
Chapter 1
The Resource-Constrained Multi-Mode Project
Scheduling Problem

José Coelho and Mario Vanhoucke

Abstract This chapter reports on a new solution approach for the multi-mode
resource-constrained project scheduling problem (MRCPSP, MPS|prec|Cmax). This
problem type aims at the selection of a single activity mode from a set of avail-
able modes in order to construct a precedence and a (renewable and non-renewable)
resource-feasible project schedule with a minimal makespan. The problem type
is known to be N P-hard and has been solved using various exact as well as
(meta-)heuristic procedures. The new algorithm splits the problem type into a mode
assignment and a single mode project scheduling step. The mode assignment step
is solved by a satisfiability (SAT) problem solver and returns a feasible mode se-
lection to the project scheduling step. The project scheduling step is solved us-
ing an efficient meta-heuristic procedure from literature to solve the resource-
constrained project scheduling problem (RCPSP). However, unlike many traditional
meta-heuristic methods in literature to solve the MRCPSP, the new approach exe-
cutes these two steps in one run, relying on a single priority list. Straightforward
adaptations to the pure SAT solver by using pseudo boolean non-renewable resource
constraints has led to a high quality solution approach in a reasonable computational
time. Computational results show that the procedure can report similar or sometimes
even better solutions than found by other procedures in literature, although it often
requires a higher CPU time.
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1.1 Introduction

This chapter presents a novel meta-heuristic approach to solve the non-preemptive
multi-mode resource-constrained project scheduling problem (MRCPSP) within the
presence of both limited renewable and non-renewable resource constraints, as pro-
posed in Coelho and Vanhoucke (2011). The MRCPSP is an extension of the well-
known RCPSP to the presence of multiple activity modes where each activity can be
executed under a different duration and a corresponding renewable and nonrenew-
able resource use. For a recent survey on MRCPSP we refer to Weglarz et al. (2011),
and to Chap. 25 of this handbook. The chapter is organized as follows. Sect. 1.2 in-
troduces the notation and describes the problem formulation in detail. In Sect. 1.3
we present our approach to solve the scheduling problem type under study and give
illustrative examples. Moreover, it is shown that the solution approach is very gen-
eral and can be used for various other scheduling extensions. Sect. 1.4 enhances this
solution approach to cope with excessive memory requirements. Sect. 1.5 reports
comparative computational results and Sect. 1.6 contains the conclusions.

1.2 Model Formulation

The multi-mode project scheduling problem with multiple renewable and non-
renewable resources (MPS|prec|Cmax in the three field classification) can be stated
as follows. A set of activities V , numbered from a dummy start node 0 to a dummy
end node n + 1, is to be scheduled without pre-emption on a set R of renewable re-
sources and a set of Rn of non-renewable resources. Each renewable resource k ∈R
has a constant availability Rk per period while each non-renewable resource k ∈Rn

is restricted to Rk units over the complete planning horizon. Each non-dummy activ-
ity i∈V can be executed in one of Mi modes (pim,rikm,rn

ikm) with m∈ {1,2, . . . ,Mi}.
The selection of an activity mode involves a deterministic duration pim for each
activity i which requires rikm units of resource k ∈ R and rn

ikm units of resource
k ∈Rn. The start and end dummy activities representing the start and completion of
the project have only one mode with a duration and renewable and non-renewable
resource requirements equal to zero. A project network is represented by a topolog-
ically ordered activity-on-node format where E is the set of pairs of activities be-
tween which a finish-start precedence relationship with time lag 0 exists. We assume
graph G = (V,E) to be acyclic. A schedule S is defined by a vector of activity start
times and is said to be feasible if all precedence and renewable and non-renewable
resource constraints are satisfied. The objective of the problem type is to find a fea-
sible schedule within the lowest possible project makespan, and hence, the problem
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type can be represented as m,1T |cpm,disc,mu|Cmax using the classification scheme
of Herroelen et al. (1999) or as MPS|prec|Cmax following the classification scheme
of Brucker et al. (1999). The multi-mode resource-constrained project scheduling
problem can be formulated as follows (see Talbot 1982):

Min.
LSn+1

∑
t=ESn+1

txn+1,1,t (1.1)

s. t.
Mi

∑
m=1

LSi

∑
t=ESi

(t + pim)ximt ≤
M j

∑
m=1

LS j

∑
t=ES j

tx jmt ((i, j) ∈ E) (1.2)

Mi

∑
m=1

LSi

∑
t=ESi

ximt = 1 (i ∈V ) (1.3)

n

∑
i=1

Mi

∑
m=1

rikm

min(t−1,LSi)

∑
s=max(t−pim,ESi)

xims ≤ Rk (k ∈R; t = 1, . . . ,UB) (1.4)

n

∑
i=1

Mi

∑
m=1

rn
ikm

LSi

∑
t=ESi

ximt ≤ Rk (k ∈Rn) (1.5)

(ximt ∈ {0,1}; i ∈V ; m = 1, . . . ,Mi; t = 1, . . . ,UB) (1.6)

where ximt is equal to 1 if activity i is performed in mode m and started at time
instance t, and 0 otherwise. Eq. 1.1 minimizes the total project makespan. The con-
straints of Eq. 1.2 take the finish-start precedence relations with a time-lag of zero
into account. Constraints of Eq. 1.3 secure that each non-preemptable activity is
performed exactly once in exactly one mode. The renewable resource constraints
are satisfied thanks to constraints of Eq. 1.4 where UB is an upper bound on the
project makespan. The constraints of Eq. 1.5 restricts the use of the non-renewable
resources over the complete time horizon. The constraints of Eq. 1.6 force the deci-
sion variables to be binary values. Note that the abbreviations ESi and LSi are used
to denote the earliest and latest start for activity i given the project upper bound UB
using traditional forward and backward critical path calculations.

Consider an example project taken from Kolisch and Drexl (1997) that will be
used throughout the remainder of this chapter with 5 non-dummy activities, one
renewable resource with an availability of R1 = 4 and one non-renewable resource
with an availability Rn

1 = 8. Fig. 1.1 shows the activity-on-node network with the
different activity modes below each node. The right part of the figure displays the
optimal renewable resource profile, resulting in a total project makespan of 7 time
units.
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Fig. 1.1 A fictitious example project with optimal resource profiles (Source: Kolisch and Drexl
1997)

1.3 Solution Approach

The MRCPSP can be easily modeled as an RCPSP instance where each multi-mode
activity i is split into Mi single-mode sub-activities among which exactly one sub-
activity needs to be selected for execution. Consequently, the project network of
Fig. 1.1 can be transformed into an RCPSP network with ∑

n
i=1 Mi non-dummy sub-

activities as displayed in Fig 1.2, where the first number below the node denotes
the sub-activity duration and the two other numbers below the node the renewable
and non-renewable resource requirements. Consequently, the MRCPSP can be split
into a mode assignment step taking the non-renewable resource constraints into ac-
count (i.e. constraints Eq. 1.3 and Eq. 1.5) and a single-mode resource-constrained
project scheduling step taking the renewable resource and precedence constraints
(constraints Eq. 1.2 and Eq. 1.4) into account. The mode assignment and the project
scheduling steps will be discussed in Sects. 1.3.1 and 1.3.2, respectively. In litera-
ture, most meta-heuristic search procedures for the MRCPSP make use of an activity
list and a mode list, and run the mode assignment step and the project scheduling
step iteratively. In the solution approach of the current chapter, these steps will be
performed in a single run, making use of only one priority list per run (which acts
both as an activity list and a mode list). This new feature will be discussed in Sect.
1.3.2.

1.3.1 Mode Assignment

The mode assignment step boils down to the assignment of a single mode from the
set of modes to each activity while not violating the limited non-renewable resource
availability constraints, and can be easily modelled as a Boolean satisfiability prob-
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Fig. 1.2 The single-mode RCPSP network of Fig. 1.1 without any activity mode restrictions

lem instance. The boolean satisfiability problem (SAT) is a well-known decision
problem where an expression of boolean variables (referred to as literals) linked by
means of the logical operators and, or and not is questioned to be true or false. The
problem has been studied extensively in literature (see e.g. the paper by Marques-
Silva and Sakallah (1999), amongst others) and is known to be N P-complete (see
Cook 1971).

Obviously, the solution of the mode assignment step needs to be checked and
possibly adjusted for the non-renewable resource infeasibility, and hence, this step
can be easily modeled as a SAT instance. The enumeration of all feasible mode
combinations is practically impossible due to the huge number of possible combina-
tions. Moreover, Kolisch and Drexl (1997) have shown that finding a feasible mode
combination for the MRCPSP is N P-complete when two or more non-renewable
resources are taken into account. Therefore, the choice of selecting a SAT algorithm
above an alternative enumeration algorithm is based on the following logic:

• A SAT algorithm allows a simple mode feasibility check and a scheduling step
using a single activity list instead of two separate lists as normally done in liter-
ature.

• In a SAT algorithm it is easy to implement learning (Sect. 1.3.3.2) which can be
used over different mode combination searches.

Consequently, the mode assignment step can be represented in the conjunctive nor-
mal form (CNF) which is a conjunction of clauses linked by the “and” operator. A
SAT instance contains several clauses to deal with the various mode assignments
and/or the non-renewable resource constraints. The clauses for the network of Figs.
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1.1 and 1.2 can be represented as follows:

Single-mode activities: x0 + x3 + x6 + x9 = 4
Mode assignment for activity 1: x1 + x2 = 1
Mode assignment for activity 3: x4 + x5 = 1
Mode assignment for activity 5: x7 + x8 = 1
Non-renewable resource constraint: 3x1 + x2 +4x4 +2x5 +3x7 +2x8 ≤ 8

with xi a 0/1 variable of sub-activity i to denote whether the mode has been assigned
(1, true) or not (0, false). All mode assignment constraints can be easily translated
into the CNF where the 0/1 xi variables are now boolean variables (literals). The
non-renewable resource constraint is known as a pseudo boolean constraint. These
type of constraints can be solved by a pseudo boolean solver (Chai and Kuehlmann,
2005, Markov et al., 2002) or can be translated into the CNF (Bailleux et al., 2006).
However, the non-renewable resource constraint also contains activity information
(e.g. x1 and x2 are variables from the same activity and hence, only one variable can
be set to true), but none of the previous methods takes this additional information
into account. The enumeration scheme of Sect. 1.3.1.1 translates the pseudo boolean
non-renewable resource constraints into CNF using this extra activity information.
The mode assignment constraints can be translated into CNF as follows1:

Single-mode activities: x0∧ x3∧ x6∧ x9
Mode assignment for activity 1: (x1∨ x2)∧ (x1∨ x2)
Mode assignment for activity 3: (x4∨ x5)∧ (x4∨ x5)
Mode assignment for activity 5: (x7∨ x8)∧ (x7∨ x8)
Non-renewable resource constraint: Enumeration scheme discussed in 1.3.1.1

In the remaining sections, the translation of pseudo boolean non-renewable re-
source constraint clauses to a CNF is explained in detail. In Sect. 1.4, an adapted
pseudo boolean solver is presented that incorporates these non-renewable resource
constraint clauses and both approaches are compared.

1.3.1.1 Non-Renewable Resource Constraint Clauses

The construction of the constraint clauses for the non-renewable resource con-
straints is based on a simple yet efficient enumeration scheme. The enumeration
scheme starts for the initial non-renewable resource constraint (e.g. 3x1+x2+4x4+
2x5 +3x7 +2x8 ≤ 8 for the example project) and gradually reduces the size of this
constraint by iteratively setting boolean variables to true. More precisely, the scheme
enumerates all activity mode variables for a single activity at each level of the enu-
meration tree and creates a node at that level for each variable that is set to true. In

1 In general, a constraint y1 + y2 + . . .+ yn = 1 can be represented in the CNF as (y1 ∨ y2 ∨ . . .∨
yn)∧ (y1∨ y2)∧ . . .∧ (y1∨ yn)∧ (y2∨ y3)∧ . . .∧ (yn−1∨ yn).
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doing so, the size of the non-renewable resource constraint is gradually reduced and
clauses are added when necessary.

The minimum and maximum non-renewable resource demand for an activity i
are defined as:

rmin
ik = min

m=1,...,Mi
rn

ikm and rmax
ik = max

m=1,...,Mi
rn

ikm (1.7)

The total minimum and maximum remaining non-renewable resource demand is
the sum of the individual minimal and maximal resource requests, as:

rsum−min
k = ∑

i∈U
rmin

ik and rsum−max
k = ∑

i∈U
rmax

ik (1.8)

where U ⊂V is the set of activities that have not been evaluated at previous levels of
the search tree. Likewise, R‘

k is used to denote the remaining non-renewable resource
availability after reduction of the resource use of the boolean variables (i.e. mode
selections) that have been set to true.

The remaining non-renewable resource constraint at each node will be evaluated
to detect whether backtracking with or without adding constraint clauses is possible.
The two evaluation rules applied at each node of the tree can be defined as follows:

1. If the remaining non-renewable resource constraint is satisfied, continue with the
other node(s) at the current level of the tree without the insertion of a clause.
Formally, if rsum−max

k ≤ R‘
k then the constraint is satisfied.

2. If the remaining non-renewable resource constraint is violated, continue with
the other node(s) at the current level of the tree and insert a clause that consists
of the negation of all activity modes selected up to the current branch of the
tree. Formally, if rsum−min

k > R‘
k then the remaining non-renewable constraint is

impossible to satisfy.

The enumeration scheme of the example project can be graphically presented in
Fig. 1.3.

The enumeration search of the example has found only one conflict clause as
(x1 ∨ x4) at node 3. Indeed, at node 3 of the tree, rsum−min

k = 2 > 1 and hence, this
constraint cannot be satisfied. The conflict (x1∨x4) is added and the algorithm con-
tinues with node 4 of the tree. Note that, as an example, rsum−max

k = 7 ≤ 7 at node
5 of the enumeration tree, and hence, the remaining constraint is satisfied and the
algorithm backtracks to the previous level.

In order to improve the efficiency of the enumeration scheme, a number of addi-
tional node reduction rules are applied during the search which can be summarized
as follows:

1. If an activity has an equal non-renewable resource demand for all its modes then
this activity can be deleted from the search and the total non-renewable resource
availability has to be reduced by this resource demand.

2. If the difference between the non-renewable resource demand of activity i at
mode m and its corresponding minimal non-renewable resource demand is larger
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Fig. 1.3 Enumeration scheme of the example project

than the difference between the resource’s availability and its total mimimum
remaining resource demand, then the activity mode can be set to false and re-
moved from the formula. Formally, for each mode m of activity i, if rn

ikm− rmin
ik >

R‘
k− rsum−min

k then remove the activity mode from the search.

No node improvement rules can be applied due to the small size of the example
network. As an example, since rn

ikm− rmin
ik is equal to 2, 0, 0, 2, 0, 0, 1 and 0 for

activities 1 to 5 of Fig. 1.1 and Rk− rsum−min
k = 8 - 5 = 3, no activity mode can be

removed from the search (improvement rule 2).

1.3.1.2 The Activity List SAT Mode Assignment Procedure

The procedure presented in this chapter makes use of a list with a dual role. First, the
list serves as a variable list to solve the CNF and guarantees the selection of a single
mode for each activity satisfying the non-renewable constraints, if possible (see
Sect. 1.3.1). Second, the list serves as a traditional activity list for the construction
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of a project schedule based on the selected modes (see Sect. 1.3.2). In the remainder
of this chapter, we refer to this list as an activity list AL.

Despite the N P-hardness of the SAT, research has proposed many advanced
algorithms able to solve problem instances with up to thousands of literals and mil-
lions of constraints, which is far beyond the size of the SAT instances solved in our
case (see e.g. the SAT competition results of Kullmann 2006). Therefore, we rely on
the efficient DPLL algorithm of Davis et al. (1962). The DPLL algorithm is a com-
plete, backtracking-based algorithm for deciding the satisfiability of propositional
logic formulae in the CNF. The algorithm sequentially selects literals (i.e. variables)
from a pre-defined variable list and assigns a truth value to it in order to simplify
the CNF formula. If this assignment leads to an unsatisfiable simplified formula (re-
ferred to as a conflict), the opposite value (false) is set to the selected literal and
the algorithm continues. The unit propagation rule checks whether a clause is a unit
clause, i.e. it contains only a single unassigned literal. When this is the case, this
clause can only be satisfied by assigning the necessary value to make this literal
true.

Assume a simple activity list AL = {0,1,2,3,4,5,6,7,8,9} and a set L denoting the
set of assigned literals at a given moment (where x and x can not belong to L at the
same moment). The DPLL algorithm for the example CNF = x0∧x3∧x6∧x9∧(x1∨
x2)∧(x1∨x2)∧(x4∨x5)∧(x4∨x5)∧(x7∨x8)∧(x7∨x8)∧(x1∨x4) runs as follows:

1) Activity list AL = {0,1,2,3,4,5,6,7,8,9}
Unit clause rule x0, x3, x6, x9: L = {x0,x3,x6,x9}
CNF:
(x1∨ x2)∧ (x1∨ x2)∧ (x4∨ x5)∧ (x4∨ x5)∧ (x7∨ x8)∧ (x7∨ x8)∧ (x1∨ x4)

2) Selection of variable from AL, not in L: x1: L = {x0,x3,x6,x9,x1}
CNF: x2∧ (x4∨ x5)∧ (x4∨ x5)∧ (x7∨ x8)∧ (x7∨ x8)∧ x4
Unit clause rule x2, x4: L = {x0,x3,x6,x9,x1,x2,x4}
CNF: x5∧ (x7∨ x8)∧ (x7∨ x8)
Unit clause rule: x5: L = {x0,x3,x6,x9,x1,x2,x4,x5}
CNF: (x7∨ x8)∧ (x7∨ x8)

3) Selection of variable from AL, not in L: x7: L = {x0,x3,x6,x9,x1,x2,x4,x5,x7}
CNF: x8
Unit clause rule: x8: L = {x0,x3,x6,x9,x1,x2,x4,x5,x7,x8}

Note that no conflict has been generated during the DPLL algorithm since each
assignment has led to a satisfiable simplified CNF formula. The selection of literals
can be translated into sub-activity durations as shown in the last column of Table 1.1.
The sub-activity durations (equal to zero when the corresponding activity mode has
not been selected) of the table are input for the scheduling step of Sect. 1.3.2. An
illustrative example to show the presence of conflict generation and algorithmic
backtracking will be given in Sect. 1.3.3.2.



10 José Coelho and Mario Vanhoucke

Table 1.1 The SAT mode assignment solution

Fig. 1.1 Fig. 1.2
i m (pim,ri1m,rn

i1m) i L pi1

0 1 (0,0,0) 0 x0 0
1 1 (4,2,3) 1 x1 4

2 (6,1,1) 2 x2 0
2 1 (2,1,0) 3 x3 2
3 1 (3,3,4) 4 x4 0

2 (5,1,2) 5 x5 5
4 1 (2,1,0) 6 x6 2
5 1 (2,2,3) 7 x7 2

2 (4,1,2) 8 x8 0
6 1 (0,0,0) 9 x9 0

1.3.2 RCPSP Scheduling Step

The project scheduling step is a resource-constrained project scheduling problem
where each activity has a single execution mode determined by the mode assign-
ment step. The solution of SAT provides positive (in case the literal has been set
to true) or zero (literal is set to false) duration sub-activities and hence determines
the characteristics of the RCPSP instance. In this chapter, the scheduling step is
performed based on the decomposition based genetic algorithm of Debels and Van-
houcke (2007). These authors present a genetic algorithm that makes use of an ac-
tivity list to construct resource feasible schedules based on a forward and backward
serial generation scheme and they have shown that their procedure outperforms the
current state-of-the-art procedures.

While the details of this genetic algorithm will not be repeated here, a basic
overview of the different elements is given along the following lines:

• Dual population: The population based heuristic splits the total number of gener-
ated schedules into two separate populations containing left- and right-justified
schedules, inspired by the promising results found by Valls et al. (2005).

• Representation of a schedule: Based on the remarks by Debels et al. (2006) who
have illustrated that a random key representation is very effective thanks to the
use of the topological ordering notation (Valls et al., 2003), this notation has been
adapted to the dual population heuristic, as follows: the random key elements are
equal to the activity finishing times for a left-justified schedule, and equal to the
starting times for a right-justified schedule.

• Parent selection: Parents are selected using a 2-tournament selection where two
population elements from the population are chosen randomly, and the element
with the best objective function value is selected. Afterwards, one element is
randomly labelled as the father and the other element as the mother.

• Crossover operator: The combination of the genes of both parents is done by a
two-point crossover operator based on a modified version of the peak crossover
operator of Valls et al. (2008) that makes use of the resource utilization ratio.
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This ratio measures the resource utilization at time unit t allowing the selection
of time intervals for which the resource utilization is high, so-called peaks, and
time intervals with low resource utilization.

• Local search: The local search is based on an iterative forward and backward
search (Li and Willis, 1992) to improve the two separate populations containing
left- and right-justified schedules.

• Decomposition approach: The genetic algorithm has been extended to a so-called
decomposition-based heuristic which iteratively solves subparts of the project
leading to the best results in literature.

While most research papers rely on two separate lists to solve the MRCPSP (one
to determine the assignment of modes and a second to feed a schedule generation
scheme), the algorithm presented here relies on a single list that takes both the mode
assignments and the activity scheduling step into account.

Theorem 1.1. Using a single activity list for the SAT mode assignment and the
RCPSP scheduling steps does not exclude optimal solutions.

Proof. It has been shown in Sect. 1.3 that a project network with multi-mode ac-
tivities can be represented by a set of sub-activities while a corresponding feasible
schedule can be represented by two subsets of this set of all sub-activities: One
subset contains sub-activities with a positive duration and a corresponding starting
time and the remaining subset contains sub-activities with a zero duration. It will
be shown that any active project schedule has at least one sub-activity list AL that,
when used as input lists by both the mode assignment step (SAT) and the scheduling
step (RCPSP), leads to this schedule. If the existence of such an AL can be shown
for any feasible active schedule, then this existence also holds for the the optimal
project schedule. Consider to that purpose a feasible solution, i.e. an active project
schedule where each activity has a starting time (= scheduling step) and a positive
duration defined by the selected mode (= mode assignment step). These activities
belong to the subset of sub-activities with a positive duration while the remaining
subset with zero duration sub-activities is obviously not visible in the project sched-
ule. The existence of an AL that leads to the feasible project schedule using the
scheduling and mode assignment steps can be shown through the following three
steps.

1. Each schedule can be easily represented by an activity list using the unique stan-
dardized random key (RK) representation presented by Debels et al. (2006). This
representation consists of the starting times of the sub-activities with a positive
duration in increasing order followed by set of remaining activity modes that are
not part of the feasible schedule (i.e. the sub-activities with a duration of zero)
and is an extension of the topological order representation of Valls et al. (2003,
2004). Since a feasible project schedule can be uniquely defined by its activity
starting times, such an AL can always be constructed.

2. It has been shown by Debels et al. (2006) that such a standardized RK or AL
has a unique correspondence with a project schedule where each positive dura-
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tion activity has a starting time equal to its AL value, and this schedule can be
generated by the use of the well-known serial schedule-generation scheme.

3. This unique RK or AL will also result in the mode assignments of the feasible
project schedule, i.e. those sub-activities with a positive duration in the project
schedule will be set to true in the SAT step, while the zero duration sub-activities
will be set to false. Since the AL defines the ranking of sub-activities that will
be selected by the SAT step, the SAT mode assignment step applied to this AL
will select the first subset of sub-activities and set their values to true (i.e. with
a positive duration). This will never generate a conflict since the activity list
corresponds to a feasible project schedule. The remaining sub-activities will be
set to false due to the clause that only one mode can be selected per activity,
leading to the mode assignment represented in the feasible project schedule. ut

The use of a single priority list for both the mode assignment step and the activ-
ity scheduling step is unique and in contrast with most meta-heuristic procedures to
solve the MRCPSP in literature. The new solution approach presented in the current
chapter transforms the MRCPSP instance to an RCPSP instance, where each multi-
mode activity i is split into Mi single-mode sub-activities, and SAT restrictions are
added to assure that only one sub-activity will be selected. Moreover, before apply-
ing the serial schedule-generation scheme to the RCPSP, the mode assignment is
called using the same priority list as used for the RCPSP, and sub-activities that are
not selected are set to zero. The example of Fig. 1.2 displays the general RCPSP
instance used throughout the search to a high quality solution, without any SAT re-
striction forcing that only one mode can be selected per activity. A single priority list
will transform this figure into a resource feasible schedule (i.e. the scheduling step)
where exactly one mode per activity is selected (i.e. the mode assignment step).

1.3.3 Advantages of SAT Solvers

1.3.3.1 Pre-Processing

The selection of the branching literals is an important factor for the efficiency
(Hooker and Vinay, 1995). Obviously, infeasible instances and instances with tight
non-renewable resource constraints might consume a lot of CPU time using the ac-
tivity list discussed previously, since this list does not contain guiding information
to select variables to branch. Therefore, at the initial start of the MRCPSP search, a
random AL could lead to a high CPU consumption. Consequently, a pre-processing
run using a selection rule (we use the greedy heuristic rule of Marques-Silva and
Sakallah 1999) improves the decision assignment at each stage of the search pro-
cess and leads to two advantages:

• Feasibility check: When the non-renewable resource constraints are impossible
to satisfy, the algorithm stops and there is no need to start the AL search.
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• Clause learning: The information gathered during the initial pre-processing run
can be saved to improve the remaining AL runs. This is explained in the next
section.

1.3.3.2 Learning

Clause learning is an important technique in SAT, since Marques-Silva and Sakallah
(1999) have shown that recording conflict-inducing clauses can help to prevent the
occurrence of similar conflicts later on in the search. Rather than reducing the CPU
time of a single search of a SAT instance, in our case there is a need to reduce the
total CPU time used to repeatedly solve the SAT instance for all generated activity
lists.

Therefore, we made a simplification and only introduced learning clauses with
a maximum number of literals. More precisely, when a conflict arises due to an
assignment at level three (or above) then a clause is added with the negation of the
decision assignments used up to that level to prevent this conflict to occur again in
the next searches of this instance using other activity lists.

The maximum level of three guarantees that only clauses with three or less liter-
als are added to the SAT instance, keeping the instance size relatively stable. Com-
putational tests have been done with a maximum of 4 to 10, and have shown that it
leads to a higher CPU consumption.

In order to illustrate the effect of clause learning, a computational experiment has
been set up that compares the SAT learning effect with an enumeration scheme that
evaluates mode assignments in a similar way as the SAT procedure. More precisely,
the enumeration scheme has exactly the same performance than the SAT algorithm
under a single run, leading to exactly the same mode assignments, but it operates on
modes rather than on literals and does not include clause learning. The test runs are
done on test data truncated after a predefined number of schedules and compare the
average number of backtracks used in both the enumeration and SAT approach since
they can be considered as a proxy for the total computational time of the mode as-
signment step. Since the average number of backtracks varies heavily from instance
to instance, a graph has been constructed for an example project instance shown in
Fig. 1.4 that illustrates the main results of the experiments. In our computational
tests, we have seen that approximately 25% of the J30 problem instances clearly
benefit from clause learning. As an example, the J308 6 instance benefits most from
the SAT learning, and the computational tests have shown that the number of back-
tracks is equal to 131,362,000 and 5,500,000 for the enumeration approach and the
SAT approach, respectively, under a stop criterion of 100 generated schedules. This
number increases to 481,240,000 for the enumeration approach when the number
of generated schedules is set to 1,000, while it stays relatively constant for the SAT
approach, which illustrates that the incorporation of learning can lead to huge time
reductions for some instances.

The graph shows that the initial performance of both mode assignment proce-
dures is similar under a low stop criterion, but that the SAT approach benefits from
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Fig. 1.4 An example graphical representation of the number of backtracks for two mode assign-
ment procedures

learning while the enumeration approach is not able to do so. Indeed, while the num-
ber of backtracks is more or less linear with the number of predefined schedules set
as a stop criterion for the enumeration approach, the SAT procedure is able to reach
a relatively horizontal increase after a certain number of generated schedules, thanks
to the incorporation of clause learning.

A small illustrative example is given along the following lines to show the pres-
ence of conflict generation, algorithmic backtracking and the use of learning clauses.
Assume a CNF = (a∨c∨d)∧(b∨c∨d)∧(a∨c∨d)∧(b∨c∨d) and a simple activ-
ity list AL = {a,b,c,d}. The DPLL algorithm for the example CNF runs as follows:

1) Level 1. Selection of variable a from the AL, not in L: L = {a}
CNF = (c∨d)∧ (b∨ c∨d)∧ (c∨d)∧ (b∨ c∨d)

2) Level 2. Selection of variable b from the AL, not in L: L = {a,b}
CNF = (c∨d)∧ (c∨d)∧ (c∨d)∧ (c∨d)
This instance can never be true, but the algorithm does not detect this
since it does not generate a conflict

3) Level 3. Selection of variable c from the AL, not in L: L = {a,b,c}
CNF = d∧d
Unit clause rule d,d: L = {a,b,c,d,d}
A conflict is generated since d and d cannot belong to L
Selection of other literal of variable c from AL, not in L: L = {a,b,c}
CNF = d∧d
Unit clause rule d,d: L = {a,b,c,d,d}
A conflict is generated since d and d cannot belong to L
There are no other values for the variable c so the algorithm backtracks to level 2
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4) Level 2. A learning clause (a∨b)
If this clause would exist at the start of the procedure, the unit clause rule of step 1
would assign b and the conflict would not be generated
Selection of other literal of variable b from AL, not in L: L = {a,b}
CNF = (c∨d)∧ (c∨d)

5) Level 3. Selection of variable c from the AL, not in L: L = {a,b,c}
CNF = d
Unit clause rule d: L = {a,b,c,d}
This is the first valid assignment found with this activity list
The learning clause (a∨b) will be inserted such that during the next search this conflict
will not be generated, leading to a time saving

1.4 Adapted Pseudo Boolean Solver Approach

In the model presented earlier, each non-renewable constraint is the subject of the
enumeration scheme of Sect. 1.3.1.1, which leads to a set of clauses that need to be
stored as an input file for the SAT solver (i.e. the DPLL procedure) that is called for
each activity list generated during the search. When the size of the project network
instance becomes relatively large, both in terms of the number of project activities
and the number of non-renewable resource constraints, the number of clauses trans-
lated from the pseudo boolean non-renewable resource constraints can grow expo-
nentially, leading to a large SAT input file and excessive use of memory. Table 1.2
illustrates the exponential growth of the number of clauses and the corresponding
memory need for the PSPLIB (Kolisch and Sprecher, 1996) instances. The column
“SAT(3)” shows that the total disk space required to store the PSPLIB instance with
the SAT approach of Sect. 1.3 grows very quickly up to almost 50 GB, using a stop
criterion of 1 million clauses. From the J14 set on, several instances exceed this
limit and are truncated in an early stage, as shown by column “#Ins-M”.

Table 1.2 A comparison between the pure SAT and the SAT(k) approach

Set #Var #Ins M (SAT(3)) M (SAT(4)) Avg.Cl(3) Avg.Cl(4) #Ins-M
J10 32 536 119 1.5 5,883 21.4 0
J12 38 547 801 2.1 32,435 25.4 0
J14 44 551 5,342 2.4 186,436 29.4 24
J16 50 550 14,445 2.7 454,055 33.4 162
J18 56 552 23,112 3.0 653,028 37.4 320
J20 62 554 26,759 3.4 694,061 41.4 378
J30 92 640 49,554 5.8 750,030 61.5 480

The abbreviations in the first row of the table can be explained along the follow-
ing lines:
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• #Var : Average number of variables in the SAT instance (equal to the number of
activity modes).

• #Ins : Number of instances in each set.
• M (SAT(3)) : Total disk space of SAT instance using the SAT approach of Sect.

1.3 (in MB).
• M (SAT(4)) : Total disk space of SAT instance using the adapted SAT approach

of this section (in MB).
• Avg.Cl(3) : Average number of clauses generated using the SAT approach of

Sect. 1.3.
• Avg.Cl(4) : Average number of clauses generated using the adapted SAT ap-

proach of this section.
• #Ins-M : Number of instances leading to memory problems (i.e. ≥ 1 million

added clauses) using the SAT approach of Sect. 1.3. Note that all instances can
be solved by the adapted SAT approach as briefly discussed hereafter (i.e. #Ins-M
= 0).

In order to avoid the heavy computational burden and the excessive memory
requirement of the SAT(3) solution approach, the pseudo boolean non-renewable
resource constraints are not translated to CNF using the enumeration scheme of
Sect. 1.3.1.1, but are used directly in the DPLL algorithm. Consequently, the two
evaluation rules and the two node reduction rules of Sect. 1.3.1.1 are still applica-
ble, but are dynamically used during the DPLL search. In doing so, this approach
avoids the excessive memory increase of the SAT input file due to the enumeration
of the boolean non-renewable resource constraints in advance. The introduction of
this approach leads to a dramatic reduction in the disk space (and hence the mem-
ory use) and the number of constraint clauses, as shown in columns “SAT(4)” and
“Avg.Cl(4)” of Table 1.2. The reduction of memory has a beneficial effect on the
initial memory allocation computation time, but does not speed up the rest of the
search of the SAT solver in any way. Indeed, the results and the number of steps in
the DPLL algorithm are the same for the SAT(3) and the SAT(4) approaches.

1.5 Computational Results

This section reports on computational results to evaluate the performance of the
algorithm. The algorithm has been coded in C++ and tests have been run on
a Dell Dimension DM051 with a Pentium D with a 2.80 GHz processor. The
first benchmark test set is the well-known PSPLIB dataset which contains multi-
mode project network instances generated by ProGen (Kolisch et al., 1995) with
10, 12, 14, 16, 18, 20 and 30 activities and with 2 renewable and 2 nonrenew-
able resources. The set is available from the ftp server of the University of Kiel
(http://129.187.106.231/psplib/). Results are also compared with a second bench-
mark dataset taken from Boctor (1993), containing 240 instances with 50 and 100
activities and only renewable resource constraints.
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The first computational results have been displayed in Table 1.3 for the new pro-
cedure (denoted by “This Work”) under a stop criterion of 5,000 generated sched-
ules. The values are average deviations from the optimal solution. The table shows
that the new procedure is able to provide comparable results for some of the state-
of-the-art procedures, but cannot outperform the best known results. The new proce-
dure has also been truncated after 50,000 and 500,000 schedules in order to show the
potential of the procedure to produce high-quality solutions. Although a comparison
with the state-of-the-art results is not fair anymore, the table shows that near-optimal
solution can be produced with the new procedure under high stop criterion values.

Table 1.3 Computational results for the PSPLIB dataset under a 5,000 schedule limit stop criterion

J10 J12 J14 J16 J18 J20
Van Peteghem and Vanhoucke (2010) 0.01% 0.09% 0.22% 0.32% 0.42% 0.57%
Wang and Fang (2012) 0.12% 0.14% 0.43% 0.59% 0.90% 1.28%
Wang and Fang (2011) 0.10% 0.21% 0.46% 0.57% 0.94% 1.39%
Elloumi and Fortemps (2010) - v1 0.21% 0.29% 0.77% 0.91% 1.30% 1.62%
Elloumi and Fortemps (2010) - v2 0.14% 0.24% 0.80% 1.14% 1.53% 2.09%
Lova et al. (2009) 0.06% 0.17% 0.32% 0.44% 0.63% 0.87%
Jarboui et al. (2008) 0.03% 0.09% 0.36% 0.44% 0.89% 1.10%
Ranjbar et al. (2009) 0.18% 0.65% 0.89% 0.95% 1.21% 1.64%
Alcaraz et al. (2003) 0.24% 0.73% 1.00% 1.12% 1.43% 1.91%
Józefowska et al. (2001) 1.16% 1.73% 2.60% 4.07% 5.52% 6.74%

This Work (5,000) 0.07% 0.16% 0.32% 0.48% 0.56% 0.80%
0.4s 0.5s 0.7s 0.9s 1.0s 1.2s

This Work (50,000) 0.00% 0.01% 0.05% 0.06% 0.08% 0.12%
4.3s 5.4s 6.9s 8.4s 10.1s 11.8s

This Work (500,000) 0.00% 0.00% 0.01% 0.01% 0.01% 0.02%
43.8s 53.9s 68.4s 82.9s 100.1s 117.0s

Table 1.4 reports results for the J30 instances as the average deviation from the
minimal critical path length under four stop criterion values and compares the re-
sults with the procedure of Van Peteghem and Vanhoucke (2010) which is described
as the best performing procedure up to today. The results show that the new SAT
based procedure is not able to outperform the best performing procedure when the
stop criterion is set relatively low. However, when both procedures are truncated
after a longer time period, the procedure of this chapter reports better results than
the best known procedure in literature. Although the SAT procedure needs a higher
CPU time for the same stop criterion (defined as a maximum number of generated
schedules), it is able to find solutions which have never been found by the genetic
algorithm of Van Peteghem and Vanhoucke (2010). It is worth noting that this ge-
netic algorithm was able to report an average deviation from the critical path of
12.92% when the stop criterion was set to 5,000,000 schedules (not shown in the
table). These deviations were found after approximately 200 seconds, which cor-
responds to the time needed for the 500,000 schedules stop criterion of the SAT
procedure. However, the latter procedure reports better results with average devi-
ations of 12.41%. It is also worth mentioning that four new best known solutions
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have been found with a stop criterion of 50,000 schedules, and another one with a
stop criterion of 500,000 schedules. It should be noted that an increase from e.g.
5,000 to 50,000 schedules (i.e. by a factor 10) does not lead to similar CPU time
increase (the increase in CPU is equal to 25.1

4.5 = 5.57 which is lower than a factor
10). This can be explained by the introduction of the learning clauses that gradually
avoids the generation of identical conflicts, leading to time savings when repeatedly
solving the SAT instances. This is not the case for the J10 to J20 instances, which
might indicate that the non-renewable resource constraints are not a constraining
factor making the clause learning less relevant. However, it should be noted that the
computational results must be placed into the right perspective. Although the table
shows that our procedure is able to generate high quality solutions which outper-
form the best known results found in literature, they often come at a higher compu-
tational cost. We have used the number of generated schedules as a stop criterion,
since this is widely used in the academic literature. However, this approach assumes
that the effort for one schedule is essentially the same in all methods (Kolisch and
Hartmann, 2006), which is not the case for our procedure. Due to the often CPU
intensive search process during the mode assignment step which evaluates multi-
ple mode assignments per schedule, this assumption is clearly violated and hence,
the comparison in number of schedules not always fair. Since a fair and unambigu-
ous comparison of CPU times is very hard, we have chosen to report CPU times in
the tables, showing the promising character of our procedure in terms of solution
quality, although the computational effort is often much higher.

Table 1.4 Computational results for the PSPLIB J30 dataset under four different stop criteria
(number of schedules)

1,000 5,000 50,000 500,000

This Work 20.15% 14.44% 12.77% 12.41%
2.8s 4.5s 25.1s 210.1s

Van Peteghem and Vanhoucke (2010) 15.30% 13.75% 13.31% 13.09%
0.05s 0.24s 2.46s 18.03s

However, in order to make the fair comparison complete, Table 1.5 shows a com-
putational comparison similar to Table 1.4 but now truncated after a predefined run-
ning time. Since both algorithms have been developed by the same author(s) and
tested on the same computer, it can be reasonably assumed that they have been pro-
grammed under the same implementation skills. The first rows of each algorithm
display the average deviation from the minimal critical path length truncated after
1, 5, 30, 120 and 300 seconds, while the second rows display the number of in-
stances for which a better solution is found than with the other solution procedure.
As an example, the SAT procedure is able to find better solutions for 53 instances
under a stop criterion of 30 seconds, while the solution procedure of Van Peteghem
and Vanhoucke (2010) finds 34 better solutions. All other solutions have the same
solution quality. The results show that the new SAT procedure is competitive with
the best procedure currently available in the literature and even outperforms it when
the running time stop criteria is set to 30 seconds or higher.
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Table 1.5 Computational results for the PSPLIB J30 dataset under five different stop criteria (CPU
time, in seconds)

1 s 5 s 30 s 120 s 300 s

This Work 31.03% 16.66% 12.75% 12.64% 12.54%
0 8 53 49 42

Van Peteghem and Vanhoucke (2010) 13.40% 13.07% 12.96% 12.88% 12.73%
454 243 34 20 17

Finally, Table 1.6 reports results for the dataset of Boctor (1993) as the percent-
age deviation above the minimal critical path length. The procedure is not able to
outperform the state-of-the-art procedures. However, when extending the stop crite-
rion to 50,000 schedules, the deviations decreased to 23.26% and 24.42%, for the 50
and 100 activity instances, respectively. A further increase to 500,000 schedules re-
sulted in deviations of 22.87% and 23.11%. However, using the procedure on these
problem instances is not so relevant since these instances have no non-renewable re-
sources. Consequently, for these instances, there are no infeasible activity lists/mode
assignment combinations, and hence, the advantage of the SAT approach to deal
with inconsistencies of non-renewable resources is no longer present.

Table 1.6 Computational results for the Boctor dataset under two different stop criteria

50 100
1,000 5,000 1,000 5,000

This Work 31.37% 25.11% 38.58% 30.03%
Van Peteghem and Vanhoucke (2010) 27.36% 23.41% 29.70% 24.67%
Lova et al. (2009) 24.89% 23.70% 26.96% 24.85%
Alcaraz et al. (2003) 33.83% 26.52% 41.85% 29.16%

1.6 Conclusions

In this chapter, a novel approach has been presented to solve the multi-mode
resource-constrained project scheduling problem (MRCPSP). The algorithm splits
the problem into a mode assignment step and a single mode project scheduling step.
The mode assignment step is solved using a fast and efficient SAT solver. Due to
excessive memory requirements, a number of small and straightforward adaptations
to this solver have been implemented to solve the SAT problem instances in less
memory. The single mode project scheduling step is solved using a current state-of-
the-art RCPSP meta-heuristic from literature. When better RCPSP meta-heuristics
become available in the literature, they can easily replace the current one, possibly
leading to improved solutions.

The computational results for the MRCPSP have shown to be able to generate
solutions comparable with the solution quality found by many state-of-the-art pro-
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cedures, and outperforms them when the procedures run long enough. Moreover,
the procedure was able to find better solutions on 5 problem instances under high
stop criterion values. In our future research, it will be shown that the novel solution
approach has potential to solve numerous extensions to the well-known MRCPSP
problem, and hence, the solution approach will be used for alternative problem for-
mulations or problem extensions.
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