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1. Introduction

It has been widely recognized that the symplectic integrator has the numerical superiority when

applied to solving Hamiltonian ODEs. A systemic theory of symplectic integrators for Hamiltonian

ODEs has been established by some authors. The Runge-Kutta methods play an important role in

numerically solving differential equations (see [1, 3, 4, 6, 9-19] and references therein). The symplectic

condition of Runge-Kutta methods was founded independently by Lasagni, Sanz-Serna and Suris in

1988 (see [6, 13, 15, 18] and references therein). The numerical analysis has been investigated and

developed by some authors (see [4, 6, 10, 13, 19] and references therein). Some characterizations of

symplectic partitioned Runge-Kutta method, which are very useful for the construction of symplectic

schemes for solving numerical Hamiltonian problems, were obtained by Sanz-Serna in [14], Sun

in [16, 17] and Suris in [19], and recently discussed by Marsden and West in [11]. Reich in [12]

considered Hamiltonian wave equations, and showed that the Gauss-Legendre discretization applied

to the scalar wave equation (and Schrödinger equation) both in time and space direction, leads to

a multi-symplectic integrator (also see [9]) . Motivated by ref. [6, 12, 14, 16, 17, 19], questions we

considered are : are there any multi-symplectic partitioned Runge-Kutta methods for Hamiltonian

PDEs ? what is the characterization of multi-symplectic partitioned Runge-Kutta methods for the

general case of Hamiltonian PDEs ? The answer to the first question is obviously affirmative. The

last question is closely related to the construction of higher order multi-symplectic schemes for

Hamiltonian PDEs. In this article we consider the general case of Hamiltonian PDEs, and investigate

the multi-symplecticity of partitioned Runge-Kutta methods, then present some conditions for multi-

symplectic partitioned Runge-Kutta methods. In the rest of this section we introduce some basic

concepts on multi-symplectic discretization and multi-symplecticity of Hamiltonian PDEs, and give
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the NNSFC (No.19971089) and the Special Funds for Major State Basic Research Projects of China G1999032804
2This work is supported by the Director Innovation Foundation of Institute of Mathematics and AMSS.
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an extension version of Reich’s result on the multi-symplecticity of Gauss-Legendre methods for

the general case of Hamiltonian PDEs. In section 2 we present conditions for multi-symplecticity

of partitioned Runge-Kutta methods when applied to a Hamiltonian PDE. In section 3, the multi-

symplecticity of partitioned Runge-Kutta methods for the wave equation is discussed. In section 4

we investigate conservative properties of energy and momentum for Runge-Kutta methods of linear

Hamiltonian PDEs. In what follows we assume that all numerical methods proposed are numerically

solvable, and only focus on the multi-sympleciticity of methods.

Consider the Hamiltonian partial differential equation

Mzt + Kzx = ∇zS(z), (x, t) ∈ Ω ⊂ R2, (1)

where M and K are skew-symmetric matrices, and S is a real smooth function of variable z. As

well-known, some very important partial differential equations can be rewritten in this form (see [2,

7, 8, 12] and references therein). The following is its multi-symplectic conservation law

∂ω(U, V )
∂t

+
∂κ(U, V )

∂x
= 0, (2)

where

ω(U, V ) = UT MT V, κ(U, V ) = UT KT V,

U(x, t) and V (x, t) are solutions of the variational equation

Mdzt + Kdzx = DzzS(z)dz. (3)

In order to study the multi-symplecticity (2)-preserving Runge-Kutta method, we introduce an

uniform grid (xj , tk) ∈ R2 with mesh-length ∆t in the t direction and mesh-length ∆x in the

x direction. The value of the function ψ(x, t) at the mesh point (xj , tk) is denoted by ψj,k. The

equation (1), (2) and (3) can be, respectively, schemed numerically as

M∂j,k
t zj,k + K∂j,k

x zj,k = (∇zSj,k)j,k, (4)

∂j,k
t ωj,k + ∂j,k

x κj,k = 0, (5)

M∂j,k
t (dz)j,k + K∂j,k

x (dz)j,k = (Dj,k
zz Sj,k)(dz)j,k, (6)

where Sj,k = S(zj,k, xj , tk),

ωj,k =< MUj,k, Vj,k > κj,k =< KUj,k, Vj,k >,

Uj,k and Vj,k are solutions of (6), and ∂j,k
t , ∂j,k

x are discretizations of the derivatives ∂t and ∂x

respectively. The following definition is from [2]

Definition 1 The numerical scheme (4) is called multi-symplectic if (5) is a discrete conservation

law of (4).
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To simplify notations, let the starting point (x0, t0)=(0, 0) in numerical methods proposed throu-

ghout this paper. The Runge-Kutta method for the equation (1) is the following

Zmk = z0
m + ∆t

∑r
j=1 akj∂tZmj , (7)

z1
m = z0

m + ∆t
∑r

k=1 bk∂tZmk, (8)

Zmk = zk
0 + ∆x

∑s
n=1 ãmn∂xZnk, (9)

zk
1 = zk

0 + ∆x
∑s

m=1 b̃m∂xZmk, (10)

M∂tZmk + K∂xZmk = ∇zS(Zmk), (11)

where notations are used as follows Zmk ≈ z(cm∆x, dk∆t), z0
m ≈ z(cm∆x, 0), ∂tZmj ≈ ∂tz(cm∆x, dk∆t),

∂xZmj ≈ ∂xz(cm∆x, dk∆t), z1
m ≈ z(cm∆x, ∆t). zk

0 ≈ z(0, dk∆t), zk
1 ≈ z(∆x, dk∆t), and

cm =
s∑

n=1

ãmn, dk =
r∑

j=1

akj .

Corresponding variational equations to (7-11) respectively are

dZmk = dz0
m + ∆t

∑r
j=1 akjd(∂tZmj), (12)

dz1
m = dz0

m + ∆t
∑r

k=1 bkd(∂tZmk), (13)

dZmk = dzk
0 + ∆x

∑s
n=1 ãmnd(∂xZnk), (14)

dzk
1 = dzk

0 + ∆x
∑s

m=1 b̃md(∂xZmk), (15)

M∂tdZmk + K∂xdZmk = DzzS(Zmk)dZmk, (16)

where DzzS(Zmk) is a symmetric matrix.

Theorem 1 If in the method (7-11)

bkbj − bkakj − bjajk = 0 (17)

and b̃mb̃n − b̃mãmn − b̃nãnm = 0 (18)

hold for k, j = 1, 2, · · · , r and m,n = 1, 2, · · · , s, then the method (7-11) is multi-symplectic with the

conservation law

∆x
∑s

m=1 b̃m((d̃z1
m)T MT (dz1

m)− (d̃z0
m)T MT (dz0

m))
+∆t

∑r
k=1 bk((d̃zk

1)T KT (dzk
1)− (d̃zk

0)T KT (dzk
0)) = 0,

(19)

where

{d̃z1
m, d̃z0

m, d̃zk
1, d̃zk

0, ˜dZmk, ˜d(∂xZmk), ˜d(∂tZmk)}
and {dz1

m, dz0
m, dzk

1, dzk
0, dZmk, d(∂xZmk), d(∂tZmk)}

are solutions of the variational equation (12-16).
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Proof. Let

{d̃z1
m, d̃z0

m, d̃zk
1, d̃zk

0, ˜dZmk, ˜d(∂xZmk), ˜d(∂tZmk)}
{dz1

m, dz0
m, dzk

1, dzk
0, dZmk, d(∂xZmk), d(∂tZmk)}

are solutions of the variational equation (12-16). It follows from (12-16) and (17-18) that

(d̃z1
m)T MT (dz1

m)− (d̃z0
m)T MT (dz0

m)

= ∆t
∑r

k=1 bk( ˜d(∂tZmk)
T
MT (dZmk) + ˜(dZmk)

T
MT d(∂tZmk))

+(∆t)2
∑r

j,k=1(bkbj − bkakj − bjajk) ˜d(∂tZmk)
T
MT d(∂tZmk)

= ∆t
∑r

k=1 bk( ˜d(∂tZmk)
T
MT (dZmk) + ˜(dZmk)

T
MT d(∂tZmk)),

(20)

and
(d̃zk

1)T KT (dzk
1)− (d̃zk

0)T KT (dzk
0)

= ∆x
∑s

m=1 b̃m( ˜d(∂xZmk)
T
KT (dZmk) + ˜(dZmk)

T
KT d(∂xZmk)).

(21)

Using (16) and the symmetry of the matrix DzzS(Zmk) produce

˜d(∂tZmk)
T
MT (dZmk) + ˜(dZmk)

T
MT d(∂tZmk)

+ ˜d(∂xZmk)
T
KT (dZmk) + ˜(dZmk)

T
KT d(∂xZmk) = 0

(22)

Combining (20), (21) and (22), the proof of theorem is completed.

Remark 1 This theorem can be extended to the Hamiltonian partial differential equation with va-

rying coefficients

M(x)zt + K(t)zx = ∇zS(z, x, t), (23)

where M(x) and K(t) are skew-symmetric matrices and smooth in x and t respectively, S(z, x, t) is

a smooth real function.

The following corollary is a natural extension of the result in [12]

Corollary 1 If in (7-11), the method applied to both time direction and space direction is of Gauss-

Legendre, then the method (7-11) is a multi-symplectic integrator.

2. Partitioned Runge-Kutta methods

We consider the blocked Hamiltonian partial differential equation
(

M1 M0

−MT
0 M2

)(
pt

qt

)
+

(
K1 K0

−KT
0 K2

) (
px

qx

)
=

( ∇pS(p, q)
∇qS(p, q)

)
, (24)

where Mτ , Kτ (τ = 1, 2) are α× α skew-symmetric matrices, M0, K0 are α× α matrices, S(p, q) is

a smooth real function in p = (p1, p2, · · · , pα)T and q = (q1, q2, · · · , qα)T .

The corresponding multi-symplectic conservation law is :

∂ω(U, V )
∂t

+
∂κ(U, V )

∂x
= 0, (25)
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where

ω(U, V ) = UT

(
M1 M0

−MT
0 M2

)T

V, κ(U, V ) = UT

(
K1 K0

−KT
0 K2

)T

V,

U(x, t) and V (x, t) are solutions of the variational equation
(

M1 M0

−MT
0 M2

)
dzt +

(
K1 K0

−KT
0 K2

)
dzx = DzzS(z)dz (26)

and z = (p1, p2, · · · , pα, q1, q2, · · · , qα)T . Now we apply partitioned Runge-Kutta method to the

equation (24).

Pmk = p0
m + ∆t

∑r
j=1 a

(1)
kj ∂tPmj , (27)

Qmk = q0
m + ∆t

∑r
j=1 a

(2)
kj ∂tQmj , (28)

p1
m = p0

m + ∆t
∑r

k=1 b
(1)
k ∂tPmk, (29)

q1
m = q0

m + ∆t
∑r

k=1 b
(2)
k ∂tQmk, (30)

Pmk = pk
0 + ∆x

∑s
n=1 ã

(1)
mn∂xPnk, (31)

Qmk = qk
0 + ∆x

∑s
n=1 ã

(2)
mn∂xQnk, (32)

pk
1 = pk

0 + ∆x
∑s

m=1 b̃
(1)
m ∂xPmk, (33)

qk
1 = qk

0 + ∆x
∑s

m=1 b̃
(2)
m ∂xQmk, (34)(

M1 M0

−MT
0 M2

)(
∂tPmk

∂tQmk

)
+

(
K1 K0

−KT
0 K2

)(
∂xPmk

∂xQmk

)
=

( ∇pS(Pmk, Qmk)
∇qS(Pmk, Qmk)

)
, (35)

where we make use of notations

p0
m ≈ p(cm∆x, 0), p1

m ≈ p(cm∆x, ∆t),

pk
0 ≈ p(0, dk∆t), pk

1 ≈ p(∆x, dk∆t),

q0
m ≈ q(cm∆x, 0), q1

m ≈ q(cm∆x,∆t),

qk
0 ≈ q(0, dk∆t), qk

1 ≈ q(∆x, dk∆t),

Pmk ≈ p(cm∆x, dk∆t), Qmk ≈ q(cm∆x, dk∆t),

∂tPmk ≈ ∂p
∂t (cm∆x, dk∆t), ∂xPmk ≈ ∂p

∂x
(cm∆x, dk∆t),

∂tQmk ≈ ∂q
∂t (cm∆x, dk∆t), ∂xQmk ≈ ∂q

∂x
(cm∆x, dk∆t)

under the assumption that

s∑
n=1

ã(1)
mn =

s∑
n=1

ã(2)
mn = cm,

r∑

j=1

a
(1)
kj =

r∑

j=1

a
(2)
kj = dk. (36)

The corresponding system of variation equations of this method to (27-35) to (6) is

dPmk = dp0
m + ∆t

∑r
j=1 a

(1)
kj d∂tPmj , (37)
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dQmk = dq0
m + ∆t

∑r
j=1 a

(2)
kj d∂tQmj , (38)

dp1
m = dp0

m + ∆t
∑r

k=1 b
(1)
k d∂tPmk, (39)

dq1
m = dq0

m + ∆t
∑r

k=1 b
(2)
k d∂tQmk, (40)

dPmk = dpk
0 + ∆x

∑s
n=1 ã

(1)
mnd∂xPnk, (41)

dQmk = dqk
0 + ∆x

∑s
n=1 ã

(2)
mnd∂xQnk, (42)

dpk
1 = dpk

0 + ∆x
∑s

m=1 b̃
(1)
m d∂xPmk, (43)

dqk
1 = dqk

0 + ∆x
∑s

m=1 b̃
(2)
m d∂xQmk, (44)

Md(∂tZmk) + Kd(∂xZmk) = Amkd(Zmk), (45)

where

d(Zmk) =
(

dPmk

dQmk

)
,

d(∂tZmk) =
(

d∂tPmk

d∂tQmk

)
,

d(∂xZmk) =
(

d∂xPmk

d∂xQmk

)
,

Amk =
(

DppS(Pmk, Qmk) DpqS(Pmk, Qmk)
DqpS(Pmk, Qmk) DqqS(Pmk, Qmk)

)
,

M =
(

M1 M0

−MT
0 M2

)
, K =

(
K1 K0

−KT
0 K2

)
.

Obviously, Amk is a symmetric matrix. Now we let

{dp1
m, dp0

m, dpk
1, dpk

0, dPmk, d∂tPmk, d∂xPmk, dq1
m, dq0

m, dqk
1, dqk

0, dQmk, d∂tQmk, d∂xQmk}
{d̃p1

m, d̃p0
m, d̃pk

1, d̃pk
0, ˜dPmk, ˜d∂tPmk, ˜d∂xPmk, d̃q1

m, d̃q0
m, d̃qk

1, d̃qk
0, ˜dQmk, ˜d∂tQmk, ˜d∂xQmk}

be solutions of the variational equations (37-45), and

δtωm = (d̃p1
m

T
, d̃q1

m

T
)MT

(
dp1

m

dq1
m

)
− (d̃p0

m

T
, d̃q0

m

T
)MT

(
dp0

m

dq0
m

)
, (46)

δxκk = (d̃pk
1

T

, d̃qk
1

T

)KT

(
dpk

1

dqk
1

)
− (d̃pk

0

T

, d̃qk
0

T

)KT

(
dpk

0

dqk
0

)
. (47)

By a straightforward calculation, we have

δtωm = ∆t
∑r

k=1(( ˜dPmk

T
, ˜dQmk

T
)MT

(
b
(1)
k d∂tPmk

b
(2)
k d∂tQmk

)

+(b(1)
k

˜d∂tPmk

T
, b

(2)
k

˜d∂tQmk

T
)MT

(
dPmk

dQmk

)
),

+(∆t)2
∑r

j,k=1((b
(1)
k a

(1)
kj + b

(1)
j a

(1)
jk − b

(1)
k b

(1)
j ) ˜d(∂tPmj)

T
M1d(∂tPmk)

+(b(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ) ˜d(∂tQmj)

T
M2d(∂tQmk)

+(b(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ) ˜d(∂tPmj)

T
M0d(∂tQmk)

+(b(2)
j b

(1)
k − b

(2)
j a

(1)
jk − b

(1)
k a

(2)
kj ) ˜d(∂tQmj)

T
M0d(∂tPmk))

(48)
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and

δxκk = ∆x
∑s

m=1(( ˜dPmk

T
, ˜dQmk

T
)KT

(
b̃
(1)
k d∂xPmk

b̃
(2)
k d∂xQmk

)

+(b̃(1)
k

˜d∂xPmk

T
, b̃

(2)
k

˜d∂xQmk

T
)KT

(
dPmk

dQmk

)
),

+(∆x)2
∑s

m,n=1((b̃
(1)
m ã

(1)
mn + b̃

(1)
n ã

(1)
nm − b̃

(1)
m b̃

(1)
n ) ˜d(∂xPnk)

T
K1d(∂xPmk)

+(b̃(2)
m ã

(2)
mn + b̃

(2)
n ã

(2)
nm − b̃

(2)
m b̃

(2)
n ) ˜d(∂xQnk)

T
K2d(∂xQmk)

+(b̃(2)
m ã

(1)
mn + b̃

(1)
n ã

(2)
nm − b̃

(2)
m b̃

(1)
n ) ˜d(∂xPnk)

T
K0d(∂xQmk)

+(b̃(2)
n b̃

(1)
m − b̃

(1)
m ã

(2)
mn − b̃

(2)
n ã

(1)
nm) ˜d(∂xQnk)

T
K0d(∂xPmk).

(49)

If for k = 1, 2, · · · , r and m = 1, 2, · · · , s

b
(1)
k = b

(2)
k = bk, b̃(1)

m = b̃(2)
m = b̃m. (50)

Then the corresponding multi-symplectic conservation law of the method (27-35) to (5) is

∆x

s∑
m=1

b̃mδtωm + ∆t

r∑

k=1

bkδxκk = 0. (51)

Consequently, in this case, it is sufficient for (51), which holds, that

I1 = 0 and I2 = 0, (52)

where
I1 = (∆t)2

∑r
j,k=1((b

(1)
k a

(1)
kj + b

(1)
j a

(1)
jk − b

(1)
k b

(1)
j ) ˜d(∂tPmj)

T
M1d(∂tPmk)

+(b(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ) ˜d(∂tQmj)

T
M2d(∂tQmk)

+(b(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ) ˜d(∂tPmj)

T
M0d(∂tQmk)

+(b(2)
j b

(1)
k − b

(2)
j a

(1)
jk − b

(1)
k a

(2)
kj ) ˜d(∂tQmj)

T
M0d(∂tPmk))

(53)

and
I2 = (∆x)2

∑s
m,n=1((b̃

(1)
m ã

(1)
mn + b̃

(1)
n ã

(1)
nm − b̃

(1)
m b̃

(1)
n ) ˜d(∂xPnk)

T
K1d(∂xPmk)

+(b̃(2)
m ã

(2)
mn + b̃

(2)
n ã

(2)
nm − b̃

(2)
m b̃

(2)
n ) ˜d(∂xQnk)

T
K2d(∂xQmk)

+(b̃(2)
m ã

(1)
mn + b̃

(1)
n ã

(2)
nm − b̃

(2)
m b̃

(1)
n ) ˜d(∂xPnk)

T
K0d(∂xQmk)

+(b̃(2)
n b̃

(1)
m − b̃

(1)
m ã

(2)
mn − b̃

(2)
n ã

(1)
nm) ˜d(∂xQnk)

T
K0d(∂xPmk)).

(54)

We let

(µ1)kj = b
(1)
k a

(1)
kj + b

(1)
j a

(1)
jk − b

(1)
k b

(1)
j ,

(µ2)kj = b
(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ,

(µ3)kj = b
(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ,

(ν1)mn = b̃(1)
m ã(1)

mn + b̃(1)
n ã(1)

nm − b̃(1)
m b̃(1)

n ,

(ν2)mn = b̃(2)
m ã(2)

mn + b̃(2)
n ã(2)

nm − b̃(2)
m b̃(2)

n ,

(ν3)mn = b̃(2)
m ã(1)

mn + b̃(1)
n ã(2)

nm − b̃(2)
m b̃(1)

n .

Then the following result is concluded
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Theorem 2 In the method (27-35), suppose that (36) and (50) hold. The method (27-35) is multi-

symplectic, with discrete multi-symplectic law (51), if one of following conditions holds

1. for τ = 1, 2, 3

(µτ )kj = 0 (k, j = 1, 2, · · · r) and (ντ )mn = 0 (m,n = 1, 2, · · · , s), (55)

when Mλ 6= 0, Kλ 6= 0 (λ = 1, 2), M0 6= 0 and K0 6= 0;

2. for τ = 1, 2, 3,

(µ1)kj = (µ2)kj = 0 (k, j = 1, 2, · · · r)(resp. (µτ )kj = 0 (k, j = 1, 2, · · · r)), (56)

(ντ )mn = 0 (m,n = 1, 2, · · · , s)(resp. (ν1)mn = (ν2)mn = 0 (m,n = 1, 2, · · · , s)), (57)

when M0 = 0 (resp. K0 = 0) ;

3. for τ = 1, 2, (µτ )kj = 0 (k, j = 1, 2, · · · r) and (ντ )mn = 0 (m,n = 1, 2, · · · , s), when M0 = 0

and K0 = 0 ;

4. (µ3)kj = (ν3)mn = 0, for k, j = 1, 2, · · · , r; m, n = 1, 2, · · · , s, when Mτ = Kτ = 0 for τ = 1, 2.

(This is a typical multi-symplectic partitioned condition) ;

5. for τ = 1, 2, (µ3)kj = (ντ )mn = 0, for k, j = 1, 2, · · · , r; m,n = 1, 2, · · · , s, when Mσ = K0 = 0

for σ = 1, 2;

6. for τ = 1, 2, (µτ )kj = (ν3)mn = 0, for k, j = 1, 2, · · · , r; m,n = 1, 2, · · · , s, when M0 = Kσ = 0

for σ = 1, 2;

7. (µ1)kj = (ν3)mn = 0, for k, j = 1, 2, · · · , r; m,n = 1, 2, · · · , s, when M0 = M2 = Kσ = 0 for

σ = 1, 2;

8. (µ3)kj = (ν1)mn = 0, for k, j = 1, 2, · · · , r; m,n = 1, 2, · · · , s, when Mσ = K0 = K2 = 0 for

σ = 1, 2.

Now we give some remarks.

Remark 2 In Theorem 2 we list only eight conditions for multi-symplecticity of partitioned Runge-

Kutta method of (27-35). By using I1 = 0 and I2 = 0, we can conclude more conditions for multi-

symplectic partitioned Runge-Kutta methods. This theorem can be extended naturally to the case of

Hamiltonian partial differential equation with varying coefficients.

Remark 3 It is trivial and apparent to extend Theorem 1 and Theorem 2 to the Hamiltonian partial

differential equation with higher spatial dimension

Mzt +
ι∑

τ=1

Kτzxτ = ∇zS(z), (58)

where ι ≥ 2, M and Kτ (τ = 1, 2, · · · , ι) are skew-symmetric matrices, and S is a smooth function.
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Remark 4 In Theorem 2 the condition 1 implies a
(1)
kj = a

(2)
kj for k, j = 1, 2, · · · r and ã

(1)
mn = ã

(2)
mn for

m,n = 1, 2, · · · , s. In fact, in this case only one symplectic Runge-Kutta method is applied in each

direction.

Remark 5 Consider the nonlinear Schrödinger equation

i
∂ψ

∂t
+

∂2ψ

∂x2
+ |ψ|2ψ = 0, (59)

Let ψ(x, t) = u(x, t) + iv(x, t). Then the equation (59) is read as
{

−∂v
∂t + ∂2u

∂x2 + (u2 + v2)u = 0
∂u
∂t + ∂2v

∂x2 + (u2 + v2)v = 0.
(60)

We take z = (u, v, ux, vx)T , then the equation (6) can be rewritten as the following

M
∂z

∂t
+ K

∂z

∂x
= ∇zS(z, t), (61)

where

M =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,

S(z, t) = − 1
4 (u2 + v2)2 − 1

2 (u2
x + v2

x).

The equation (61) accords with the case of condition 7 in Theorem 2 . Thus the partitioned Runge-

Kutta (27-35) method can be applied to the equation (61). The numerical experiments of multi-

symplectic method applied to equation (59) has been given in the ref.[7,9].

Remark 6 We consider the nonlinear Dirac equation

ψt = Aψx + if(|ψ1|2 − |ψ2|2)Bψ, (62)

where ψ = (ψ1, ψ2)T , i =
√−1, f(s) is a real function of a real variable s and matrices A and

B are
(

0 −1
−1 0

)
and

( −1 0
0 1

)
respectively, ϕ = (ϕ1, ϕ2)T is sufficiently smooth. Let ψj =

uj + ivj (j = 1, 2) and z = (u1, v1, u2, v2)T . Then the equation (62) can be written as

Mzt + Kzx = ∇zS(z), (63)

where

M =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , K =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 ,

and

S(z) =
−1
2

F (u2
1 + v2

1 − u2
2 − v2

2),

where the real smooth function F (ζ) satisfies that d
dζ F (ζ) = f(ζ).

The equation (63) is in the case of condition (6) in Theorem 2.
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Now we denote z = (u1, u2, v1, v2), the equation (62) can be rewritten as

M̂ ẑt + K̂ẑx = ∇ẑS(ẑ), (64)

where

M̂ =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , K̂ =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 .

The equation (64) is in the case of condition (4) in Theorem 2.

3. Hamiltonian wave equations

In this section we consider the scalar wave equation

utt = uxx −G′(u), (x, t) ∈ Ω ⊂ R2, (65)

where G : R → R is a smooth function. The investigation on symplectic integration for the equation

(65) can be found in [4, 10] and references therein.

Let ẑ = (u, p, v, w)T , ut = v, ux = w, Then the equation (65) can be written as

Mẑt + Kẑx = ∇ẑS(ẑ), (66)

where

M =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 K =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


 .

The case 4 in Theorem 2 is suitable for the equation (66).

In [12], the following result is given by Reich

Proposition 1 Let (65) be discretized in space and in time by a pair of Gauss-Legendre colloca-

tion methods with s, r, respectively, stages. Then the resulting discretization is a multi-symplectic

integrator.

A similar result is proven in [9] for the nonlinear Schrödinger equation. the multi-symplecticity

of Preissman type scheme and the multi-symplectic structure for the wave equation have been

discussed in [20]. Now we investigate the multi-symplecticity of partitioned Runge-Kutta method

for the equation (65) by using the multi-symplectic conservation law (see [12])

∂t(du ∧ dut) = ∂x(du ∧ dux). (67)

The partitioned Runge-Kutta method applied to the equation (65) is

10



Umk = uk
0 + ∆x

∑s
n=1 ã

(1)
mn∂xUnk, (68)

Wmk = uk
0 + ∆x

∑s
n=1 ã

(2)
mn∂xWnk, (69)

Umk = u0
m + ∆t

∑r
j=1 a

(1)
kj ∂tUmj , (70)

Vmk = v0
m + ∆t

∑r
j=1 a

(2)
kj ∂tVmj , (71)

uk
1 = uk

0 + ∆x
∑s

m=1 b̃
(1)
m ∂xUmk, (72)

wk
1 = wk

0 + ∆x
∑s

m=1 b̃
(2)
m ∂xWmk, (73)

u1
m = u0

m + ∆t
∑r

k=1 b
(1)
k ∂tUmk, (74)

v1
m = v0

m + ∆t
∑r

k=1 b
(2)
k ∂tVmk, (75)

∂tUmk = Vmk, ∂xUmk = Wmk, (76)

∂tVmk = ∂xWmk −G′(Umk), (77)

under the assumption that

∑r
j=1 a

(1)
kj =

∑r
j=1 a

(2)
kj = dk, (78)

∑s
n=1 ã

(1)
mn =

∑s
n=1 ã

(2)
mn = cm. (79)

Here notations are in the following sense, Umk ≈ u(cm∆x, dk∆t), ∂tUmk ≈ ∂tu(cm∆x, dk∆t), ∂xUmk ≈
∂xu(cm∆x, dk∆t), uk

0 ≈ u(0, dk∆t), uk
1 ≈ u(∆x, dk∆t), u0

m ≈ u(cm∆x, 0), u1
m ≈ u(cm∆x, ∆t).

Theorem 3 In the method (68-77), assume that (78), (79) and

b
(1)
k = b

(2)
k = bk, b̃

(1)
m = b̃

(2)
m = b̃m, (80)

b̃
(1)
m b̃

(2)
n − b̃

(1)
m ã

(2)
mn − b̃

(2)
n ã

(1)
nm = 0, (81)

b
(1)
k b

(2)
j − b

(1)
k a

(2)
kj − b

(2)
j a

(1)
jk = 0 (82)

hold for m,n = 1, 2, · · · , s; k, j = 1, 2, · · · , s. Then the method (68-77) is multi-symplectic with a

discrete multi-symplectic conservation law

∆t

r∑

k=1

bk(duk
1 ∧ dwk

1 − duk
0 ∧ dwk

0) = ∆x

s∑
m=1

b̃m(du1
m ∧ dv1

m − du0
m ∧ dw0

m). (83)

Proof. It follows from (68-77) and the conditions (78) - (82) that

duk
1 ∧ dwk

1 − duk
0 ∧ dwk

0

= ∆x
∑s

m=1 b̃m(dUmk ∧ d(∂xWmk))
(84)

and
du1

m ∧ dv1
m − du0

m ∧ dv0
m

= ∆t
∑r

k=1 bk(dUmk ∧ d(∂tVmk)). (85)

On the other hand, (77) implies

dUmk ∧ d(∂xWmk) = dUmk ∧ d(∂tVmk). (86)
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From (84), (85) and (86), the discrete conservation law (83) is concluded. This completes the proof.

Remark 7 (76) and (77) imply that (78) and (79), in essence, are not necessary for the characte-

rization (80-82) of multi-symplectic partitioned Runge-Kutta methods (68-77).

4. The conservation of energy and momentum

It has been shown, by S. Reich in [12] (also see [2, 9]), that multi-symplectic Gauss-Legendre

schemes preserve both the discrete energy and momentum conservation laws exactly for linear Ha-

miltonian PDEs. In this section we show that the scheme (7-11) preserves the discrete energy and

momentum conservation laws exactly for linear Hamiltonian PDEs

Mzt + Kzx = ∇zS(z), (87)

where M and K are skew-symmetric matrices, and S(z) = 1
2zT Az, A is a symmetric matrix. The

equation (87) has the energy conservation law

∂tE(z) + ∂xF (z) = 0, (88)

∂tI(z) + ∂xG(z) = 0, (89)

where

E(z) =
1
2
zT Az − 1

2
∂xzT KT z,

F (z) =
1
2
∂tz

T KT z,

G(z) =
1
2
zT Az − 1

2
∂tz

T MT z,

I(z) =
1
2
∂xzT MT z.

Theorem 4 Under the assumptions of Theorem 1, if the matrices of RK methods in the method

(7-11) are invertible, then the method (7-11) has a discrete energy conservation law

∆x

s∑
m=1

b̃m(E(z1
m)− E(z0

m)) + ∆t

r∑

k=1

bk(F (zk
1)− F (zk

0)) = 0 (90)

and a discrete momentum conservation law

∆x

s∑
m=1

b̃m(I(z1
m)− I(z0

m)) + ∆t

r∑

k=1

bk(G(zk
1)−G(zk

0)) = 0. (91)

Proof. First of all, we introduce the system

∂xZmk = (∂xz)0m + ∆t

r∑

j=1

akj∂t(∂xZmj), (92)

(∂xz)1m = (∂xz)0m + ∆t

r∑

k=1

bk∂t(∂xZmk), (93)

12



∂tZmk = (∂tz)k
0 + ∆x

s∑
n=1

ãmn∂x(∂tZnk), (94)

(∂xz)k
1 = (∂xz)k

0 + ∆x

r∑
m=1

b̃m∂x(∂tZmk), (95)

where (∂xz)0m and (∂tz)k
0 satisfy

z0
m = z0

0 + ∆x

s∑
n=1

ãmn(∂xz)0n, (96)

zk
0 = zk

0 + ∆t

r∑

j=1

akj(∂tz)k
0, (97)

respectively, and

∂t(∂xZmk) ≈ ∂txz(cm∆x, dk∆t),

∂x(∂tZmk) ≈ ∂xtz(cm∆x, dk∆t).

Because matrices A = (akj)r×r and Ã = (ãmn)s×s are invertible, we have

∂t(∂xZmk) = ∂x(∂tZmk). (98)

In fact, (9), (92) and (96) imply that

Zmk = zk
0 + z0

m − z0
0 + ∆x∆t

r∑

j=1

s∑
n=1

akj ãmn∂t(∂xZnj). (99)

Similar, (7), (94) and (97) imply that

Zmk = z0
m + zk

0 − z0
0 + ∆x∆t

r∑

j=1

s∑
n=1

akj ãmn∂x(∂tZnj). (100)

From (99) and (100), we conclude that (98) holds for m = 1, 2, · · · , s and k = 1, 2, · · · , r.
From the assumptions, we have

1
2 (zk

1)T KT (∂tz)k
1 = 1

2 (zk
0)T KT (∂tz)k

0

+∆x
2

∑s
m=1 b̃m(Zmk)T KT ∂x(∂tZmk) + ∆x

2

∑s
m=1 b̃m∂x(Zmk)T KT (∂tZmk),

(101)

therefore,

F (zk
1)− F (zk

0)
∆x

=
1
2

s∑
m=1

b̃m(Zmk)T KT ∂x(∂tZmk) +
1
2

s∑
m=1

b̃m∂x(Zmk)T KT (∂tZmk). (102)

A similar (but little bit tedious) calculation leads to

E(z1
m)− E(z0

m)
∆t

= −1
2

r∑

k=1

bk(Zmk)T KT ∂t(∂xZmk)− 1
2

r∑

k=1

bk∂x(Zmk)T KT (∂tZmk). (103)

This means that (90) holds. Analogously, we show that (91) holds. The proof is finished.

Remark 8 The discrete conservation of energy and momentum for (27-35) can be discussed in a

similar way, but with tedious calculation.
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5. Conclusion Theorem 1 tells us that concatenating two symplectic Runge-Kutta methods

probably produce a multi-symplectic integrator with order that we need. Theorem 2 provides theo-

retically much more constructing ways of multi-symplectic integrators by using partitioned Runge-

Kutta methods. For example, a multi-symplectic integrator of the wave equation can be produced

by using the Lobatto IIIA-IIIB pair to discrete the equation both in time and in space directions.
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