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Abstract. This research considers the single-vehicle routing problem
(VRP) with multi-shift and fuzzy uncertainty. In such a problem, a
company constantly uses one vehicle to fulfill demand over a scheduling
period of several work shifts. In our case, a crew executes maintenance
jobs in different sites. The working team runs during different work shifts,
but recurrently returns to the depot by the end of the shift (overtime
avoidance). The goal consists in minimizing the number of work shifts
(makespan). We observe the impact of uncertainty in travel and main-
tenance processing time on the overtime avoidance constraint. We real-
ize an Artificial Immune Heuristic to get optimal solutions considering
both makespan and overtime avoidance. First, we present a Pareto-based
framework to evaluate the uncertainty influence. Then, we show a numer-
ical real case study to survey the problem. In particular, a case study
scenario has been created on the basis of the environmental changes
in travel and processing times observed in Italy during the Covid-19
lockdown period (started on March 9, 2020). Results present important
improvements are obtained with the proposed approach.

Keywords: Single-vehicle routing problem · Scheduling under
uncertainty · Artificial Immune Heuristic

1 Introduction

Vehicle routing problem (VRP) consists in determining a set of routes to visit
a set customers, in order to minimize the path length. Different versions of the
VRP exist. If customers are only available in a time windows, a VRP with Time
Windows (VRPTW) is considered. Basic variants of the VRP consider the route
planning for a vehicle fleet in a single period (shift). In that case, the vehicles
return to the depot before the end of the shift. This problem originates from a
healthcare routing issue [1–3]. When the health care company ships products to
medical sites, if overtime is allowed, performance could be significantly improved.
For example, if a location scheduled for the next shift is on the current return
route to the depot, a limited overtime allows the vehicle to serve it. This can
significantly reduce the workload of the next shift. On one hand, overtime reduces
the total number of shifts necessary to complete the work. On the other, the
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continuous use of overtime can lead to crew health problems [4]. Since overtime
increases the chance of micro-sleep in car drivers [5], company manager could be
accused of vehicle collision due to wrong workload scheduling [6]. Indeed, shift
planning should maintain shift duration as constant as possible.

Uncertainty on travel and processing time can lead to unexpected overtime
and performance reduction. Frequently, in optimization problems, data are sup-
posed to be known with certainty. However, in practice this is infrequent. More
generally, real data are dependent on uncertainty due to their irregular nature.
Since the solution of the optimization problem typically shows a great tendency
to data disruption, overlooking the ambiguity of the data can lead to non-optimal
or unrealistic solutions for a real case. Robust Optimization is a significant
technique to address optimization problems subject to uncertainty [7]. In this
case, a methodology is needed to analyze the trade-off between performance and
robustness.

On one hand, Stochastic VRP (SVRP) was introduced in [8] when uncer-
tainty is statistically known. See [9,10] for a complete review of SVRP. On the
other, Fuzzy set theory is a useful approach to handle non-stochastic uncertainty
[11]. Fuzzy sets theory is widely adopted for studying the influence of uncertain
factors on VRP [12–20]. In these works, Fuzzy VRP is analyzed and fuzzy set
theory is adopted to manage such uncertain data.

In this paper, we examine a multi-shift VRP with travel and processing time
modeled as Fuzzy Numbers. The objective consists in reducing both overtime
and makespan. The question we considered is derived from a routing problem
in maintenance activities as reported in [21–25]. A maintenance team performs
jobs in different sites using a vehicle for movements. A crew works in shifts and
should come back to the depot before the shift ends. The goal is completing the
maintenance activities in various places reducing both overtime and makespan.
We investigate the influence of the uncertainty of driving and job processing
time on the objective.

The originality of the paper consists in the meta-heuristic approach adopted
to solve the problem. Indeed, our meta-heuristic uses a 2-factor ranking method,
based on overtime and makespan, to sort the solution set at each step. Conse-
quently, a Pareto set of optimal solutions exists. Considering the papers already
examined and two additional review articles [26,27], it can be established that
no such an approach exists.

The body of this paper is structured as follows. In Sect. 2, we report the
problem formulation. In Sect. 3, we propose the Artificial Immune Heuristic to
solve the problem. We present in Sect. 4 a case study solved with the proposed
approach, considering two scenarios: before and after Covid-19 lockdown in Italy
(March 9, 2020). We give concluding remarks in Sect. 5.

2 Problem Definition

In the VRP, we assume a horizon of P shifts (periods), and let the set P =
{1, 2, ..., P} index the shifts of the planning horizon. Each shift duration is L.



1622 F. Nucci

2 3 7

1 2 3 4

12 3 4

5

5

5

6 7 8
shift 1 
origin 
depot

shift 1-2 
shift 2 

destination 
depot

1 4

6

6 8 2 3 7

1 2 3 4

12 3 4

5

5

5

6 7 8
shift 1 
origin 
depot

shift 1-2 
shift 2 

destination 
depot

1 4

6

6 8

(a) (b)

Fig. 1. Example of path and synthetic representation for two solutions

On a given planning, we seek to serve a set of N customers. Associated with
each customer is a task i to be executed, i ∈ N = {1, 2, ..., N}. Task i processing
time is qi. For each shift, the crew departs from and returns to the depot. A
travel time between task i and task j locations is defined as di,j . We assume
that triangular inequality is valid for driving times. Any task can be executed in
a shift. Our problem objective is to minimize the latest task completions time
(makespan). The problem can be represented as a directed graph G = (V, E),
where V = N ∪{N +1, . . . , N +P +1}. We create P +1 depot copies represented
by node set {N + 1, . . . , N + P + 1}. Node N + 1 is the origin depot of shift 1.
Node N + h represents the destination depot of shift h − 1 together with the
origin depot of shift h, with h ∈ {2, . . . , P}. Node N + P + 1 stands for the
destination depot of last shift P .

A solution problem can be represented as a path in the graph G. Since any
path starts at node N + 1 and ends at node N + P + 1, a solution can be
synthetically represented by variables ωi ∈ N ∪ {N + 2, . . . , N + P} for i =
1, . . . , N + P − 1. Variable ωi stands for the visiting sequence of location task
nodes N and shift break nodes {N + 2, . . . , N + P}. Shift duration is equal to
the arrival time at node N + 1 + h and is represented by σh for h ∈ P.

Considering N = 5 tasks and P = 2 shifts, in the solution reported in Fig. 1a,
crew executes task 2, 3 and 5 on first shift, whereas task 1 and 4 are allocated
in the second shift. Instead in Fig. 1b solution, task 1 is anticipated to shift 1.
In solution b, overtime occurs in shift 1 although makespan decreases (shift 2
duration is minimal).

We model the uncertainty on driving and working times with Triangular
Fuzzy Numbers (TFN), see Fig. 2. In particular, fuzzy travel time is indicated
with ˜dij = (dA

ij , d
B
ij , d

C
ij) ∀i, j ∈ V, whereas fuzzy job processing time is referred

as q̃i = (qA
i , qB

i , qC
i ) ∀i ∈ N . For this reason, variables related to shift duration

σ̃h become fuzzy and have be analyzed to determine whether overtime occurs.
In order to assess whether fuzzy shift duration σ̃h is lower than maximum

shift duration L, we adopt the function Φ(σ̃h ≤ L) defined in (1). Such a function
calculates the possibility a fuzzy number (σ̃h) is lower than a crisp value (L). It is
equal to the portion of the area under the TFN membership function on the left
of crisp value. For TFN, if σC

h ≤ L, we have Φ(σ̃h ≤ L) = 1, so condition σ̃h ≤ L
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is certainly true and no-overtime occurs for shift h. Whereas if L ≤ σA
h , we have

Φ(σ̃h ≤ L) = 0, so condition σ̃h ≤ L is certainly false and overtime occurs for
shift h. Finally, if σA

h < L < σC
h , then 0 < Φ(σ̃h ≤ L) < 1 and overtime may

occur ; no-overtime possibility is equal to Φ(σ̃h ≤ L).

Φ(˜t ≤ t0) =

∫ t0
tA

μt̃(τ)dτ
∫ tC

tA
μt̃(τ)dτ

∈ [0, 1] (1)

3 Solution Method: Artificial Immune Heuristic

Artificial Immune Algorithm (AIA) is a meta-heuristic based on animal immune
system [28–30]. This paper proposes a fuzzy AIA to find optimal solutions for
the considered problem. In short, AIA stands on behavior of animal immune
system that protects against foreign pathogens. Immune system reacts to germs
and improves the activity of recognizing and eliminating pathogens by using two
principles: clonal selection and affinity maturation. Clonal selection creates new
immune cells. Such cells encounter high rate of mutations, along with a selection
process.

As reported in Fig. 1, a solution is encoded as a string by using a fixed-length
integer code, providing the order in which nodes are reached. For a solution ψ,
we adopt an innovative 2-factor affinity. Indeed, a solution ψ is described by the
node visiting sequence ωψ

i with i = 1, . . . , N + P − 1 and for each shift the cor-
responding fuzzy duration σ̃h is computed. Then, the 2-factor solution affinity
is determined as (λ, ρ), where λ represents the makespan and ρ is the possibility
no-overtime occurs; λ should be minimized whereas ρ should be maximized. In
(2), L ·(P −1) is the maximum length of P −1 shifts and σB

P is the crisp duration
of last shift. In (3), the minimum of no-overtime possibilities is calculated over
shift set. Considering the two solutions a and b reported in Fig. 1, the corre-
sponding affinities are the two pairs (λa, ρa) and (λb, ρb). Performing the Pareto
comparison of solution a and b, we have λa > λb and ρa > ρb (supposing ρa = 1
and ρb > 0), consequently no solution is better than the other.

λ = L · (P − 1) + σB
P (2)
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Table 1. Proposed algorithm

Step Description

1 Initialization

1.1 Fix the population popsize, the No. generations ng, the No. clones nc, the
mutation rate mr, the No. mutations nm, the No. exchangeable antibodies nea

1.2 Create popsize/2 initial solutions by Rule1 and produce popsize/2 initial

solutions by Rule2

2 Affinity Computation

2.1 Calculate the 2-factor affinity (λ, ρ) for each antibody

2.2 Determine Pareto optimal antibodies

3 Generate Next Population

3.1 Copy the Pareto optimal antibodies to the next population

3.2 Select nc antibodies randomly and generate nc clones of the selected antibodies

3.3 Choose nm antibodies, randomly, from nc clones and use mutation to create
nm extra antibodies. Apply each mutation operator with the probability 50%

3.4 Include the nm extra antibodies to the next population

3.5 Add ne brand new solutions (see Step 2) to the next population

3.6 Copy solutions from current to the next population to reach popsize solutions

4 Check Stop Condition

4.1 If ng populations have been generated return the Pareto optimal antibodies

4.2 otherwise go to Step 2

ρ = min
h=1,...,P

Φ(σ̃h ≤ L) (3)

The proposed AIA is described in Table 1. At Step 1.2, Rule1 is the full
random rule: random selection of node ωi ∈ N ∪ {N + 2, . . . , N + P} with
i = 1, . . . , N + P − 1. While in Rule2 we choose nodes using a probability
that is inversely proportional to the distance between the current node and
each candidate node. Mutation operator randomly selects two solution indexes
i, j = 1, . . . , N + P − 1 and swaps their content ωi and ωj . If the depot node
sequence N + 2, . . . , N + P is unfeasible, mutation is cancelled. Considering the
ordinary AIA approach, the innovation of this work relies in the step 2 and 3.1.
Indeed, step 2 is used to determine the new antibody affinity, whereas step 3.1
preserves the entire Pareto set in the next population.

4 Numerical Results

We validated our approach, described in Sect. 3 and we set AIA parameters as
follows: population size popsize = 200, No. generations ng = 10000, No. clones
nc = 20, mutation rate mr = 0.75, mutation number per generation nm = 40,
No. exchangeable antibodies nea = 20.

A real case study, in the field of elevator maintenance and repair, is consid-
ered. Since data obtained from the company are protected from disclosure, we
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Fig. 3. Results for base scenario (a) and lockdown scenario (b)

report only summary data. Company and its customers are located in Salento,
in the southeast region of Italy. Uncertainty affects driving and working times,
inferred from empirical data. Maximum shift duration is set to L = 480 min.
No. jobs is equal to N = 22, whereas No. shifts is P = 5.

A base scenario is considered with crisp job processing time qB
i of 40 to

80 min. Processing time uncertainty is 20% of crisp value, that is qC
i − qA

i =
0.2 · qB

i , so qA = 0.9 · qB
i and qC = 1.1 · qB

i . Crisp driving time dB
i range from 20

to 50 min and driving time uncertainty is also 20% of crisp value: dA = 0.9 · dB
i

and dC = 1.1 · dB
i . The Algorithm described in Sect. 3 produces the Pareto

set reported in Fig. 3a along with two manual solutions designed by company
experts. Company experts analyzed the eight AIA solutions that dominate their
own solutions. Since rightmost AIA solution (λ, ρ) = (2300, 100%) is very conser-
vative, managers are unlikely to accept such a high safety margin. Experts pre-
ferred solution (2241, 95%) because makespan decreases by almost one hour with
5% risk. Also, solution (2166, 84%) is remarkable because of the good makespan
compared to the significant possibility of 84% to avoid overtime. Managers dis-
carded solutions having ρ < 0.5 because of the high risk of overtime.

Another scenario called lockdown was analyzed. Because of the environmen-
tal changes in travel and processing times during the Italian Covid-19 lock-
down period (started on March 9, 2020), maintenance planning was completely
redesigned. From one hand, new activities were introduced in the tasks such as
cleaning of surfaces using appropriate disinfection methods and wearing personal
protective equipment. Crisp working time increased by 8% plus 10 min. More-
over, processing time uncertainty reached 30% of crisp value. From the other,
road traffic decreased significantly. Crisp driving times were reduced by 25%.

In lockdown scenario, Fig. 3b shows AIA Pareto optimal solutions. Managers
experienced difficulties in designing good planning. Note that P = 6 shifts are
necessary to complete the previous job set. Because of the high uncertainty only
two Pareto optimal solutions were found with ρ > 0.5. Significant difference
exists between AIA and Manual solutions in the lockdown scenario: performing
tasks in the same area may not be the best strategy because crew may overrun
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the shift. On the other hand, a change of zone may lead to a better fit of the
tasks in the shift, as travel time is shorter than usual.

5 Conclusion

This study presents the single-vehicle routing problem with multi-shift when
fuzzy uncertainty is introduced in driving and job processing times. The objec-
tive consists of minimizing both the system makespan and shift overtime occur-
rence. We provide optimal solutions for the decision-maker considering a 2-factor
comparison. Our approach was adopted in a real company case study. During
the Italian Covid-19 lockdown period, a new robust maintenance planning was
rapidly issued. In the future, the possibility of copying only a subset of Pareto
optimal solutions in the next population will be investigated.
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