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 In this paper, the Multi-Depot Electric Vehicle Location Routing Problem with Time Windows 
(MDVLRP) is addressed. This problem is an extension of the MDVLRP, where electric vehicles 
are used instead of internal combustion engine vehicles. The recent development of this model 
is explained by the advantages of this technology, such as the diminution of carbon dioxide 
emissions, and the support that they can provide to the design of the logistic and energy-support 
structure of electric vehicle fleets. There are many models that extend the classical VRP model 
to take electric vehicles into consideration, but the multi-depot case for location-routing models 
has not been worked out yet. Moreover, we consider the availability of two energy supply 
technologies: the “Plug-in” Conventional Charge technology, and Battery Swapping Stations; 
options in which the recharging time is a function of the amount of energy to charge and a fixed 
time, respectively. Three models are proposed: one for each of the technologies mentioned 
above, and another in which both options are taken in consideration. The models were solved for 
small scale instances using C++ and Cplex 12.5. The results show that the models can be used 
to design logistic and energy-support structures, and compare the performance of the different 
options of energy supply, as well as measure the impact of these decisions on the overall distance 
traveled or other optimization objectives that could be worked on in the future. 

© 2018 Growing Science Ltd.  All rights reserved
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1. Introduction 

Electric Vehicles (EVs) are a transportation alternative of interest to governments, academics, and 
companies. This can be explained by the fact that EVs can mitigate greenhouse gas emissions, and even 
eliminate them if the energy consumed comes from renewable sources; therefore, multiple efforts have 
been made to achieve the implementation of this technology in the future, such as the testing of real 
sector companies (UPS, 2013, DPDHL, 2014). However, to achieve the successful implementation of 
this technology, one of the challenges to solve is the design of the energy supply network that supports 
this system. In addition, if you plan your design with tools such as mathematical modeling or 
metaheuristics, you could optimize the system’s operation. One way to do this is to use some of the 
mentioned techniques to determine design aspects such as the location and type of recharging needed. 
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In summary, the technological benefits of EVs, the need to mitigate the unfavorable effects of human 
activity on the environment, and the potential of the decision-support models on the design of the 
operational configuration required for the EVs justifies the development of models that allow the optimal 
designing of these systems. 
 
For that reason in this article, a mathematical approach is developed that allows the designing of the 
operative logistic network of a homogenous EV fleet, determining: i) the number and location of the 
recharging station, ii) the number and location of the depots, and iii) the number of vehicles and their 
routes of operation. Two types of technologies are considered: i) the charge of the battery by direct supply 
of the energy net, and ii) the use of Battery Swapping Stations (BSS). Moreover, several constraints are 
considered such as time windows and the autonomy and freight capacity of the EVs. However, the 
existence of different types of recharging strategy implies different ways of modeling. For this reason, 
three mixed integer linear programing models are proposed in order to support the design decisions that 
allow a performance comparison between the recharging strategies. These models are defined as follows: 
i) the conventional charge case, in which not only does the special charge vertex have this technology 
but instead, the customer and depot nodes are allowed to have it too. Furthermore, the charge of the 
battery could be partial or complete; and ii) in the case of the BSS, the location of the recharging stations 
is only possible at special charge vertices due to the complex structure required for the battery swapping 
that makes the application of this technology at customer vertices impossible. Additionally, each depot 
has the possibility to install a BSS. The third model is defined in a way that if a charging vertex is 
activated, then it is a BSS but if a customer vertex is activated for recharging, it is of conventional 
recharging. 
 
In order to achieve the objectives set out in this investigation, a review was made of the already developed 
models that support the design of combustion vehicle operating systems. It was found that these models 
are not immediately extendible to the case of EVs, since they have special characteristics such as their 
limited autonomy, the possibility of using multiple charge technologies, and the need for an energy 
supply structure. For example, the autonomy of the vehicle and the location of the charging stations affect 
the routing decisions. This happens when an EV needs to be charged and therefore, is forced to use part 
of its operating time in moving to a charging station (time that is influenced by the location of the 
stations); aspects to consider at the time of determining a route, since the time window constraints of the 
customers must be met. Similarly, the location decisions of the recharging stations are affected by the 
defined routes because they are the demand indicator for that decision. From this explanation, it is clear 
that routing and location decisions are dependent on each other and it can be inferred that, when taken 
together, it is possible to improve the optimization objective more than if these decisions are taken 
independently, which justifies the approach of determining the location and routing decisions at the same 
time. This applies to different optimization objectives, such as the total distance traveled, the number of 
recharging facilities, and the number of vehicles used, as shown in the work of Schiffer and Walther 
(2017).  
 
As explained, the characteristics of the EVs do not allow an immediate application of the literature 
models oriented to combustion vehicles to that case. And although several models have already been 
developed to extend the literature on the Vehicle Location Routing Problem with the particularities of 
EVs, in the literature, this problem has not been extended with EVs to the case of multiple depots, in this 
case addressed by the authors and defined as the Multi-Depot Electric Vehicle Location Routing Problem 
with Time Windows (MDEVLRPTW). The model is an extension of the Multi Depot Vehicle Location 
Routing Problem with Time Windows in which EVs are used instead of combustion vehicles. 
For this reason, three models are defined in this research that differ according to the battery charging 
strategy. Consider  as the set of vertices where conventional charging stations or BSS can be located, 
and  as the set of customer vertices. Then the proposed models are: 
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 Multi Depot Electric Vehicle Location Routing Problem with Time Windows and Battery 
Swapping (MDEVLRPTW-BS). It is assumed in this case that only BSS can be located at vertex 
∈ .  

 
 Multi Depot Electric Vehicle Location Routing Problem with Time Windows and Partial 

Recharging (MDEVLRPTW-PR). It is assumed in this case that conventional charging stations 
can be located at the vertex ∈ ∪ . The charge can be partial or complete. Charge of battery 
is considered at depots by defining vertex ∈  with the same coordinates as the depots.  

 
 Multi Depot Electric Vehicle Location Routing Problem with Time Windows Battery Swapping 

and Partial Recharging (MDEVLRPTW-BSPR). It is assumed in this case that if a charging vertex 
∈  is activated it is a BSS, while if it is activated a vertex ∈  it is a conventional recharging 

point. 
 
All the models are aimed at minimizing the total distance traveled; however, the proposed mathematical 
structures allow to minimize the number of vehicles given a fixed number of charging stations 
(conventional or BSS) as well as minimizing the number of charging stations given a fixed number of 
vehicles. 
 
The results of this optimization goal as well as the most relevant decisions of the three models are 
presented and compared using a modification of the instances of Schiffer and Walther (2017). The costs 
of installation are not considered in the models as an optimization objective because the instances of the 
literature used to validate the models do not present this information. However, the extension of the 
models with this feature can be easily extended for practical applications based on the present work. 
 
The contributions of this study can be summarized as follows: 
 
• We extend the MDVLRP to an Electric Vehicle scheme for strategic planning of electric logistic 

fleets.  
• We define a mathematical approach to solve the problem with already well-known aspects of the 

literature such as partial charging at every node of the network, as well as battery exchange in 
specialized charging stations. 

• We validate the proposed approach using a modification of the EVLRPTW instances of Schiffer 
and Walther (2017). 

• We show that the models can be used to design small-sized logistic and energy-support structures. 
 
This paper is structured as follows: in section 2, a literature review is given; in Section 3, the experimental 
methodology proposed for the problem development is presented, in which the three models are 
described; finally, computational results and conclusions are presented in section 4 and 5, respectively. 
 
2. Literature review 
 
One field of the literature concerned with the problem addressed in this paper is the Electric Vehicle 
Routing Problem (EVRP, an extension of the Vehicle Routing Problem, VRP, but adapted to EVs. A 
literature review of this field is presented in the work of Afroditi et al., 2014). The other is the Recharging 
Structure Location Problem (a general literature review can be consulted in the paper of Touati-Moungla 
and Jost, 2012). These aspects together compose the Location-Routing Problem. An extensive review of 
this problem for internal combustion engine vehicles can be consulted in the work of Prodhon and Prins 
(2014), and Drexl and Schneider (2014, 2015). 
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In relation to EVRP approaches, one of the first works of relevance was the one presented by Conrad and 
Figliozzi (2011), entitled by the authors as the Recharging Vehicle Routing Problem, in which the 
consumption of EVs is considered. Two independent optimization objectives are defined: the 
minimization of the number of vehicles, and the overall costs. The charge of the vehicle only is possible 
at customer vertices. Then, in the work of Erdogan and Miller-Hooks (2012), specific vertices were 
considered for recharging stations–a model well-known as the Green Vehicle Routing Problem–work in 
which the minimization of the overall distance is considered. Meanwhile, Omidvar and Tavakkoli-
Moghaddam (2012) extended the problem considering time-windows constraints and proposed a 
mathematical model that minimizes the costs of distance traveled, travel time and emissions. They used 
the Simulated Annealing (SA) and Genetic Algorithm (GA) approaches.  
 
Barco et al. (2013) proposed an EVRP in which the total energy used is minimized. The authors used an 
approximate energy consumption model based on physical dependencies to compute energy 
consumption. The charge is only possible at the depot and the wear of the battery over time is considered. 
Schneider et al. (2014) developed an extension of the EVRP with time window constraints (EVRP-TW); 
the model focuses on EVs with route recharge options. The optimization objective used is hierarchical, 
in which the number of vehicles used to achieve all the customers' demands is minimized, and then the 
total distance traveled is minimized. This work was then extended by Hiermann et al. (2016) considering 
a heterogeneous fleet of EVs. The optimization objective was the overall distance and the acquisition 
costs of the vehicles. Desaulniers et al. (2016) worked on the same problem, but considering four 
recharging strategies (single-FR, single-PR, multiple-FR, and multiple-PR). The problems were tried to 
solve to optimality using branch-price-and-cut algorithms. 
 
On the other hand, Goeke and Schneider (2015) extended the EVRP-TW considering a mixed fleet with 
EVs and combustion vehicles. And in addition, they used realistic energy consumption functions, which 
consider vehicle speed, vehicle mass, and terrain conditions. The authors considered as an optimization 
objective, the minimization of total distance traveled, energy, salary costs and a third objective with these 
two same costs and also the costs associated with the life of the battery. Another work that uses non-
linear functions for the EVRP is the one proposed by Montoya et al. (2016). Up to this point, all the 
works discussed only consider the complete charge of the battery at specialized vertices. In respect to 
this aspect, the work of Felipe et al. (2014) on the Green Vehicle Routing Problem with Multiple 
Technologies and Partial Recharges extended the literature of EVRP considering partial charging. Keskin 
and Çatay (2016), extended EVRPTW to a partial recharge scheme and presented the mathematical 
programming formulation of the problem. The authors proposed an effective ALNS method to solve the 
EVRPTW and EVRPTW-PR. Then, Ding et al. (2015) considered partial charge and also the capacity of 
the recharging stations; however, these last two jobs do not consider charging at customer vertices. 
 
On the other hand, the recharging stations location problem has also been approached independently. 
One of the first works that considered the technology of BSS in this type of model was presented by 
Wang (2008), but postulated for electric scooters. This line was extended to the case of EVs but locating 
conventional charging stations instead of BSS (Wang and Lin, 2009). Then, the location of this same 
type of station was applied to the case of passenger vehicles (Wang and Wang, 2010). Another extension 
is the one proposed by Cavadas et al. (2015), in which for the location of recharging stations is considered 
so that the demands of the customers can be transferred between one station and another. 
 
One of the first approach of the location-routing problem of EVs was presented by Worley and Klabjan 
(2012). The objective of the model is to minimize the sum of the travel costs, recharging costs, and costs 
of locating recharging stations, although, a solution method was not proposed. Yang and Sun (2015) 
propose a model that addresses both decisions, but limited to the BSS technology. The authors proposed 
two heuristic algorithms to solve even large-scale instances. Another work that incorporates both types 
of decision is the one proposed by Li-ying and Yuan-bin (2015). These authors consider that each station 
may have different types of technology. The type of station depends on the time of charge of the battery 
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(linear function that depends on the type of station and of the amount of energy remaining), the cost of 
construction, and the cost of the electricity. Apart from this, they considered recharging at customer 
vertices by postulating vertices available for the location of recharging stations with the same customer 
coordinates, and also considered time window constraints. In their work, it is assumed that the battery is 
always fully charged. Also, a hybrid heuristic that incorporates an adaptive variable neighborhood search 
(AVNS) with the tabu search algorithm for intensification was used to solve small and large-scale 
instances. Schiffer and Walther (2017) proposed a location-routing model in which only conventional 
charging stations are considered but extend the mathematical formulation to consider partial charge of 
the battery. The model can only be solved in efficient computational times in small scale instances. Then, 
the same authors proposed a large-scale solution algorithm called Adaptive Large Neighborhood Search 
for the Location Routing Problem with Intraroute Facilities (Schiffer and Walther, 2016). The algorithm 
was validated by solving the proposed instances in the works of Yang and Sun (2015), and Schiffer and 
Walther (2017). 
 
In relation to the literature review, the research presented in this paper extends the state-of-the-art 
location-routing models of EV by proposing an extension for the case of multiple depots. All this, 
maintaining important already well-known aspects of the literature such as time window constraints, the 
possibility of partial charging, the modeling of multiple visits to the vertices, the possibility of locating 
stations at all vertices (including depots) and also, considering two approaches of recharging the battery: 
the conventional charge (linear dependent on amount of energy remaining), and BSS (fixed charge time). 
A mathematical model is proposed for each approach as well as one in which both are considered at the 
same time. This allows the design of a logistics network that supports an EV fleet and allows a 
comparison of the linear and fixed-time charge results. For the validation of the model, we propose a set 
of instances based on Schiffer and Walther (2017), in which a depot is randomly added. 
 
3. Experimental methodology 
 
In this section, we present the characteristics and assumptions shared by the models proposed. The 
mathematical model for the MDEVLRPTW-BS is described as well as for the models MDEVLRPTW-
PR and MDEVLRPTW-BSPR. All the models are of mixed linear programming. 
 
Characteristics and Assumptions 
 
The MDEVLRPTW can be formally defined as a directed and complete graph  composed of a set of 
vertices  and a set of arcs	 , | , ∈ , . The problem has the following 
characteristics: 
 

 The set of vertices  corresponds to the union of the set of vertices of customers to be visited 
, the set of vertices where specialized battery recharging stations can be located , the set of 

vertices of the depots for dispatch of vehicles , the set of vertices of the depots for vehicle 
arrivals  ( ∪ ), and a set of dummy vertices  associated to the vertices ∈

∪ ∪ . This set is introduced in order to allow multiple visits to the vertices in the 
construction of the routes; a feature necessary to also model the possibility of recharging multiple 
vehicles at the same time. (The set  is the union of all the dummy vertices subsets	 , where 

 is the set of dummy vertices associated to vertex ).  
 For each arc ,  a distance  between vertex  and  is given. 
 The travel time  for the arc ,  is calculated as the average velocity  multiplied by . 
 Each vertex ∈  must be visited by a vehicle to deliver the goods  in the service time , and 

this visit is made at time  within a time window defined by the earliest time  and the latest 
time . 
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 Each depot can be activated and from it, must exit and enter the same number of arcs. Each of the 
exit arcs represents a vehicle that is dispatched. These vehicles are homogeneous and have a 
freight capacity  and a battery capacity . 

 Each vehicle dispatched must leave and return to the same depot. 
 The displacement of vehicles is limited by the capacity of the battery and the fixed rate of energy 

consumption per distance unit . 
 A maximum number of recharge points can be located and these can be located at the vertices 

∈ ∪ . The recharge points located in any ∈  are always of conventional charge. While 
the ∈  can be conventional charge or BSS depending on the approach being treated. 

 If the battery is charged by the conventional manner at some vertex, this is done at the constant 
charge rate of energy per unit time . If a battery change is made in a BSS, this is done in a 
constant amount of time  which is always a smaller amount of  multiplied by  (complete 
conventional charge time). 

 If the battery is charged at a vertex ∈ , it is performed in parallel to the service time , which 
allows for better optimization of the operational times. 

 The problem is determinate: i) the number and location of the recharging station, ii) the number 
and location of the depots and iii) the number of vehicles and their routes of operation of the 
system to minimize the total distance traveled.  

 Vehicle speed  is constant and is not affected by altitude. 
 Energy consumption is modeled as a linear function of the distance traveled. 
 The charge time at conventional stations depends linearly on the amount of energy to be charged. 
 In general, it is considered that the batteries can be charged at all the vertices of the network. 

Punctually, in the case of the MDEVLRPTW-BS only BSS can be used and these are located at 
vertices ∈ . In the case of the MDEVLRPTW-PR, the battery can be charged in a conventional 
manner at the vertices ∈ ∪ , partially or completely. Charge at depots is considered by 
defining vertices ∈  with the same coordinates as the depots. Finally, in the case of the 
MDEVLRPTW-BSPR if a recharge point is activated at the vertices ∈ , it is of type BSS, 
while at a vertex ∈ , it is a conventional recharge point. 

 The number of vehicles that can be charged at the same time at a vertex is not limited. 
 If a vehicle is charged at a customer vertex, this operation is performed in parallel with the service 

time . 
 All vehicles start their route with their battery fully charged, so there is a station for overnight 

charge in all depots. 
 Each depot is represented with two vertices that have the same coordinates: one to represent the 

dispatch of vehicles, and the other for arrivals. 
 The number of vehicles is determined implicitly by the number of routes. Likewise, if a depot 

vertex dispatch routes then it is located. 
 
3.1 The Multi-Depot Electric Vehicle Location Routing Problem with Time Windows and Battery 
Swapping  
 
Sets: 
 

  Vertices of depots for the dispatch of vehicles. 
  Vertices of depots for the arrival of vehicles. 

  Union of all vertices of depots for the dispatch and arrival of vehicles. 
  Customer vertices. 
  Special vertices of recharging stations. 

  Dummy vertices associated with vertex i ∈ ∪ ∪ . 
  Union of all sets . 
  Union of vertices of customers  recharging stations  and dummies . 
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  Union of vertices of customers  and depots for dispatch . 
  Union of vertices ∈  and depots for dispatch . 

  Union of vertices ∈  and depots for arrival . 
  Union of vertices ∈  and vertices ∈ . 

 
Parameters: 
 

  Depot identification number. Each depot has a number assigned and this must be equal for both 
the dispatch vertices and the arrival vertices representing it, ∈ . 

  Minimum distance between  ∈  and ∈ . 
  Time of travel between vertex ∈  and ∈ ,  where  is the speed of the 

vehicle. 
  Service time required at vertex ∈ . 
  Earliest time of the time window of vertex ∈ . 
  Latest time of the time window of vertex ∈ . 
  Demand of vertex ∈ . 
  Freight capacity of the vehicle. 
  Battery capacity. 
  Swapping time of battery. 

  Consumption rate of energy per distance unit. 
  Maximum number of recharging points to locate. 

  Lower bond for the number of vehicles that can leave a depot. 
  Upper bond for the number of vehicles that can leave a depot. 

  Very large positive number. 
 
Decision variables: 
 

  Binary variable equal to one if in a route the vehicle moves from the vertex	 ∈  to ∈ 	|
. Zero otherwise. 

  Binary variable equal to one if at vertex ∈  a BSS is located. Zero otherwise. 
  Moment of time in which a vehicle arrives at the vertex ∈ . 
  Amount of freight left when the vehicle arrives at vertex ∈ . 
  Amount of energy left in the battery when the vehicle arrives at vertex ∈ . 
  Identification number of the depot ∈  from which the route starts that passes through the 

vertex ∈ . 
 
Objective function: 
 

min 	 ∙
∈ |∈

 (1)

Constraints: 
 

∈ |

1	 ∀ ∈  (2)

∈ |

1	 ∀ ∈ ∪  (3)

∈ |

	
∈ |

	 ∀ ∈  (4)

∈

	 ∀ ∈  (5)

∈

  (6)
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∈ |

∙  ∀ ∈  (7)

∈ |

∙  ∀ ∈ , ∈  (8)

∙ ∙ 1  ∀ ∈ , ∈ |  (9)

∙ ∙ 1  ∀ ∈ ∈ , 
∈ |  

(10)

∙ ∙ 	 ∙ 1  ∀ ∈ ∪ ∈ , 
∈ |  

(11)

 ∀ ∈  (12)
∙ ∙ ∙ 1  ∀ ∈ ∪ ∪ ∈ , 

∈ |  
(13)

∙ ∙ ∙ 1  ∀ ∈ ∪ ∈ , 
∈ |  

(14)

 ∀ ∈  (15)
∙ ∙ 1  ∀ ∈ , 

∈ |  
(16)

 ∀ ∈  (17)
∙ ∙ 1  ∀ ∈ , ∈  (18)
∙ ∙ 1  ∀ ∈ , ∈  (19)

∙ 1  ∀ ∈ , ∈  (20)
∙ 1  ∀ ∈ , ∈  (21)

 ∀ ∈  (22)
∈ 0; 1   ∀ ∈ , ∈ 	|  (23)
∈ 0; 1  ∀ ∈  (24)
, , ∈  ∀ ∈  (25)
∈  ∀ ∈  (26)

 
The constraints (2) - (5) guarantee the conformation of the routes. In (2) it is guaranteed that all the 
customer nodes are visited. In (3) it is established that the vertices of the charging stations and dummies 
can be visited once at most. In (4) the balance between input and output arcs is established and in (5) it 
is established that the number of arcs coming out of a depot is between the lower and upper bound; this 
restriction allows to minimize the number of vehicles if  is modified as a decision variable to be 
minimized. The constraints (6) - (8) are related to the location decisions of the charging stations. In (6) 
the number of stations to be located is limited; furthermore, this restriction allows to minimize the number 
of stations if  is defined as a decision variable to optimize. On the other hand, restrictions (7) and (8) 
guarantee that if a recharging station is not located then the routes cannot pass through those nodes or 
their associated dummies. The constraints (9) - (12), allow to control the time of the vehicles in the routes, 
guaranteeing the compliance of the time windows and implicitly guaranteeing the non-conformation of 
subtours. In constraint (9) if a movement between the vertices  and  is performed, starting at a depot or 
customer, then the arrival time at  is determined as the sum of the start time , the displacement time to 
 and the service time at  (service time of zero for depots). Similarly, constraint (10) guarantees the time 

control for the customers' dummies but without considering the service time. The constraint (11) models 
the case in which a movement is performed from a recharging station and its dummy vertices, in which 
case in addition to the starting time at  and the displacement time to , the swapping time of the battery 

 is added. Finally, the constraint (12) guarantees the fulfillment of the time windows. 
 
The restrictions (13) - (15) guarantee control over the battery power. In restriction (13) if a movement is 
made between the vertices  and  that initiates at a depot, a customer, or a customer dummy, it is 
guaranteed that the amount of energy at  is less than that at  minus that consumed in the displacement 
to . In (14) if the movement is carried out from a recharging station, dummy vertex, or recharging station 
then the energy left in the battery that reaches at  must be less than the total capacity of the battery ( ) 
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minus the energy consumed in the displacement to . Finally, restriction (15) guarantees the maximum 
energy with which a vehicle can depart from a depot. The control over the cargo of merchandise is 
guaranteed with restrictions (16) and (17). In (16) it is guaranteed in the movements of the route that the 
merchandise delivered to customers is discounted, while in (17) the maximum quantity of merchandise 
with which a vehicle can start the route is defined. Finally, the restrictions (18) - (22) guarantee that the 
routes start and end at the same depots. This is achieved by defining an identifier number for each depot. 
Mark that share the vertex of dispatch ∈  and the one of arrival ∈  that represent a certain 
depot (if  and  are associated to the same depot then ). With this feature, constraints (18) and 
(19) guarantee that when an arc is activated from a depot ∈  towards any other vertex ∈ , the 
variable  takes the value of the identifier . Next, constraints (20) and (21) ensure that the variable  
of any vertex  belonging to a route takes the value of the identifier number associated with the depot 
from which the route was dispatched. The restriction (22) then forces the routes to leave and arrive at the 
same depot. The no negativity condition of the decision variables is given by the constraints (23) - (26). 
 
3.2 The Multi-Depot Electric Vehicle Location Routing Problem with Time Windows and Partial 
Recharging 
 
The model holds the sets, parameters, objective function, and decision variables of the MDEVLRPTW-
BS with the following additions and changes: 
 
Parameters: 
 

  Energy charging rate per unit of time. 
 
Variable decisions: 
 

  Binary variable is equal to one if at the vertex ∈ ∪  a recharging station is located. Zero 
otherwise. This variable replaces that of MDEVLRPTW-BS. 

  Amount of energy to be charged at vertex ∈ . 
 
Constraints: 
 
Constraints (6) - (8), (10), (11), (13), (14) y (24) are eliminated, and the following restrictions are added 
to the model: 
 

∈ ∪

 ∀ ∈ ∪  (27) 

∙  ∀ ∈ ∪  (28)
∙  ∀ ∈ ∪ ,

∈  
(29)

∙ ∙ 	 ∙ 1  ∀ ∈ , ∈ |
 

(30)

∙ ∙ ∙ 1  ∀ ∈ ,
∈ |  

(31)

∙ ∙ ∙ 1 ∀ ∈ , ∈ |
 

(32)

  ∀ ∈  (33)
∈ 0; 1  ∀ ∈ ∪   (34)
∈   ∀ ∈   (35)

 
The restriction (27) limits the number of charging stations to be located. The restrictions (28) and (29) 
guarantee that if a recharging station is not located, then energy cannot be charged at the associated 
vertex. Constraint (30) includes control over the time used to charge the battery in a conventional manner. 
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The restrictions (31) and (32) model the control over the amount of energy in the vehicle's battery. The 
restriction (33) ensures the maximum capacity of the battery. Finally, constraints (34) and (35) guarantee 
non-negativity in the variables. 
 
3.3 The Multi-Depot Electric Vehicle Location Routing Problem with Time Windows Battery Swapping 
and Partial Recharging 
 
The model holds the sets, parameters, objective function, and decision variables of the MDEVLRPTW-
BS with the additions and changes described in the MDEVLRPTW-PR. 
 
Only the decision variable  is changed to represent the amount of energy to be charged at vertex ∈

∪ ∈ . 
 
Constraints: 
 
Constraints (6), (10), (13) y (24) are eliminated, constraints (27) and (34) are added in addition to the 
following constraints: 
 

∙  ∀ ∈  (36)
∙  ∀ ∈ , ∈  (37)

∙ ∙ 	 ∙ 1  ∀
∈ ∪ ∈ , 

∈ |  

(38)

∙ ∙ ∙ 1  ∀ ∈ ,
∈ |  

(39)

∙ ∙ ∙ 1 ∀
∈ ∪ ∈ , 

∈ |  

(40)

  ∀
∈ ∪ ∈  

(41)

∈   ∀
∈ ∪ ∈  

(42)

 
Constraints (36) and (37) ensure that if a charging station is not located at customer vertices or its 
dummies, then no charging can be done at those vertices. Constraint (38) allows for considering 
conventional charging in the time control at customers and associated dummies vertices (when 
movements are made from these vertices). Constraint (41) ensures that the vehicles’ energy does not 
surpass the battery capacity. Constraint (42) is necessary to ensure non-negativity in the decision 
variables. 
 
3.4 Solution strategy 
 
The optimization models were implemented in C++ and the experiments were executed on an Intel Core 
i7 processor with OS Ubuntu 15.04 LTS and memory of 8 GB. CPLEX 12.5 was used to solve the 
models. The time limit for solving the instances was set to 28800 seconds. In addition, to improve the 
computational times it was considered that mobilizations between vertices ∈ \  and the associated 
dummy vertices  have no sense. So, the pre-processing constraints (43) and (44) were used: 
 

0 ∀ ∈ \ ,  
∈ |   

(43)

0 ∀ ∈ \ ,  
∈ |   

(44)



J. C. Paz et al. / International Journal of Industrial Engineering Computations 9 (2018) 133

The experiments were executed using instances of five, ten, and fifteen customers proposed by Schiffer 
and Walther (2017). These instances were modified to obtain a multi-depot problem, in that it is not 
found in the literature instances of this type for EVs. The modification was the random addition of a 
vertex where a depot can be located. This was done by ensuring that the coordinates were between the 
minimum and maximum distance from the original instances. These tests can be downloaded from 
http://academia.utp.edu.co/planeamiento/?p=3561. 
 
Apart from this, it was defined that each vertex i ∈ ∪ ∪  had a single dummy vertex. This is 
due to the small size of the resolved instances. Additionally, the following parameters required adjusting, 
with values to execute the experiments:  
 

 was defined as ten percent of the total battery charge time by conventional means. 
  was defined equal to the number of customers' nodes and charging stations. 

  was defined using the bin packing problem strategy proposed by Schiffer and Walther 
(2017). This limit improves computational times. 

  was defined as equal to the number vertices of customers ( ) and special charging stations 
( ). 

 was defined as 2 ∙ , in which  is the first element of . 

 
The parameters  and  do not restrict either the number of stations required or the number of vehicles 
used in the depots; however, if they were postulated as decision variables and defined as objective 
functions in which they are minimized, the mathematical structures proposed would allow to orient the 
model to the minimization of the number of vehicles and the number of stations, respectively. These 
parameters were not defined with values because the original instances do not have them and defining an 
arbitrary value could have skewed the results. 
 
4. Computational results, analysis and discussion 
 
The results obtained by the models are shown in Table 1. The characteristics of interest of the network: 
the depots and stations to be located, as well as the routes of operation, are shown in the results. 
 
A particularity of these results is that for the case of BS, the distance is always greater than for the other 
two models. In the case of BSPR and PR, the optimization objective is the same for almost all instances. 
On the other hand, only in the case of instances rc103-15 and rc108-15 the PR strategy shows a better 
result; however, these results are not optimal, so it is not accurate to conclude against the results shown 
by these instances. Despite this behavior in the results of the objective function of the BSPR and PR 
models, it should be noted that the design of the network differs in the number of charging stations located 
at customers nodes; behavior that can be seen in Fig. 1 (stations marked with squares). 
 
As shown in Fig. 1, instance c103-5 presents the same routes for both models, so the minimum distance 
traveled is the same; however, each model differs in the number of stations located. This is because the 
models do not consider the cost associated with the location of the stations and this causes the existence 
of several ways of locating the stations and at the same time, guarantees the autonomy of the vehicle. It 
is evident then that the problem presents multiple solutions. On the other hand, the results show that the 
number of depots and vehicles used is the same for the case of BSPR and PR. In addition, the number of 
BSS used in the case of BSPR tends to zero. This suggests that the conventional charge strategy generates 
better results in the evaluated instances; however, in three instances this behavior was not fulfilled (r105-
5, c101-10 and r209-15) since regardless of the type of station, a BSS station is always located. This is 
because for the fulfillment of the routes of these instances, the localized stations are the only possible 
point of recharge on the road before running out of power. From what is evident, the influence of the 
geospatial position on the decisions of location of stations. 
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Fig. 1. Routes of instance c103-5 
 
Table 1  
Results for the MDEVLRPTW-BS, MDEVLRPTW-BSPR, and the MDEVLRPTW-PR, minimizing the 
overall distance traveled 

    MDEVLRPTW-BS   MDEVLRPTW-BSPR  MDEVLRPTW-PR 

inst. dp. vh. dist. st. time   dp. vh. dist. cst. st. time  dp. vh. dist. cst. st. time
c101-5 2 4 238.62 1 0.30   2 3 229.31 3 0 0.44  2 3 229.31 4 0 0.42
c103-5 1 3 165.67 0 0.55   1 2 161.26 3 0 0.32  1 2 161.26 4 0 0.48
c206-5 2 4 234.31 1 2.14   2 3 218.58 5 0 0.86  2 3 218.58 5 0 4.53
c208-5 1 2 129.13 1 1.09   1 1 127.86 4 0 1.57  1 1 127.86 5 0 1.53
r104-5 2 2 118.51 1 0.61   2 2 118.27 5 0 0.90  2 2 118.27 4 0 0.63
r105-5 2 2 104.70 1 0.18   2 2 102.83 4 1 0.18  2 2 102.83 4 1 0.21
r202-5 1 1 126.90 3 1.85   1 1 124.39 4 0 0.88  1 1 124.39 4 0 5.77
r203-5 2 2 167.33 2 0.63   2 2 161.15 3 0 0.61  2 2 161.15 5 0 0.69
rc105-5 2 3 185.72 1 0.66   2 3 179.50 4 0 0.48  2 3 179.50 4 0 0.79
rc108-5 2 2 242.10 2 7.09   2 2 238.03 4 0 4.12  2 2 238.03 5 0 20.78
rc204-5 1 1 176.39 3 38.15   2 2 169.27 5 0 34.94  2 2 169.27 5 0 31.64
rc208-5 1 1 167.98 2 9.57   1 1 162.67 5 0 2.63  1 1 162.67 5 0 11.91
c101-10 2 4 331.10 3 582.72   2 3 316.21 9 1 15.08  2 3 316.21 10 1 39.63
c104-10 2 2 243.37 3 41.99   1 1 234.22 8 0 2.21  1 1 234.22 9 0 12.43
c202-10 2 3 227.25 2 27.45   2 2 217.20 6 0 1.44  2 2 217.20 9 0 2.34
c205-10 2 3 204.44 1 1.64   2 3 204.43 7 0 1.20  2 3 204.43 7 0 1.86
r102-10 2 3 232.37 3 28.58   2 3 224.32 8 0 9.41  2 3 224.32 7 0 21.64
r103-10 2 3 193.41 2 9747.56   1 2 188.67 9 0 4922.05  1 2 188.67 9 0 8581.20
r201-10 2 4 206.74 2 16.06   2 3 195.06 9 0 2.87  2 3 195.06 7 0 7.80
r203-10 1 1 216.99 4 10880.50   1 1 209.27 7 0 277.96  1 1 209.27 9 0 4171.44
rc102-10 2 5 386.96 1 18.63   2 3 362.67 9 0 2.88  2 3 362.67 9 0 5.92
rc108-10 2 4 312.04 2 89.41   2 3 287.89 9 0 9.17  2 3 287.89 8 0 36.57
rc201-10 2 4 298.00 1 94.39   2 4 292.34 8 0 197.46  2 4 292.34 9 0 226.18
rc205-10 2 3 290.87 2 3.93   2 3 290.52 9 0 2.60  2 3 290.52 6 0 2.28
c103-15 2 3 320.17 2 28800.00   2 3 315.56 9 0 28800.00  2 3 315.56 12 0 28800.00
c106-15 2 4 261.20 1 68.45   2 4 255.05 13 0 7.89  2 4 255.05 14 0 26.28
c202-15 2 3 353.75 4 1104.17   2 3 341.34 11 0 476.33  2 3 341.34 11 0 946.80
c208-15 1 2 300.55 3 635.45   1 2 293.89 12 0 661.41  1 2 293.89 14 0 341.45
r102-15 2 5 335.47 3 2293.45   2 5 307.53 12 0 170.65  2 5 307.53 10 0 149.61
r105-15 2 4 289.00 3 17.43   2 4 288.34 10 0 6.33  2 4 288.34 12 0 13.18
r202-15 2 3 323.18 4 5422.84   2 3 322.51 11 0 17330.10  2 3 322.51 14 0 28800.00
r209-15 1 2 274.34 4 1258.39   2 2 254.63 10 1 112.33  2 2 254.63 15 1 61.00
rc103-15 2 5 354.26 3 28800.00   2 5 349.38 13 0 28800.00  2 4 347.21 10 0 28800.00
rc108-15 1 3 372.54 4 28800.00   2 3 362.47 14 0 28800.00  1 3 358.78 14 0 28800.00
rc202-15 2 3 370.76 3 800.80   2 3 363.45 13 0 346.53  2 3 363.45 13 0 516.25
rc204-15 1 2 310.58 4 28800.00   1 2 304.33 12 0 28800.00  1 2 304.33 14 0 28800.00
Abbreviations hold as follows: inst. = test instance; dp. = number of depot used; vh. = number of vehicles used; dist. = overall traveled 
distance; cst. = number of charging stations at customers; st. = number of specialized charging stations used–standard recharging 
stations for PR and swapping stations for BS and BSPR; time = computational time [s]. 
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 With respect to the computational times of solution of the models, the results do not show a clear pattern 
of behavior that allows to differentiate one model from another. What is clear is that the results are limited 
by the size of the instances. Only instances of up to fifteen customers were solved, and some of them 
could not be solved optimally (Table 2). 
 
Table 2  
Gap values of the non-optimal instances 
inst. MDEVLRPTW-BS MDEVLRPTW-BSPR MDEVLRPTW-PR 
c103-15 0.0413 0.0363 0.0633
r202-15 0.0328
rc103-15 0.1140 0.1871 0.0989
rc108-15 0.2651 0.2193 0.2184
rc204-15 0.1987 0.1959 0.1914

 
4. Conclusions 
 
In this article, three models of location and routing for EVs were proposed considering classic restrictions 
in the literature and extending it to the case of multiple depots. Two types of charge approach were 
considered: BSS, and conventional charging stations. The results obtained validate the proposed model 
to solve small-scale problems in an optimal way.  It was found that the proposed modeling approach 
allowed to compare the two strategies considering battery charge and with this, determined the best 
design for the EVs’ logistics network. 
 
On the other hand, the results showed that the costs of installation and operation of the network impact 
significantly on the design decisions of the network; so this is an aspect that should be considered for 
real design applications. Apart from this, it was found that in order to achieve a better design in this type 
of problem, in future it is necessary to consider work elements that allow deciding between different 
types of technology for the stations when the geospatial conditions of the network force locating a 
recharging station. Future work can be oriented to the design of solution strategies for large-scale 
problems, as well as tests with real application data for the treated case. 
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