detection of unknown signals over generalized
fading channels,” in Wireless Communications and Mobile Computing

Conference (IWCMC), 2011 7th International, Jul. 2011, pp. 636–641.
[19] S. Atapattu, C. Tellambura, and H. Jiang, “Analysis of area under the

ROC curve of energy detection,” IEEE Trans. Wireless Commun., vol. 9,
no. 3, pp. 1216–1225, Mar. 2010.

[20] O. Olabiyi, S. Alam, O. Odejide, and A. Annamalai, “Efficient eval-
uation of area under the ROC curve of energy detectors over fading
channels,” in Proc. ACM/IEEE MSWiM’11. NY, USA: ACM, 2011,
pp. 261–264.

[21] A. Goldsmith, Wireless communications. Cambridge university press,
2005.
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