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Abstract

This paper makes a case for the multi-streamed solid-

state drive (SSD). It offers an intuitive storage interface

for the host system to inform the SSD about the expected

lifetime of data being written. We show through experi-

mentation with a real multi-streamed SSD prototype that

the worst-case update throughput of a Cassandra NoSQL

DB system can be improved by nearly 56%. We discuss

powerful use cases of the proposed SSD interface.

1 Introduction

NAND flash based solid-state drives (SSDs) are widely

used for main storage, from mobile devices to servers to

supercomputers, due to its low power consumption and

high performance. Most SSD users do not (have to) re-

alize that the underlying NAND flash medium disallows

in-place update; the illusion of random data access is of-

fered by the SSD-internal software, commonly referred

to as flash translation layer or FTL. The block device ab-

straction paved the way for wide adoption of SSDs be-

cause one can conveniently replace a HDD with an SSD

without compatibility issues.

Unfortunately, maintaining the illusion of random data

access through the block device interface comes at costs.

For example, as the SSD is continuously written, the un-

derlying NAND flash medium can become fragmented.

When the FTL tries to reclaim free space to absorb fur-

ther write traffic, internal data movement operations are

incurred between NAND flash locations (i.e., garbage

collection or GC) [6], leaving the device busy and some-

times unable to properly process user requests. The re-

sultant changing performance behavior of a given SSD is

hard to predict or reason about, and remains an impedi-

ment to full-system optimization [1].

In order to address the problem from the root, we pro-

pose and explore multi-streaming, an interface mecha-

nism that helps close the semantic gap between the host

system and the SSD. With the multi-streamed SSD, the

host system can explicitly open “streams” in the SSD and

send write requests to different streams according to their

expected lifetime. The multi-streamed SSD then ensures

that the data in a stream are not only written together to

a physically related NAND flash space (e.g., a NAND

flash block or “erase unit”), but also separated from data

in other streams. Ideally, we hope the GC process would

find the NAND capacity unfragmented and proceed with

no costly data movements.

In the remainder of this paper, we will delve first into

the problem of SSD aging and data fragmentation in Sec-

tion 2, along with previously proposed remedies in the

literature. Section 3 will explain our approach in detail.

Experimental evaluation with a prototype SSD will be

presented in Section 4. Our evaluation looks at Cassan-

dra [7], a popular open-source key-value store, and how

an intuitive data mapping to streams can significantly im-

prove the worst-case throughput of the system. We will

conclude in Section 5.

2 Background

2.1 Aging effects of SSD

SSD aging [16] explains why the SSD performance may

gradually degrade over time; GC is executed more fre-

quently as the SSD is filled with more data and frag-

mented. Aging effects start to manifest when the “clean”

NAND flash capacity is consumed, and in this case, the

FTL must proactively recover a sufficient amount of new

capacity by “erasing” NAND flash blocks before it can

digest new write data. The required erase operations are

often preceded by costly GC; to make matters worse, a

NAND block, a unit of erase operation, is fairly large in

modern NAND flash memory with 128 or more pages in

it [15]. When the SSD is filled up with more and more

data, statistically, the FTL would need to copy more valid

pages for GC before each NAND flash erase operation.

This phenomenon is analogous to “segment cleaning” of

a log-structured file system [13] and is well studied.



Figure 3 (in Section 4) clearly depicts the effects of

SSD aging: The performance of Cassandra throughput

(in the case of “Normal” SSD) is seriously degraded as

the data set in the SSD is continuously updated—by as

much as ∼56%. This problem will be exacerbated in sys-

tems with many threads (or virtual machines) that per-

form I/O concurrently. Moreover, for density improve-

ment, a NAND block size will only grow in the future,

adding to the cost of GC in general.

2.2 Prior work to mitigate SSD aging

Prior proposals reduce GC overheads by classifying ac-

cess patterns and adapting to workloads inside a storage

device [8, 12]. Since the effectiveness of these propos-

als depends on the accuracy of workload classification—

random or sequential, they are especially vulnerable to

workloads that have frequently changing behavior.

In another approach, the device detects and separates

hot data from cold data [2, 4]. These techniques deter-

mine “hotness” of data based on access history of loca-

tions and require sizable resources to bookkeep the his-

tory information. Chiang et al. [2] use “time-stamps”, to

indicate how old given data are, and Hsieh et al. [4] em-

ploy multi-hashing to reduce the size of history informa-

tion. The accuracy and benefits of hot data identification

decrease when the access pattern of specific locations is

changed, e.g., as in a log-structured file system.

In a practical sense, robustly deriving accurate infor-

mation about data hotness and future access patterns is

hard. Accordingly, enterprise SSDs where consistent ac-

cess latency is of paramount importance, tend to set aside

(“overprovision” or sacrifice) a generous amount of flash

capacity to increase the efficiency of GC [17].

Lastly, “TRIM” is a standardized SSD command (not

applicable to HDDs in general), with which the host sys-

tem can pass information about what LBAs have been

“unmapped” by the upper-layer software (typically the

file system). This information is useful for the SSD’s

GC efficiency, because without the information the SSD

has to assume conservatively that all NAND flash pages

mapped to previously written LBAs (not overwritten) are

valid and their content must be copied for preservation

when the NAND flash blocks having those pages are

vacated. Figure 3 shows that TRIM improves Cassan-

dra’s update throughput significantly; however, it does

not alone match the full benefits of multi-streaming.

3 The Multi-streamed SSD

Before describing the proposed multi-stream approach,

let’s consider revealing examples that explain why tradi-

tional write pattern optimizations like append-only log-

ging do not fully address the SSD aging problem. Fig-

ure 1 gives the examples, where two NAND flash blocks,
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Figure 1: Relationship between data placement and updates. For

simplicity, we assume that there are four pages per block.

Block 0 and Block 1, have been filled up and new data

are written to fill Block 2. In the first example (left), a

sequential write pattern was applied, and as the result,

some data become invalid in Block 0 and 1. On the other

hand, in the second example, a random write pattern was

applied, invalidating all data in Block 0 but none in Block

1. Clearly, future GC will proceed more efficiently in this

example, because an empty NAND flash block (Block 0)

can be reclaimed quickly without copying data around.

These examples demonstrate that an SSD’s GC over-

heads depend not only on the current write pattern but

on how data have been already placed in the SSD.

Naturally, one might argue that re-scheduling of future

write requests to the SSD might solve the aging problem

(like in Figure 1(b)). However, it is next to impossible for

an application (and the host system in general) to know

where exactly previously written data have been placed

within the SSD, because the algorithms in the FTL vary

from SSD to SSD and the written data are moved around

by the internal GC process. Moreover, modern OS has

a layered I/O subsystem comprised of file system, buffer

cache, I/O scheduler and volume manager. So, perfectly

controlling the order and target of writes would be ex-

tremely challenging.

3.1 Our approach

At the heart of the SSD aging problem are the issues of

how to predict the lifetime of data written to the SSD and

how to ensure that data with similar lifetime are placed in

the same erase unit. This work proposes multi-streaming,

an interface that directly guides data placement within

the SSD, separating the two issues. We argue that the

host system should (and can) provide adequate informa-

tion about data lifetime to the SSD. It is the responsibility

of the SSD, then, to place data with similar lifetime (as

dictated by the host system) into the same erase unit.

Our design introduces the concept of stream. A stream

is an abstraction of SSD capacity allocation that stores a

set of data with the same lifetime expectancy. An SSD

that implements the proposed multi-stream interface al-

lows the host system to open or close streams and write to

one of them. Before writing data, the host system opens

streams (through special SSD commands) as needed.
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Figure 2: The multi-streamed SSD writes data into a related NAND

flash block according to stream ID regardless of LBA. In this example,

three streams are introduced to store different types of host system data.

Both the host system and the SSD share a unique stream

ID for each open stream, and the host system augments

each write with a proper stream ID. A multi-streamed

SSD allocates physical capacity carefully, to place data

in a stream together and not to mix data from different

streams. Figure 2 illustrates how this can be achieved.

We believe that the multi-stream interface is abstract

enough for the host system to be able to tap, with con-

vincing use cases and results (as discussed in Section 4).

Furthermore, the level of information delivered through

the interface is concrete enough for the SSD to optimize

its behavior with. There are other proposals to specify

write data attributes, like access frequency [11]. How-

ever, it is not straightforward for the SSD to derive data

lifetime from the expected frequency of data updates.

3.2 Implementation

We implemented the proposed multi-stream interface on

the currently marketed Samsung 840 Pro SSD [14]. Be-

cause 840 Pro is based on the SATA III interface, we pig-

gyback stream ID on a reserved field of both regular and

queued write commands as specified in the AT attached

(ATA) command set [5]. Our multi-streamed SSD proto-

type currently supports four streams (Stream 1 to 4) on

top of the default stream (Stream 0).

We modified the Linux kernel (3.13.3) to have a con-

duit between an application and the SSD, through the file

system and the layers below. More specifically, an appli-

cation passes a stream ID to the file system through the

fadvise system call, which, in turn, stores the stream ID

in the inode of the virtual file system. When dirty pages

are flushed into the SSD, or the application directly re-

quests a write operation with the direct I/O facility, we

send along the write request the stream ID (that can be

retrieved from the associated inode).

4 Evaluation

4.1 Experimental setup

To evaluate the multi-streamed SSD, we conduct exper-

iments that run Cassandra [7] (version 1.2.10), a widely

deployed open-source key value store. All experiments

were performed on a commodity machine with a quad-

Table 1: Stream ID Assignment

system Commit-

Log

flushed

data

compaction

data

Normal 0 0 0 0

Single 0 1 1 1

Multi-Log 0 1 2 2

Multi-Data 0 1 2 3∼4

Ratio of written

data (%)

1.0 48.6 31.3 4.4,

14.7

core Intel i7-3770 3.4GHz processor. We turned off

power management for reliable measurements.

Cassandra optimizes I/O traffic by organizing its data

set in or append-only “sorted strings tables” (SSTables)

in disk. New data are first written to a commit log

(CommitLog) and are put in a table in the main mem-

ory (MemTable) as they are inserted. Contents in the

MemTable are flushed to a SSTable once they accumu-

late to a certain size. Since SSTables are immutable, sev-

eral of them are “compacted” periodically to form a new

(large) SSTable to reduce the space and time overheads

of maintaining many (fragmented) SSTables. As the

compaction process repeats, valid data gradually move

from a (small) SSTable to another in a different size tier.

We take into account how data are created and destroyed

in Cassandra when we map writes to streams.

Table 1 lists four different mappings that we examine.

Normal implies that all data are mapped to the default

stream (Stream 0), equivalent to a conventional SSD with

no multi-streaming support and is the baseline configura-

tion. In Single, we separate all data from Cassandra into a

stream (Stream 1). System data, not created by the work-

load itself, include the ext4 file system meta and journal

data and still go to Stream 0. Multi-Log carves out the

CommitLog traffic to a separate stream, making the to-

tal stream count three (including the default stream). Fi-

nally, Multi-Data further separates SSTables in different

tiers to three independent streams. Intuitively, SSTables

in the same tier would have similar lifetime while SSTa-

bles from different tiers would have disparate lifetime.

For workloads, we employ the Yahoo! Cloud Serving

Benchmark (YCSB) [3] (0.1.4). We run both YCSB and

Cassandra on the same machine, not to be limited by the

1Gb Ethernet. In addition, we limit the RAM size to

2GB to accelerate SSD aging by increasing Cassandra’s

flush frequency. The compaction throughput parameter

of Cassandra was modified from 16 MB/s to 32 MB/s, as

recommended by the community for SSD users.

4.2 Results

Figure 3(a) plots the normalized update throughput of all

mapping configurations studied. We introduce a Normal

configuration with the TRIM facility turned off, to gain

insight about the impact of TRIM. We make the follow-
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Figure 3: Cassandra update throughput and GC overheads, normal-

ized. The update throughput is shown to depend heavily on the GC

overheads. We estimate GC overheads with the number of valid NAND

flash pages that must be copied during GC. Trends of throughput and

GC activities are similar after the 40-min. period captured in the plots.

ing key observations: (1) TRIM is shown to be critically

important for the sustained performance; (2) GC over-

heads (Figure 3(b)) correlate very well with the through-

put; and (3) Multi-Data outperforms all other configura-

tions and sustains the throughput.

Without TRIM, Normal’s performance approaches a

dismal level—20% of the peak performance—, shown

only briefly at the beginning of the experiment (when the

SSD was relatively fresh). To put it in a different way,

TRIM is very effective for Cassandra because it orga-

nizes data in a log-structured manner, writes a large file

of data and deletes an entire file at a time. However, even

with the benefit of TRIM, Normal still performs poorly—

its performance drops from the peak by up to 53%! We

do not consider Normal without TRIM any further.

The (poor) performance of Normal and others can be

attributed well to the GC overheads: Valleys in plot (b)

match with peaks in plot (a), and vice versa. GC over-

heads can be approximated by the number of valid pages

that must be copied (to vacate a NAND flash block be-

fore erasing it). Because copying of valid pages involves

programming (and hence consuming the bandwidth of)

NAND flash memory, the ability of the SSD to serve user

requests is hurt in direct proportion.

In general, our result shows that the use of multi-

streaming cuts down GC overheads and in turn increases

throughput (by nearly 56% when Multi-Data is com-
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Figure 4: Cassandra’s cumulated latency distribution. The long tail

of latency distribution is also shown to be subject to GC overheads.

pared to Normal). Also shown is that how streams are

allocated and mapped to application data makes a critical

impact. Single bears little difference to Normal—mainly

because the traffic separated with multi-streaming cor-

responds to only 1% of the total traffic. Multi-Log im-

proves GC efficiency and throughput much more notice-

ably. The throughput now lies in between 65% and 85%

of the peak. Lastly, Multi-Data, our best mapping, hits

roughly 90% of the peak performance sustainably. As

we intended, few GC activities are incurred, if any. We

also experimented with a 15K-RPM enterprise HDD (not

shown); it showed fairly consistent throughput that peaks

at less than one third the performance of Multi-Data.

Figure 4 presents the latency profile obtained from

the previous experiment. The plot shows that multi-

streaming improves latency as well: At the 99.9th per-

centile, Multi-Data lowers the latency by 54%, com-

pared with Normal and at the 99.99th percentile, by 61%.

In another experiment, we design and evaluate an in-

SSD mechanism that detects multiple sequential access

patterns on the fly and assigns an adequate stream ID.

The goal was to gain insights into how much improve-

ment we can obtain through automatic stream detection.

Note that write patterns in Cassandra are mostly sequen-

tial. In our implementation, we detect maximum four

concurrent sequential patterns and assign a stream ID

to each of them. If there are more than four sequential

patterns, we handed the stream ID of the least recently

used sequential pattern to a newly detected one. With

this mechanism, the SSD classified 71% of all data to be

sequential. However, the resultant performance gain was

rather marginal. This counter-intuitive result is due to

how LBAs are allocated by the ext4 file system: A large

file may not always get sequential LBAs due to fragmen-

tation. Moreover, successively created files may not get

consecutive LBAs as they expand. Accordingly, in Cas-

sandra, the chances that SSTables in the same size tier

are detected as a sequential stream decrease. In the end,

SSTables from different tiers and even CommitLog start

to mix up across streams. Our result underscores that

concrete semantic information passed by the host system



through the multi-stream interface is much more relevant

and robust than automatically learned access patterns.

Finally, we examine how multi-streaming can extend

the lifetime of SSDs. We have iterated a few times al-

ready that proper use of multi-streaming can improve GC

efficiency. Higher GC efficiency implies that the multi-

streamed SSD lowers the number of required NAND

flash erase operations. Indeed, we found that Multi-Data

would extend the SSD lifetime by 23%.

4.3 Discussion

Our study with Cassandra showed that an intuitive data

to stream mapping can lead to large benefits in through-

put, consistent latency and NAND flash lifetime on the

multi-streamed SSD. We further believe that many ap-

plications and use cases will enjoy similarly large gains

from the multi-streamed SSD, if reasonably good map-

ping is done. Other database management systems that

use log-structured merge trees (like Cassandra) include

HBase, LevelDB, SQLite4 and RocksDB. These appli-

cations explicitly manage data streams and orient their

I/O to be sequential. In another example, consider com-

mit (transaction) log, undo (roll-back) log and temporary

table data in OLTP applications [9]. They map nicely

into separate streams on the multi-streamed SSD. Lastly,

some multi-head log-structured file systems and flash

storage OS could relatively effortlessly steer their data

writes into streams for higher, consistent performance

and better media lifetime.

There are several avenues for further research. It will

be interesting to develop a systematic data to stream

mapping strategy that can handle multiple applications

(virtual machines) running concurrently. It is also worth-

while to look at if and how multi-streaming could pro-

vide performance and fault isolation [10]. How to effec-

tively support multi-streaming without application-level

changes remains a challenge and research question. How

to organize and utilize streams on multiple SSDs would

be a practical, rewarding topic to explore.

5 Conclusions

We made a case for the multi-streamed SSD in this paper.

We found the proposed multi-streaming concept power-

ful and the interface expressive; by mapping application

and system data with different lifetimes to SSD streams,

we demonstrated that the SSD throughput and latency

QoS are significantly improved. The data mapping used

in our Cassandra case study is intuitive, and similar ben-

efits are expected from other applications with proper

data to stream mapping. Our prototype SSD proves that

multi-streaming can be supported on a state-of-the-art

SSD and can co-exist with the traditional block interface.
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