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The Multi-Lane Capsule Network (MLCN)
Vanderson M. do Rosario1, Edson Borin2, and Mauricio Breternitz Jr.3

Abstract—We introduce Multi-Lane Capsule Networks
(MLCN), which are a separable and resource efficient organi-
zation of Capsule Networks (CapsNet) [1] that allows parallel
processing while achieving high accuracy at reduced cost. A
MLCN is composed of a number of (distinct) parallel lanes,
each contributing to a dimension of the result, trained using
the routing-by-agreement organization of CapsNet. Our results
indicate similar accuracy with a much-reduced cost in number of
parameters for the Fashion-MNIST and Cifar10 datasets. They
also indicate that the MLCN outperforms the original CapsNet
when using a proposed novel configuration for the lanes. MLCN
also has faster training and inference times, being more than two-
fold faster than the original CapsNet in the same accelerator.

Index Terms—Capsule Network, Multi-lane, Deep Learning,
CNN

I. INTRODUCTION

Deep Learning has become a widely used machine learning
technique to solve many different problems from image pro-
cessing to language translation to audio transcription amongst
many others. In 2014, after the publication of the AlexNet
architecture (stacking multiple layers of convolutions and
maxpooling) [2], deep learning became the state-of-art in
image classification with the use of Convolutional Neural
Networks (CNNs). One of the main mechanisms in these
traditional CNNs are the Pooling operations that, although
achieving some transitional invariance it loss a lot information.
Subsequently, Sabour et al. [1] proposed a novel approach
to routing data in the network (dynamic routing algorithm)
without using the traditional pooling mechanisms, demon-
strated with a neural network called CapsNet. Towards this,
it encodes features of the image as vectors and the dynamic
routing algorithm is used to guarantee the global relationship
between all of them. The traditional CNNs can miss such
global relationships and, for instance, miss-classify an image
that has a mouth, eyes, and nose as a face, independently
of the order or relative position of these features. However,
despite promising preliminary results, CapsNets are still a
young and not much-explored network. For example, one of
the challenges that have been described using and testing
CapsNet is that they have required larger training times.

Therefore, in this work we explore the CapsNet architecture,
proposing a new organization for it. The original CapsNet
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is divided into multiple lanes that are data-independent and
responsible to learn different dimensions of the vectors, each
lane learning distinct features. This organization outperforms
the original CapsNet in training and inference time by adding
more parallelism and reducing the number of trainable pa-
rameters. We also show that this organization also helps with
the explainability of the network. All this, without losing
learnability and generative performance. In fact, we show that
one can construct a faster CapsNet divided into lanes that
outperform the accuracy of the original one for the Fashion-
MNIST [3] and Cifar10 [4] datasets.

II. RELATED WORK

A. CapsNet

In 2011, Hinton, Krizhevsky, and Sida presented the idea of
capsules [5], a neural network wherein neurons have vectors
as input and output, extending previously proposed scalars.
Later publication of the dynamic routing algorithm [1], which
allows the dynamic choosing of the paths of activation of
these capsules from one layer to another, greatly enhanced this
organization. That work also presented an architecture that we
will call the Capsule Network or CapsNet.

Since the publication of the Dynamic Routing and the Cap-
sNet, several works have emerged improving the algorithm or
the architecture and experimenting with the power of CapsNet
in other scenarios, applications, and datasets. Shahroudnejad,
Mohammadi, and Plataniotis [6] presented an analysis of the
explainability of CapsNet, showing that it has properties which
help understand and explain its behavior. Jaiswal et al. [7]
used the CapsNet in a Generative Adversarial Network (GAN)
and showed that it can achieve lower error rates than simple
CNN. Ren and Lu [8] showed that CapsNet can be used
for text classification and showed how to adapt the composi-
tional coding mechanism to the CapsNet architecture. Jimenez-
Sanchez, Albarqouni, and Mateus [9] tested the CapsNet in
Medical Imaging Data Challenges showing that it can achieve
good performance even when having less trainable parameters
than the tested counterpart CNNs. Mobiny and Nguyen [10]
tested the performance of CapsNet for lung cancer screening
and showed that it could outperform CNNs mainly when
the training set was small. A similar result was achieved
by Kim et al. in traffic speed prediction [11] with CapsNet
outperforming traditional CNNs approaches. Mukhometzianov
and Carrillo [12] ran the CapsNet with multiple image datasets
and they showed that although having good results, CapsNet
still requires much more time to train than others CNNs.

While developing this work, Canqun et al. [13] proposed the
Multi-Scale CapsNet (MS-CapsNet). They proposed a division
of the CapsNet network, limited to three “lanes” (they did
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neither name or explored the division concept), each with a
different number of convolutions. In our work, we divide the
CapsNet into more lanes, explore limitations of the division
approach, the impact of dropout in feature division, the impact
that such division has in training and inference speed and
identify challenges. Another similar work, recently developed,
was the Path Capsule Networks by Amer and Maul [14]
(Path-Capsnet) which explores the parallelism of CapsNets
by splitting, with each path or lane being responsible for
computing each digitcaps or primary capsule entirely, unlike
the computation of different dimensions/features as in MLCN.
Thus, such approach does not help in explainability of the
network and, although it does potentially provide a similar
level of parallelism, the authors neither explored scalability or
tested the approach in more complex datasets.

III. MULTI-LANE CAPSULE NETWORK

The original version of CapsNet [1] produces a set of
N Primary Capsules (PCs) by applying two convolutional
steps to the original image. Each of these PCs, identified
as ui, is multiplied by a weight matrix Wi and finally, a
final set of capsules, the digit capsules, is created using the
dynamic routing algorithm. Each of these digit capsule vectors
represents one of the classes in the classification problem and
the vector’s length encodes the probability of the class being
the one in the input image. However, more than just encoding
the probability of a class, each vector also contains information
to reconstruct the original image, with different dimensions
of the vector representing different features of the image.
Having this in mind, we propose to split the original CapsNet
architecture 1 (Figure 1), dividing the PCs into independent
sets which we call lanes. Each of these sets of PCs, a lane,
is responsible for one of the dimensions in the final digit
capsules.

The number of PCs per lane may vary, as well as the
way they are computed. In the original CapsNet, two 2D
convolutions are applied to the input image and then reshaped
to produce the PCs. More convolutions may be applied, what
we call the depth of a lane, or more filters can be used per
convolution generating more capsules, what we call the width
of a lane. Further, distinct dimensions of a final digit capsule
can be generated by lanes with different configurations (and
thus distinct computational requirements).

There are two key advantages of this organization over the
original CapsNet architecture. First, it allows parallelism of
the execution, as each set of PCs is constructed independently,
improving performance and allowing training and deployment
on distributed environments. Second, it improves the explain-
ability of the network by associating different features of the
image to each set of convolutions and PCs.

IV. EXPERIMENTAL SETUP

We tested our approach with the Fashion-MNIST and
Cifar10 datasets. Each experiment is performed three-times
and we present the geometric mean. There was no significant

1source code in https://github.com/vandersonmr/lanes-capsnet
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Fig. 1: Multi-lane Capsule Network Architecture

variance in the results, therefore we only present the means.
Our experimental baseline refers to the original CaspNet
configuration tested with the MNIST dataset [1]. The baseline
with MNIST creates 1152 PCs with dimension 8 and 10
digit capsules with dimension 16. We also use PCs with 8
dimensions and vary the number of PCs. We call a 1-size
lane, a lane which creates 72 PCs (same proportion of PCs
per dimension as in the baseline) and a k-size lane a lane with
k × 72 PCs. The experiment also varies the number of lanes
(dimensions of the digit capsule), testing networks with 2, 4,
8, 16 and 32 lanes. All reported experiments were performed
on a P100 NVIDIA GPU with 16gb of RAM and the training
was performed with 20 epochs.

We tested two key variations of the lane configurations:
the first, mlcn1, has the same configurations as the baseline
CapsNet and the second, mlcn2, includes differences that
were found to increase significantly the performance of our
architecture. The details of both are described below:

• Mlcn1: in this configuration, each lane receives one copy
of the original image, followed by one convolutional
layer with 16 × kernel size kernels, kernel size 9 and
stride of 1. This is followed by another convolutional
layer with 16 × kernel size layers, kernel size 9 and
strides of 2. The output of the second convolutions layer
is reshaped into 72×kernel size PCs with dimensions 8.
Then dynamic routing is applied to generate one vector
with dimension equal to the number of classes in the
problem. In our tested datasets, there are 10 classes thus
10 dimensions.

• Mlcn2: in the second configuration, the lanes have first
one 1x1 convolutional layer with 4×kernel size kernels,
followed by two convolutional layers with kernel size 9
and stride of 1, but with 8×kernel size kernels, and one
last convolution with 8×kernel size lanes, kernel size 9
and strides of 2. The output of these convolutions is then
reshaped as in Mlcn1, outputting 72× kernel size PCs
with dimension 8 and finally after the dynamic routing
also producing one vector with a number of dimensions
equal to the number of classes in the problem.

A. Dropout and Regularization in MLCN

In both configurations, we notice that usually, a subset of
lanes would actually be useful for the reconstruction and in
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classification. At a certain point, additional lanes stopped pro-
viding useful information, and new lanes just would produce
similar results, adding no new information to the solution. To
mitigate this effect we investigated a dropout approach. During
the training process, we would discard 10% of the lanes and
only use the result of the other 90% to calculate the final
classification (for reconstruction all lanes were always used).
This forces all lanes to contribute useful information to the
solution of the problem. However, as we show and discuss in
another section, this made the training process more laborious
and caused all lanes to learn similar features.

V. EXPERIMENTAL RESULTS

The digit capsule vectors which are constructed by concate-
nating the output of all lanes should have encoded information
to entirely reconstruct the input image. During the training
process, the longest digit capsule (its length encodes one
class probability) is used as input to a fully connected neural
network with two lanes of 512 and 1024 neurons, which
produces a reconstruction of the original image. As seen in
Figure 2, the output of 16 lanes (Mlcn1) can be used to
reconstruct with high-fidelity the input image from the fashion-
MNIST dataset. Therefore, it shows that dividing CapsNet into
lanes does not prevent it from converging and learning image
characteristics.

Fig. 2: Reconstructions from the fashion-mnist using MLCN.

Furthermore, when we vary the output of each lane (adding
-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2 and 0.25 to
each dimension on the vector, one dimension at a time), we can
observe the effect of this change on different features of the
original image (Figure 3). Two key points from this: first, as
each lane is entirely independent, we know that, for instance,
lane5 and its associated convolutions are used to extract the
size of the jacket. Further, we notice that similar properties
were being extracted from different classes. So, for example,
lane5 also extracts the size of the shoes. Second, we notice
that adding more lanes than 5 for the MNIST dataset would
result in lanes with no impact on the reconstruction and outputs
essentially similar. Therefore, these lanes would not help to
solve the classification problem. Solving this by forcing all
lanes to extract different features of the image could allow the
addition of more useful lanes. This is under exploration.

Although the second configuration, Mlcn2, improved the
classification problem and increased the number of useful
lanes to solve a specific problem (as we show in the next
subsection), it did not have any visible impact on the recon-
structed images, thus we only present images from Mlcn1.

Lane1

Lane2

Lane3

Lane4

Lane5

Fig. 3: Synthetic variation on the lanes output.

A. Number of Lanes

As we noticed from the reconstructed images, adding more
lanes does not improve the model, as new lanes stop learning
new features. This same problem is reflected in the model
accuracy. As seen in the classification results of 4a and 4b,
adding more lanes to fashion-MNIST processing is not always
beneficial. When using the first type of lanes (4a), using only
2 or 4 lanes was better than using 8 or 16. First, because
even adding more lanes, we would see rich features being
learned in more than 4 lanes. Second, to effectively use
near to 4 lanes, the learning rate of maximizing a vector
with 4 dimensions is faster than when processing higher-
dimensionality vectors. When using the second type of lane
(4b) the scenario improves, with at least 8 dimensions being
useful. However, it is still the case that using more lanes, 32
lanes, was not beneficial.
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(a) Mlcn1 - fashion-MNIST
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(b) Mlcn2 - fashion-MNIST
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(c) Mlcn1 - Cifar10
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(d) Mlcn2 - Cifar10

Fig. 4: Varying number of lanes on Fashion-mnist and Cifar10

One thing to notice is that the number of lanes which will
maximize the network performance is not only related to the
lanes configurations, but also to the dataset. While fashion-
MNIST appears to only need 4 lanes to represent its data with
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Mlcn1, Cifar10, a more complex dataset, requires 8 (4c) and
with Mlcn2 it actually benefits from using 32 lanes (4d).

Another important point from Figures 4a, 4b, 4c and 4d
is that MLCN achieved better accuracy levels when using
lanes of the second type.. This suggests that the second lane
configuration is superior. When we compare the accuracy
achieved by the two lanes types for both datasets with the
baseline (Table I), we see that Mlcn1 achieves similar accuracy
rates as the baseline, but Mlcn is far better. Notice that when
adding these characteristics from Mlcn2 into the baseline
produces no performance gain.

B. Lane’s Size

We also experiment with varying the size of lanes, increas-
ing the number of convolution kernels and in this way adding
more PCs. For all the results presented above, we used lanes of
size 4 because it demonstrated for both datasets to be the better
choice. We observed that increasing the lane’s size increases
the performance of the network, but for lanes larger than 4 it
shows that this improvement starts to cease and the training
rapidly overfits given the huge number of PCs.

C. Dropout Trade-off

To improve the number of lanes that learn useful features,
we added a lane dropout mechanism (only for classification
loss). Then, to test how individual lanes impact the classifi-
cation, we removed one of the lanes from a trained fashion-
mnist MLCN with 16 Mlcn1 lanes and size 4. We then measure
that lane’s impact on the accuracy by calculating the new
accuracy and getting the difference. Repeating this for all lanes
results in a list of all lanes with individual accuracy impact.

Figure 5a shows the impact of removing lane by lane sorted
by the accuracy impact with and without dropout. Applying
dropout generally reduced the maximum obtained accuracy.
One of the reasons for this is that all lanes are thus forced
to independently learn to classify the input, thus learning
redundant information. This can be observed by the fact that
when using the dropout we only have a significant reduction of
accuracy after removing 15 lanes. In other words, many lanes
are redundant for classification, so one can remove subsets and
continue having a good result. However, without using dropout
we have better maximum accuracy and, as seen in Figure 5a,
there is less redundancy and more lanes contribute information
for the classification, so their removal will severely impact
accuracy.

Independently of using dropout, it is seen that, after the
training process, one can reduce the size of the network by
removing the least significant lanes without drastically impact
the performance of the network. This not only impacts the size
of the stored network but also its inference time and speed.
Figure 5b shows how the inference speed (normalized with
respect to the version with all lanes) increases as some lanes
are removed.

D. MLCN Training and Inference Time

To facilitate the comparison between Mlcn1 and Mlcn2 we
chose their configurations to have the same amount of trainable
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Fig. 5: Impact of removing lanes in order, starting with the
less useful to the most.

parameters. Thus, both configurations had similar performance
both in training and inference. Furthermore, when compared
to the CapsNet, MLCN needs a smaller or similar number of
parameters to achieve the same accuracy. Added to the fact
that the lanes are data-independent and have a higher amount
of parallelism, we could train the MLCN much faster than
the CapsNet. On average, for the same or better accuracy, one
achieves a 2.4x speedup. Some of these results are shown in
Table I.

TABLE I: Comparison between Baseline and MLCN.

Network Set # of
Lanes

Lane’s
Width

Params. Train Time
(seconds/epoch)

Accuracy

Baseline Cifar10 - - 11,769,600 240 66.36%
Mlcn1 Cifar10 4 4 5,250,816 54 63.88%
Mlcn1 Cifar10 32 2 14,259,712 205 66.56%
Mlcn2 Cifar10 4 4 5,250,816 53 69.05%
Mlcn2 Cifar10 32 2 14,259,712 204 75.18%

Baseline Fashion-mnist - - 8,227,088 220 91.30%
Mlcn1 Fashion-mnist 2 4 3,655,376 21 91.14%
Mlcn1 Fashion-mnist 8 4 10,633,232 90 90.87%
Mlcn2 Fashion-mnist 2 4 3,655,376 20 91.01%
Mlcn2 Fashion-mnist 8 4 10,633,232 92 92.63%

VI. CONCLUSION

In this work, we proposed a new organization for the
CapsNet, introduced by Sabour et al. [1]. We have shown
that separating the CapsNet into lanes (MLCN) with each
one responsible for one of the dimensions in the final cap-
sules’ vectors, and each one being data-independent, not only
improves the training and inference time (being in average
two time faster than the original CapsNet for similar numbers
of parameters) but also improves the network final accuracy
performance, outperforming the original CapsNet with reduced
storage requirements.

As a next step, with these data-independent lanes, one can
explore the training of very large lanes by using multiple
systems or accelerators in a distributed scheme. Addressing the
challenge of scaling MLCN in number of lanes, finding novel
training mechanisms, and benchmarking against competitive
approaches such as MS-CapsNet and Path-CapsNet are the
subject of future work.
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