
A preliminary version of this paper appears in the Proceedings of CCS 2018. This is the full version.

The Multi-user Security of GCM, Revisited:

Tight Bounds for Nonce Randomization

Viet Tung Hoang1 Stefano Tessaro2 Aishwarya Thiruvengadam3

October 15, 2018

Abstract

Multi-user (mu) security considers large-scale attackers (e.g., state actors) that given ac-
cess to a number of sessions, attempt to compromise at least one of them. Mu security of
authenticated encryption (AE) was explicitly considered in the development of TLS 1.3.

This paper revisits the mu security of GCM, which remains to date the most widely used
dedicated AE mode. We provide new concrete security bounds which improve upon previous
work by adopting a refined parameterization of adversarial resources that highlights the impact
on security of (1) nonce re-use across users and of (2) re-keying.

As one of the main applications, we give tight security bounds for the nonce-randomization
mechanism adopted in the record protocol of TLS 1.3 as a mitigation of large-scale multi-user
attacks. We provide tight security bounds that yield the first validation of this method. In
particular, we solve the main open question of Bellare and Tackmann (CRYPTO ’16), who
only considered restricted attackers which do not attempt to violate integrity, and only gave
non-tight bounds.

1 Department of Computer Science, Florida State University, Tallahassee, Florida 32304, USA. Email:
tvhoang@cs.fsu.edu. URL: http://www.cs.fsu.edu/~tvhoang/. Supported in part by NSF grants CICI-1738912
and CRII-1755539.

2 Department of Computer Science, University of California Santa Barbara, Santa Barbara, California 93106,
USA. Email: tessaro@cs.ucsb.edu. URL: http://www.cs.ucsb.edu/~tessaro/. Supported in part by NSF grants
CNS-1553758 (CAREER), CNS-1423566, CNS-1719146, CNS-1528178, and IIS-1528041, and by a Sloan Research
Fellowship.

3 Department of Computer Science, University of California Santa Barbara, Santa Barbara, California 93106,
USA. Email: aish@cs.ucsb.edu. Supported in part by the Defense Advanced Research Projects Agency (DARPA)
and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through
Galois.

1

Contents

1 Introduction 3
1.1 Mu Security and Nonce Randomization . 3
1.2 Our Results . 4

2 Preliminaries 6
2.1 Authenticated Encryption . 7
2.2 The H-coefficient Technique . 7

3 Multi-security of GCM 8
3.1 The CAU Scheme . 8
3.2 Security of CAU . 9

4 RGCM and the XOR transform 17

5 The Concatenation transform 19

6 Security with Public Salting 21

References 22

2

1 Introduction

Authenticated Encryption (AE) is symmetric encryption that protects both confidentiality and
integrity, and is arguably the most widely used primitive in applied cryptography–in particular, it
protects data transmission in most in-use secure communication protocols like TLS, IPSec, SSH,
WPA-2, SRTP, etc.

We consider an emerging concern in the Internet-wide adoption of AE, namely large-scale adver-
saries, like state actors, which can launch coordinated attacks against a large number u of sessions
(e.g., u = 220 or 230), which all use the same cryptographic algorithms with independent keys.
The setting of multi-user (mu) security, introduced by Biham [6] in symmetric cryptanalysis and
by Bellare, Boldyreva, and Micali [3] in public-key cryptography, deals with such attacks. More
precisely, it considers attackers who succeed as long as they can compromise at least one out of u
sessions (referred to as “users”). As made evident in a series of recent works [23, 18, 2, 10, 11, 13, 7],
estimating how security degrades as u grows is a challenging technical problem that affects the real
world: Indeed, the goal of mitigating mu attacks explicitly influenced design choices in the record
protocol of TLS 1.3 [20, Appendix E.2], which have however been adopted without full validation,
as we explain below.

Overview. This paper revisits AE, and more specifically the widely adopted Galois Counter-Mode
(GCM) scheme [17], in the mu setting. We prove new tight bounds for GCM which improve upon
existing ones [5, 13] by considering a fine-grained setting that assumes both (1) a bound d on the
number of users re-using any particular nonce, and (2) a bound B on the amount of data encrypted
by each user.

This allows us to analyze some deployment practices for GCM that have a positive impact on mu
security. On the one hand, we show that frequent re-keying improves AE mu security. On the other
hand, we show how mu security is affected by policies adopted to choose nonces, e.g., combining
(secret) pseudorandom values and counters. We refer to such techniques as nonce randomization.
We show, with precise tight bounds, that nonce randomization increases the mu security of AE,
and apply this insight to GCM-based AE, confirming an intuition initially put forward in the design
of TLS 1.3.1 We also show that already in-place nonce selection strategies in TLS 1.2 effectively
improve mu security.

Prior to this work, Bellare and Tackmann (BT) [5] were the only ones to rigorously study the
specific GCM-based approach adopted by TLS 1.3. As we discuss below, their analysis is non-tight
and only considers adversaries attempting to break confidentiality. Here, we complete the picture
with tight bounds and full AE security, and resolve their main open question.

1.1 Mu Security and Nonce Randomization

Here, we follow the conventional AEAD interface which allows us to (deterministically) encrypt
a plaintext M , with a nonce N and associated data A as a ciphertext EK(N,A,M). Security is
meant to hold as long as no two pairs (M,A) are encrypted with the same N . (We will not discuss
nonce-misuse resistance [21] in this paper.)

The mu security of AE. One question is what is the best we can expect from an AE scheme
in terms of its mu security. To this end, BT adapt a well-known generic key-recovery attack by
Biham [6] to AEAD. First, fix N∗, A∗ and M∗, and obtain their encryption with respect to u

1As we detail below, such approaches were used before, but never was mu security suggested as an explicit
motivation for nonce randomization before TLS 1.3.

3

different users, which yields ciphertexts

Ci = EKi
(N∗, A∗,M∗) , i = 1, . . . , u ,

where Ki is the key of the i-th user. The attacker’s goal is to recover at least one of the Ki’s.
To do so, it makes p key-guesses K (e.g., random ones), and for each guess, computes C =
EK(N∗, A∗,M∗). If C = Ci for some i, then K = Ki. It is not hard to see that the probabil-
ity that this attack succeeds is roughly u · p/2k, where k is the key-length (e.g., k = 128 in GCM
based on 128-bit AES). Therefore, the effort to succeed is only p ≈ 2k−log(u).

Nonce randomization. The above generic attack is not always as threatening in practice, as
in-place policies for choosing nonces limit its impact. Typically, an AE scheme would be invoked
with a nonce N which combines a (usually public) part like a counter, to be sent along with the
ciphertext, and an implicit part, often secret and already known by the endpoints (this could be
generated as part of a prior handshake). McGrew [15] gives an overview of such methods in an
Internet Draft, and we refer to them as “nonce randomization” techniques.

For example, RFC 5288 [22]–which describes the GCM ciphersuites for TLS 1.2–mandates
nonces whose implicit part is a session-dependent (pseudo)random salt generated as part of the
handshake. Thus, with u users, each nonce is re-used by (on average) u/232 users, and in the above
attack, each ciphertext C can thus be checked against at most u/232 ciphertexts (rather than u),
reducing the success probability to roughly u · p/2160 for a 128-bit key.

An even more effective approach (at least with respect to preventing the above attack) are so-
called “unpredictable nonces”, and this is the approach taken by TLS 1.3 [20] and previously used
within the SRTP protocol [1]. Here, a secret random offset mask J is chosen, and then, whenever we
need to encrypt a message with nonce N , it is encrypted with nonce N⊕J instead. BT [5] analyzed
this method in the specific case of GCM used by TLS 1.3, casting it as a standalone AE scheme
called RGCM. They fall short of a full analysis, however, giving merely non-tight bounds that
confirm better-than-average passive (i.e., IND-CPA) security. We stress that integrity is even more
fundamental in the mu setting – indeed, while a single session can abort after a failed verification
attempt, mu attackers can spread forgery attempts across different users, making uncoordinated
attack detection much harder.

We note that with the exception of the standardization of TLS 1.3 [20, Appendix E.2], the
treatment of mu attacks has not been explicitly mentioned as a motivation, even though some of
the published motivating work [16] considered key-collision attacks arising from two users having
the same key, which are of course special cases of mu attacks.

1.2 Our Results

In this paper, we complete the picture for the security of GCM in the multi-user setting with tight
and more refined bounds. These will allow us to give precise bounds when nonce randomization
policies are applied to GCM.

The d-bounded model and RGCM. Here, we consider the mu version of AE security from [5],
which requires indistinguishability from random ciphertexts in presence of a verification oracle. In
addition, we adopt the model by Bose, Hoang, and Tessaro (BHT) [7], which we refer to as the
d-bounded model: it postulates that each nonce can be re-used by at most d users for encryption.
More formally, the attacker gets to ask encryption queries of the form (i, N,A,M), which produce
an encryption EKi

(N,A,M) under the key Ki of the i-th user. Here, the constraints are that (1)
for every i, no two queries with the same N are asked, and (2) for every N , there are at most d
i’s for which a query (i, N,A,M) is asked for some M,A. However, its queries to the verification

4

oracle are unrestricted, and take the form (i, N,A,C) and return true if and only if C is a valid
ciphertext under Ki for N and A.

The goal is to give security bounds which are parameterized by d. Jumping ahead, this model
allows us to see a nonce-randomization policy as part of the adversary which ensures a certain d
when picking nonces.

Although we rely on the model proposed by BHT [7], we emphasize that our security goal is
different - we consider only nonce-respecting and do not consider misuse-resistance. While there
is some conceptual overlap due to the settings, apart from relying on some balls-and-bins lemma
from BHT our proofs proceed differently.

GCM in the d-bounded model. Our main technical result is an analysis of CAU – a generaliza-
tion of GCM presented by BT – in the d-bounded model, assuming the underlying blockcipher is
ideal. We show that for every adversary making q encryption/verification queries, p ideal-cipher
queries, and encrypting/verifying overall σ blocks of data, the advantage of breaking CAU’s AE
security is of the order2

d(p+ q) + n(p+ q + σ)

2k
+

σB

2n

where k and n are the blockcipher key and block length, respectively, and B is a bound on the
number of blocks encrypted per user. We stress that our bound does not depend on the number of
users u, which can depend on adaptive choice of the adversary, and can be as high as q.

In comparison, BT [5] show a bound for the case where d is unbounded (i.e., d = u) of order3

u(u+ p)

2k
+

uσ2

2n

This bound was (somewhat implicitly) improved later by [13], essentially improving the second

term to σ2

2n only, which is the (tight) single-user bound [12].

Why this bound matters. Our bound is interesting for its parameterization: It shows that
when d is small, the security increases substantially, and this will enable an analysis of nonce
randomization techniques. Even for the u = d case, the parameterization with B shows important
insights: First off, if we have u users, all transmitting roughly the same amount of data B := σ/u,
the term becomes σ2/(u2n)–much better than σ2/2n as u grows. Moreover, users normally re-key,
ensuring no session transmits too much data, and thus generally B can be fixed independently of
σ–moreover, the smaller (i.e., we re-key more often), the better. If for instance, B = 233, n = 128,
then this allows each user/session to encrypt up to 240 bits = 232 bytes = 4.3 GB, yet the term
becomes σ/295.

Nonce randomization methods: Generic transforms. We cast both nonce-randomization
schemes discussed above as generic transformations building an AE scheme with longer keys from
one with shorter ones. The first one implements unpredictable nonces, as in TLS 1.3 and SRTP,
and we refer to it as XN. If the underlying scheme uses a key K of length k and nonce length r,
the resulting scheme uses a key K ‖ J of length k+ r. If we denote by E the encryption of the given
AE scheme, the encryption E∗ is such that

E∗(K ‖ J,N,A,M) = E(K,N ⊕ J,A,M) .

Note that XN still has r-bit nonces. For the specific case where E comes from GCM, BT refer to
this construction as RGCM.

2We omit lower-order terms, and small constant factors.
3For ease of comparison and to their advantage, we are replacing qℓ used by BT, where ℓ is the maximal block

length of an encrypted/verified message, with σ.

5

An alternative construction, which reflects what is adopted in TLS 1.2, for example, is what we
refer to as CN. Here, for a parameter t < r, the key is (k + t)-bits long (and has form K ‖ J), and
the resulting nonce length is r − t. Then, we let

E∗(K ‖ J,N,A,M) = E(K, J ‖N,A,M) .

We are not aware of this construction having been studied explicitly.
We prove generic results that relate the security of the XN and CN constructions to the d-

bounded security of the underlying AE. The intuition why this is possible is quite clear: For XN,
for example, every time an encryption query (i, N,A,M) is made, this reflects itself to encrypting
with E using nonce N ′ = N ⊕ Ji, where Ji is user i’s J-component of the key. This ensures that no
N ′ is re-used across too many users–a fact that relies on the Ji’s being secret, and a balls-into-bins
argument. In fact, because the Ji’s are secret, it turns out that a bound in a weaker version of
the model, where nonces are re-used for at most d users also in verification queries, is enough. We
briefly discuss below applications that require the stronger model.

Bounds for RGCM: Old and new. One main consequence when instantiating XN with GCM
and our analysis in the d-bounded model is that we can provide a complete and tight analysis of
RGCM which substantially improves upon [5]. Their analysis only shows RGCM is no less secure
than GCM, and give an improved bound which only considers attackers not making verification
queries. BT’s bound is of the order (parameters as above, and r is the nonce length)

u2 + 40p

2k
+

uσ2

2n
+

upσ

2k+n
+

upq

2k+r
.

For example, if k = 128, then u can be at most 264.
We show a much stronger bound, crucially also taking into account verification queries. As long

as q ≤ 2r(1−ǫ) for some small constant ǫ > 0, our bound is of the order

n(p+ σ)

2k
+

σB

2n
+

σ2 + pq

2k+n
. (1)

Public Salting. The XN and CN constructions reflect practical usage, and keep the value J secret.
However, as we discuss briefly below in the paper, our result in the d-bounded model enables us to
give a much stronger result which does not require J to be secret at all, as long as nonces are not
chosen arbitrarily by the adversary.

For example, if each user encrypts using nonces Ji ⊕ 0, Ji ⊕ 1, Ji ⊕ 2, . . . and makes nonces
public (thus Ji is known to the adversary for each i), we can think of this as a particular adversary
attacking AE security of GCM and using such nonces. Then, our bound on GCM implies similar
security as that of RGCM without making J secret (thus saving on key length). In particular, our
bound holds even if the attacker attempts verification queries with arbitrary repeating nonces.

The ideal-cipher model. This paper relies on ideal models, and in particular, the ideal-cipher
model, for its analyses. This is a common trait of most analyses in the mu regime–one issue is
that we are particularly concerned here with how local computation (approximated by the p ideal
cipher queries) affects security, and classical assumptions on blockciphers (PRP security) are not
helpful in making this type of statements.

2 Preliminaries

Notation. Let ε denote the empty string. For a finite set S, we let x←$ S denote the uniform
sampling from S and assigning the value to x. Let |x| denote the length of the string x, and

6

for 1 ≤ i < j ≤ |x|, let x[i, j] (and also x[i : j]) denote the substring from the ith bit to the
jth bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with
randomness r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result
of picking r at random and letting y ← A(x1, . . . ; r). In the context that we use a blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n, the block length of a string x, denoted |x|n, is max

{

1,
⌈

|x|/n
⌉}

.

2.1 Authenticated Encryption

An AE scheme Π is a triple (K, E ,D) with message spaceM and nonce space N . The encryption
scheme E takes as input a key K ∈ K, a nonce N ∈ N , associated data A ∈ {0, 1}∗, a message
M ∈ M, and deterministically returns a ciphertext C ← EK(N,A,M). The decryption scheme D
takes as input a key K, a nonce N , associated data A, a ciphertext C, and returns either a message
M ∈ M, or the error symbol ⊥. We require that, if C ← EK(N,A,M) then M ← DK(N,A,C),
for correctness.

Mu security of AE. Let Π[E] = (K, E ,D) be an AE scheme on top of an ideal cipher E :
{0, 1}k × {0, 1}n → {0, 1}n. Let A be an adversary. Define

Advmu-ae
Π[E] (A) = Pr[RealAΠ[E] ⇒ 1]− Pr[RandAΠ[E] ⇒ 1],

where games RealAΠ[E] and RandAΠ[E] are defined in Fig. 1. Under each game, the adversary A
is given access to three oracles Enc,Vf, and Prim. For encryption queries Enc(i, N,A,M), we
require that the adversary must not repeat the pairs (i, N). The adversary can repeat nonces
in the verification queries Vf(i, N,A,C), but to avoid trivial wins, once the adversary queries
Enc(i, N,A,M) to receive C, it is prohibited from querying Vf(i, N,A,C).

We say that an adversary is d-repeating if it never uses the same nonce for more than d users in
encryption queries. We stress that a d-repeating adversary can still repeat nonces across different
users in verification queries as often as it wishes. The single-user setting corresponds to d = 1.

We say that an adversary is strongly d-repeating if for both encryption and verification queries,
it never uses the same nonce for more than d users. While this restriction on verification queries
seems impossible to enforce, we shall see later that the mu-security of RGCM against a generic
adversary can be reduced to the mu-security of GCM against a strongly d-repeating adversary, for
some small constant d. Similarly, the mu-security of the GCM scheme used in TLS 1.2 can be
reduced to the mu-security of GCM against a strongly d-repeating adversary for an appropriate
choice of d.

When we consider security against (strongly) d-repeating adversaries, we informally refer to
this as the d-bounded model.

2.2 The H-coefficient Technique

Systems and Transcripts. Following the notation from [10] (which was in turn inspired by
Maurer’s framework [14]), it is convenient to consider interactions of a distinguisher A with an
abstract system S which answers A’s queries. The resulting interaction then generates a transcript
τ = ((X1, Y1), . . . , (Xq, Yq)) of query-answer pairs. It is known that S is entirely described by the
probabilities pS(τ) that correspond to the system S responding with answers as indicated by τ
when the queries in τ are made.

We will generally describe systems informally, or more formally in terms of a set of oracles they
provide, and only use the fact that they define corresponding probabilities pS(τ) without explicitly
giving these probabilities. We say that a transcript τ is valid for system S if pS(τ) > 0.

7

Game RealAΠ[E]

K1,K2, · · · ←$K; b′←$AEnc,Vf,Prim; return b′

procedure Enc(i, N,A,M)

return EKi
(N,A,M)

procedure Vf(i, N,A,C)

V ← DKi
(N,A,C); return (V 6= ⊥)

procedure Prim(J,X)

if X = (+, x) then return EJ(x)

if X = (−, y) then return E−1
J (y)

Game RandAΠ[E]

b′←$AEnc,Vf,Prim; return (b′ = 1)

procedure Enc(i, N,A,M)

C←$ {0, 1}|M |+λ; return C

procedure Vf(i, N,A,C)

return false

procedure Prim(J,X)

if X = (+, x) then return EJ(x)

if X = (−, y) then return E−1
J (y)

Figure 1: Games defining the multi-user security of an AE scheme Π. This scheme is
based on a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. We assume that under the scheme Π, the
ciphertext is always λ-bit longer than the message.

The H-coefficient technique. We now describe the H-coefficient technique of Patarin [19, 8].
Generically, it considers a deterministic distinguisherA that tries to distinguish a “real” system Sreal

from an “ideal” system Sideal. The adversary’s interactions with those systems define transcripts
Treal and Tideal, respectively, and a bound on the distinguishing advantage of A is given by the
statistical distance SD(Treal, Tideal).

Lemma 2.1 [19, 8] Suppose we can partition the set of valid transcripts for the ideal system into

good and bad ones. Further, suppose that there exists ǫ ≥ 0 such that 1 − pSreal
(τ)

pSideal
(τ) ≤ ǫ for every

good transcript τ . Then,
SD(Tideal, Treal) ≤ ǫ+ Pr[Tideal is bad] .

3 Multi-security of GCM

In this section, we consider the mu security of authenticated encryption (AE) construction CAU [5],
which includes GCM as a special case. CAU loosely follows the encrypt-then-MAC paradigm,
where the encryption scheme is the CTR mode on a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n,
and the MAC is the Carter-Wegman construction via an almost XOR-universal (AXU) hash. We
begin by recalling the definition of AXU hash functions.

AXU hash. Recall that for a string x, the block length |x|n of x is defined as max{1, ⌈|x|/n⌉}. We
callH : K×{0, 1}∗×{0, 1}∗ → {0, 1}n a c-AXU hash if for any (M,A) 6= (M ′, A′) in {0, 1}∗×{0, 1}∗,
and any z ∈ {0, 1}n,

Pr
K←$K

[HK(M,A)⊕HK(M ′, A′) = z] ≤ c ·max{|M |n + |A|n, |M ′|n + |A′|n}
2n

.

3.1 The CAU Scheme

Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Let H : {0, 1}n× ({0, 1}∗×{0, 1}∗)→ {0, 1}n
be a c-AXU hash. The nonce space N of CAU is {0, 1}r, for r < n, and its key space is {0, 1}k.
For a string Z ∈ N , we write pad(Z) to refer to the string Z0n−r−11. The message space is the set
of binary strings whose block length is strictly less than 2n−r − 1.

8

procedure CAU.Enc(K,N,A,M)

// 0 ≤ |Mℓ| < n, and |Mi| = n otherwise

Y ← pad(N); M1 · · ·Mℓ ←M

// Encrypt with CTR mode and IV Y + 1

for i = 1 to ℓ− 1 do Ci ←Mi⊕EK(Y + i)

V ← EK(Y + ℓ); Cℓ ←Mℓ⊕V [1 : |Mℓ|]
C ← C1 · · ·Cℓ

// Use Carter-Wegman with H

L← EK(0n); T ← HL(A,C)⊕EK(Y)

return T ‖C

procedure CAU.Dec(K,N,A, T ‖C)

L← EK(0n); Y ← pad(N)

// 0 ≤ |Cℓ| < n, and |Ci| = n otherwise

C1 · · ·Cℓ ← C; T ′ ← HL(A,C)⊕EK(Y)

if T 6= T ′ then return ⊥
// Decrypt with CTR mode and IV Y + 1

for i = 1 to ℓ− 1 do Mi ← Ci⊕EK(Y + i)

V ← EK(Y + ℓ); Mℓ ← Cℓ⊕V [1 : |Cℓ|]
M ←M1 · · ·Mℓ

return M

Figure 2: The encryption (top) and decryption (bottom) of the authenticated encryp-
tion scheme CAU. The scheme is based on a blockcipher E and an AXU hash H.

On input (K,N,A,M), the encryption scheme first encrypts M via the CTR mode of EK

with IV pad(N) + 1, to get a ciphertext core C (that does not include the IV). It then computes
a hash key L ← EK(0n), produces a tag T ← HL(A,C)⊕EK(pad(N)) and then outputs T ‖C
as the ciphertext. On input (K,N,A, T ‖C), the decryption scheme first computes the hash key
L← EK(0n). Next, if T 6= HL(A,C)⊕EK(pad(N)), it outputs ⊥. Otherwise, it uses the decryption
of CTR on EK with IV pad(N) + 1 to decrypt C, and outputs the corresponding message M .

See Fig. 2 for the code of CAU. For GCM, the blockcipher E is instantiated by AES, and thus
n = 128 and k ∈ {128, 256}. The nonce length r is 96 bits. The hash H is instantiated by the
polynomial-based hash function GHASH, and thus one can pick c = 1.5. To see why, recall that in
the original GCM document [17], McGrew and Viega showed that for any two distinct pairs (M,A)
and (M ′, A′), and for any z ∈ {0, 1}n,

Pr
K←$ {0,1}n

[GHASHK(M,A)⊕GHASHK(M ′, A′) = z] ≤ ⌈(1 + max{|M |+ |A|, |M ′|+ |A′})/n⌉
2n

≤ 1 + max{|M |n + |A|n, |M ′|n + |A′|n}
2n

≤ 1.5 ·max{|M |n + |A|n, |M ′|n + |A′|n}
2n

.

3.2 Security of CAU

Theorem 3.1 below gives a tight mu-security bound of CAU against a d-repeating adversary. We
stress that the bound σ in the theorem takes into account the block length of both the message
and the associated data of an encryption/verification query.

Theorem 3.1 (Mu-security of CAU/GCM) Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher
that we will model as an ideal cipher, with k ≥ n ≥ 128. Let H be a c-AXU hash function. Let
A be a d-repeating adversary attacking CAU[H,E] using at most p ≤ 2n−2 ideal-cipher queries, q
encryption/verification queries of total block length at most σ, and the total number of blocks in
encryption queries of each user is at most B. Then

Advmu-ae
CAU[H,E](A) ≤

d(p+ q) + n(q + σ + p)

2k
+

σ(2B + cn+ 3)

2n
+

2q + 1

22n
+

σ(σ + ncd) + 2pq

2k+n
.

9

Discussion. It is important to note that the bound in Theorem 3.1 does not depend explicitly on
the number of users, which can become as large as q. The only dependence on users is through the
parameter d, which can be (but generally is not) as large as q. The bound in Theorem 3.1 contains
three important factors, pd

2k
, nσ

2k
, and σB

2n that correspond to actual attacks. We discuss them here,
which will be instrumental for understanding the proof below.

First, for the term pd
2k
, consider the following attack. The adversary picks an arbitrary nonce N ,

a long enough message M , and makes d encryption queries (1, N,A,M), . . . (d,N,A,M), where A is
the empty string, to get answers C1, . . . , Cd respectively. (Recall that the adversary is d-repeating,
so it cannot repeat a nonce N in encryption queries for more than d users.) By picking p distinct
candidate keys K1, . . . ,Kp and comparing Ci with CAU.Enc(Kj , N,A,M) for all 1 ≤ i ≤ d and

1 ≤ j ≤ p, the adversary can recover one key with probability about pd
2k
.

For the term nσ
2k
, consider the following attack. The adversary first picks an arbitrary nonce

N and p distinct candidate keys K1, . . . ,Kp, and makes 2p ideal-cipher queries (Ki, (pad(N),+)),
(Ki, (0

n,+)). The goal of the adversary is to make q verification queries (j,N,A, T ‖C), for j =
1, . . . , q for associated data A and ciphertext T ‖C of ℓ blocks total that it will determine later. To
maximize its chance of winning, the adversary will iterate through all possible tuples (A∗, T ∗ ‖C∗) of
ℓ blocks total and compute count(A∗, T ∗ ‖C∗), the number of ideal-cipher queries (Ki, (pad(N),+))
whose answer is HLi

(A∗, C∗)⊕T ∗, where Li ← EKi
(0n). It then picks (A, T ‖C) to maximize

count(A, T ‖C). Then the adversary wins with advantage about E[count] · q/2k. The proof of
Theorem 3.1 shows that E[count] ≤ nℓ = nσ

q with very high probability, and thus the advantage of

the adversary is at most nσ/2k.

For the term σB/2n, consider the following distinguishing attack. The adversary will target u
users, where u = ⌊σ/B⌋. Let M be an arbitrary message of B blocks. Pick an arbitrary nonce N ,
and let A be the empty string. The adversary then calls Enc(i, N,A,M) to receive Ti ‖Ci, for every
i = 1, . . . , u. If some ciphertext core Ci contains two identical blocks then the adversary outputs 0,
otherwise it outputs 1. By using appropriate data structure, one can implement this attack using
O(B) space and O(σ) time. To analyze the adversary’s advantage, we need the following technical
Lemma 3.2 and Lemma 3.3. The first result states a well-known lower bound for the birthday
bound; see, for example, [9, Appendix A] for a proof. The second result is a useful inequality whose
proof can be found in [4].

Lemma 3.2 (Lower bound for birthday bound) Let N > 0 be an integer. Suppose that we
throw 1 ≤ q ≤

√
2N balls into N bins uniformly at random. Then the chance that there are two

balls that fall into the same bin is at least q(q−1)
4N .

Lemma 3.3 [4] Let p ≥ 1 be an integer and a ≥ 0 a real number. Assume ap ≤ 1. Then
(1− a)p ≤ 1− ap/2.

Back to the analysis, in the ideal world, each Ci is a truly random B−block string, and thus
from Lemma 3.2, the chance that it contains two identical blocks is at least B(B−1)

4·2n . Hence in the
ideal world, the chance that the adversary outputs 1 is at most

(

1− B(B − 1)

2n+2

)u
≤ 1− B(B − 1)u

2n+3
≈ 1− σB

2n+3

where the inequality is due to Lemma 3.3. In contrast, in the real world, the adversary will always
output 1. Hence the adversary wins with advantage about σB

2n+3 .

The term σB/2n also deserves some further discussion. It conveys an important message, and
namely that as B becomes smaller, the term becomes closer to σ/2n. A small B could be enforced,

10

for example, by ensuring that a session in a protocol only transfers a bounded amount of data
before a re-keying operation is issued. In other words, re-keying only improves multi-user security.
This is important, when compared to the single-user security analysis, which gives a bound of the
order σ2/2n. (Of course, if we have one single user, then B = σ.)

Proof ideas. The proof examines several cases but here we discuss two illustrative ones that
correspond to the two attacks above. First, consider the event that the adversary can query
Prim(K, (x,+)) and query Enc(i, N,A,M) such that K = Ki and x ∈ {pad(N), . . . , pad(N) + ℓ},
where ℓ = |M |n. This case includes the first attack above. Note that for any query Prim(K, (x,+)),
since the adversary is d-repeating, there are at most d queries Enc(i, N,A,M) such that x ∈
{pad(N), . . . , pad(N) + ℓ}, where ℓ = |M |n, and the chance that some of these d latter queries
satisfies Ki = K is at most d/2k. Hence, this case happens with probability at most dp/2k.

On the other hand, in GCM, every user i derives the hash key Li via EKi
(0n). Thus by querying

Prim(K, (0n,+)) for p keys K, the adversary may accidentally obtain some blockcipher key Ki and
its associated hash key Li with probability about pu/2k, where u is the number of users, and in
the worst case, u can be as large as q. This creates a problem in using the AXU-property of the
hash function H, since we can no longer treat the hash keys as independent of the queries. This
is exactly the issue in the second attack above, where the adversary adaptively picks verification
queries after seeing the hash keys.

To make the analysis simpler, at the beginning, we will even grant the adversary all pairs
(K,EK(0n)) for every K ∈ {0, 1}k, and this can only help the adversary. However, now when
we pick Ki←$ {0, 1}k, the corresponding key Li ← EKi

(0n) is no longer uniformly random. To
understand the distribution of the key Li, we need the following balls-into-bins result of Bose,
Hoang, and Tessaro [7].

Lemma 3.4 ([7]) Fix integers n ≥ 128, ℓ ≥ 2, and a ≥ 1. Suppose that we throw q ≤ a · 2n
balls into 2n bins. The throws may be inter-dependent, but for each i-th throw, conditioning on the
result of the prior throws, the conditional probability that the i-th ball falls into any particular bin
is at most 21−n. Then the chance that the heaviest bin contains ⌈aℓn/2⌉ or more balls is at most
2−(3ℓ+2)n.

Now, view each granted pair (K,EK(0n)) as throwing a ball into bin EK(0n). Thus we throw
2k balls uniformly at random into 2n bins. Thus using Lemma 3.4 with a = 2k−n and ℓ = 2, with
probability at least 1−2−8n, each bin contains at most n·2k−n balls. Thus for any L ∈ {0, 1}n, there
are at most n · 2k−n keys K such that EK(0n) = L. In other words, when we pick Ki←$ {0, 1}k,
the conditional min-entropy of Li is at least − lg(n · 2k−n/2k) = n− lg(n).

Going back to the dependency issue of the hash keys and its inputs, a particularly tough case is to
analyze the probability that the adversary can first make a query Prim(K, (pad(N),+)) and obtain
answer y and then query Vf(i, N,A, T ‖C), and it happens that K = Ki and HLi

(A,C)⊕T = y,
where Ki is the blockcipher key of user i, and Li ← EK(0n). This case includes the second attack
above. To deal with this case, we employ a trick from [7]. Specifically, consider a fixed tuple
(N∗, A∗, C∗) and let ℓ = |A∗|n + |C∗|n. View each query Prim(K, (pad(N∗),+)) of answer y as
throwing a ball into bin HL(A

∗, C∗)⊕y, where L← EK(0n). By Lemma 3.4 above, with probability
at least 1 − 2−(3ℓ+2)n, each bin contains at most ℓn balls. Thus for an adaptive T , the number
count

∗ of matching ideal-cipher queries is at most ℓn = (|A∗|n + |C∗|n)n, with probability at
least 1− 2−(3ℓ+2)n. Then for any adaptive choice (N,A, T ‖C), the chance that there are at most
(|A|n + |C|n) · n matching ideal-cipher queries is at least

11

1−
∞
∑

ℓ=2

∑

(i∗,N∗,A∗,C∗):|A∗|n+|C∗|n=ℓ

2−(3ℓ+2)n ≥ 1−
∞
∑

ℓ=2

22n+2ℓ · 2−(3ℓ+2)n ≥ 1− 2

22n
.

Hence, the chance that the case above happens is at most nσ/2k + 2q/22n.

Proof of Theorem 3.1 : Without loss of generality, assume that σ ≤ 2n/n; otherwise the bound
is moot. As mentioned earlier, at the beginning, we will give the adversary (K,EK(0n)) for every
K ∈ {0, 1}k, and this can only help the adversary. Because we consider computationally unbounded
adversaries, without loss of generality, assume that A is deterministic, and never repeats a prior
query. Assume that if the adversary queries Prim(K, (x,+)) to get an answer y then it will not
subsequently query Prim(K, (y,−)), since the answer would be x. Likewise, assume that if the
adversary queries Prim(K, (y,−)) to get an answer x then it will not later query Prim(K, (x,+).
Our proof is based on the H-coefficient technique.

Defining bad transcripts. In the real world, after the adversary finishes querying, we will give
it the blockcipher keys Ki of all users i. In the ideal world, we instead give the adversary truly
random stringsKi←$ {0, 1}k, independent of the transcript. Thus the transcript implicitly includes
the hash keys Li ← EKi

(0n). This key revealing only helps the adversary. Thus a transcript consists
of the revealed keys, the granted ideal-cipher queries, and the following information:

• Ideal-cipher queries: For each query Prim(K, (x,+)) with answer y, we associate it with an
entry (prim,K, x, y,+). Likewise, for each query Prim(K, (y,−)) with answer x, we associate
it with an entry (prim,K, x, y,−). We stress that we do not create prim entries for the granted
ideal-cipher queries, and thus there are at most p prim entries.

• Encryption queries: For each query Enc(i, N,A,M) with answer T ‖C, let M = M1 · · ·Mℓ

and C = C1 · · ·Cℓ, with 0 ≤ |Mℓ| = |Cℓ| < n, and |Mj | = |Cj | = n for every j < ℓ. For
each j < ℓ, let Vj = Mi⊕Cj . Let V0 = HLi

(A,C)⊕T . If |Mℓ| = 0 then let V ← V0 · · ·Vℓ−1,
otherwise let V ← V0 · · ·Vℓ, where Vℓ ← EKi

(pad(N) + ℓ) in the real world, and Vℓ ←
(Cℓ⊕Mℓ) ‖Z in the ideal world, with Z←$ {0, 1}n−|Mℓ|. The string V is revealed to the
adversary when it finishes querying, which can only improve its advantage. Associate the
query above with the entry (enc, i, N,A,M, T ‖C, V).

• Verification queries: For each query Vf(i, N,A, T ‖C), associate it with the corresponding
entry (vf, i, N,A, T ‖C). Note that we do not need to keep track of the answers of the verifi-
cation queries, since for any valid transcript in the ideal world, the answers of all verification
queries must be false.

We say that a transcript is bad if one of the following happens:

1. There are two entries (enc, i, N,A,M, T ‖C, V) and (enc, j, N,A′,M ′, T ′ ‖C ′, V ′) with i 6= j
but Ki = Kj . Eliminating this case removes potential inconsistency due to the nonce reuse.

2. There is an entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and some indices 0 ≤ s < t ≤ ℓ such that
Vs = Vt. Recall that in the real world, Vs and Vt are outputs of EKi

on different inputs
pad(N) + s and pad(N) + t. Thus in the real world, the strings Vs and Vt can’t be the same.

3. There are two entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and (enc, j, N ′, A′,M ′, T ′ ‖C ′, V ′0 · · ·V ′u)
with N 6= N ′ and with some indices s and t such that Ki = Kj , and Vs = V ′t . Again, in the

12

real world, Vs and V ′t are outputs of EKi
on different inputs pad(N) + s and pad(N ′) + t.

Thus in the real world, the strings Vs and V ′t can’t be the same.

4. There is an entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and an index t such that Vt = Li. Recall
that in the real world, Li = EKi

(0n) whereas Vt is the output of EKi
on input pad(N)+t 6= 0n.

Thus in the real world, the strings Li and Vt must be different.

5. There are two entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and (prim,K, x, y, ·) such that K = Ki

and x ∈ {pad(N), . . . , pad(N)+ℓ}. Eliminating this case removes the potential inconsistency
due to the adversary’s accidental query of a correct key.

6. There are two entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and (prim,K, x, y, ·) such that K = Ki

and y ∈ {V0, . . . , Vℓ}. Again, eliminating this case removes the potential inconsistency due to
the adversary’s accidental query of a correct key.

7. There are two entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) and (vf, j, N,A′, T ′ ‖C ′) such that V0 =
HLj

(A′, C ′)⊕T ′ and Ki = Kj . This means that the adversary should have received the
answer true for this verification query, but recall that for valid transcripts in the ideal world,
the answer must be false, leading to inconsistency.

8. There are entries (vf, i, N,A, T ‖C) and (prim,K, x, y, ·) such thatK = Ki andHLi
(A,C)⊕T =

y and x = pad(N). This means that the adversary should have received the answer true for
this verification query, but recall that for valid transcripts in the ideal world, the answer must
be false, leading to inconsistency.

If a transcript is not bad and is valid for the ideal system then we say that it is good.

Probability of bad transcripts. Let Tideal be the random variable for the transcript in the
ideal system. We now bound the probability that Tideal is bad. For each j ∈ {1, . . . , 8}, let Badj
be the set of transcripts that violates the j-th constraint of badness. View each granted query
(K,EK(0n)) as throwing a ball into bin EK(0n). Thus we throw 2k balls into 2n bins uniformly
at random. By applying Lemma 3.4 for a = 2k−n and ℓ = 2, with probability at least 1 − 2−8n,
for every string L ∈ {0, 1}n, there are at most n · 2k−n keys K such that EK(0n) = L. In other
words, given the queries/answers that the adversary receives, the conditional min-entropy of each
hash key Li is at least n− lg(n).

We first bound the probability Pr[Tideal ∈ Bad1]. For each entry (enc, i, N, ·, ·, ·, ·), there are at most
d other entries (enc, j, N, ·, ·, ·, ·) such that j 6= i, and the chance that one of those d entries satisfy
Kj = Ki is at most d/2k. Summing over at most q encryption entries,

Pr[Tideal ∈ Bad1] ≤
dq

2k
.

Next, we bound the probability Pr[Tideal ∈ Bad2]. Consider an entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ).
Since we are in the ideal world, the strings V0, . . . , Vℓ are uniformly random and independent. Thus
the chance that there are 0 ≤ s < t ≤ ℓ such that Vs = Vt is at most

ℓ(ℓ+ 1)

2n+1
≤ ℓB

2n
≤ |M |n ·B

2n
.

Summing this over all encryption queries,

Pr[Tideal ∈ Bad2] ≤
σB

2n
.

13

Next, we bound the probability Pr[Tideal ∈ Bad3]. For each entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ),
consider another entry (enc, j, N ′, A′,M ′, T ′ ‖C ′, V ′0 · · ·V ′u). Since we are in the ideal world, the
strings V0, . . . , Vℓ, V

′
0 , . . . , V

′
u are uniformly random and independent, and thus the chance that

there are s, t such that Vs = V ′t is at most (ℓ+1)(u+1)/2n ≤ (|M |n+ |A|n)(|M ′|n+ |A′|n)/2n. We
consider the following cases.

Case 1: i = j, and thus Ki = Kj . By summing over all encryption entries of user j, we obtain a
bound (|M |n+ |A|n)B/2n for the particular entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) above. Summing
this over all encryption entries, the probability corresponding to this case is at most σB/2n.

Case 2: i 6= j, and thus the conditional probability that Ki = Kj is 2−k. Summing over all pairs
of encryption entries, we obtain a bound σ2/2k+n for this case.

Summing up,

Pr[Tideal ∈ Bad3] ≤
σB

2n
+

σ2

2k+n
.

We now bound the probability Pr[Tideal ∈ Bad4]. For each encryption entry (enc, i, N,A,M, T ‖C,
V0 · · ·Vℓ), the strings V0, . . . , Vℓ are uniformly random and independent of Li, and thus the chance
that there is some Vs such that Vs = Li is at most (ℓ + 1)/2n ≤ (|M |n + |A|n)/2n. Summing this
over all encryption entries,

Pr[Tideal ∈ Bad4] ≤
σ

2n
.

Next, we bound the probability Pr[Tideal ∈ Bad5]. For each entry (prim,K, x, y), there are at most
d entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) such that x ∈ {pad(N), . . . , pad(N) + ℓ}, and the chance
that one of those d entries satisfies Ki = K is at most d/2k. Summing over all p ideal-cipher queries,

Pr[Tideal ∈ Bad5] ≤
dp

2k
.

Next, we bound the probability Pr[Tideal ∈ Bad6]. View each entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ)
as throwing ℓ+ 1 ≤ |M |n + |A|n balls into bins V0, . . . , Vℓ. Hence totally, we throw at most σ balls
into 2n bins, and the throws are uniformly random. Using Lemma 3.4, with probability at least
1− 2−8n, each bin contains at most n balls. Thus for each entry (prim,K, x, y, ·), there are at most
n entries (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) such that y ∈ {V0, . . . , Vℓ}, and the chance that one of
those n entries satisfies Ki = K is at most n/2k. Summing over all p ideal-cipher queries,

Pr[Tideal ∈ Bad6] ≤ 2−8n +
pn

2k
.

We now bound the probability Pr[Tideal ∈ Bad7]. Consider an entry (vf, i, N,A′, T ′ ‖C ′). Since the
adversary is d-repeating, there are at most d entries (enc, j, N,A,M, T ‖C, V0 · · ·Vℓ) of the same
nonce N . We consider the following cases.

Case 1: j = i. As H is c-AXU and the conditional min-entropy of Li is at least n − lg(n), the
chance that HLi

(A′, C ′)⊕T ′ = HLi
(A,C)⊕T is at most

nc(|C ′|n + |A′|n + |C|n + |A|n)/2n .

Summing that over all verification queries, the probability corresponding to this case is at most
ncσ/2n.

14

Case 2: j 6= i. As H is c-AXU and the conditional min-entropy of Li is at least n − lg(n), the
chance that HLi

(A′, C ′)⊕T ′ = HLi
(A,C)⊕T is at most

nc(|C ′|n + |A′|n + |C|n + |A|n)/2n .

Conditioning on HLi
(A′, C ′)⊕T ′ = HLi

(A,C)⊕T , the chance that Ki = Kj is at most 2−k. Sum-
ming this over all verification queries and all d matching encryption entries, the probability corre-
sponding to this case is at most ncdσ/2k+n.

Combining both cases,

Pr[Tideal ∈ Bad7] ≤
ncσ

2n
+

ncdσ

2k+n
.

Finally, we bound the probability Pr[Tideal ∈ Bad8]. We consider the following cases.

Case 1: The event Tideal ∈ Bad8 is caused by a prim entry of sign −. Again, view each entry
(prim,K, x, y,−), as throwing a ball into bin y. Thus we throw at most p balls into 2n bins, and
while the throws can be inter-dependent, their distribution satisfies the requirement of Lemma 3.4
due to the hypothesis that p ≤ 2n−2. Then by Lemma 3.4, with probability at least 1− 2−8n, the
heaviest bin contains at most n balls. Hence for each entry (vf, i, N,A, T ‖C), there are at most
n entries (prim,K, x, y,−) such that x = pad(N), and the chance that one of those prim entries
satisfies the property K = Ki is at most n/2k. Summing over all q verification queries, the chance
that this case happens is at most 2−8n + qn/2k.

Case 2: The event Tideal ∈ Bad8 is caused by a prim entry of sign + and a prior Vf query.
Consider an entry (prim,K, x, y,+). The chance that there is a prior entry (vf, i, N,A, T ‖C) such
that HL(A,C)⊕T = y, with L ← EK(0n), and Ki = K is at most q/2k(2n − p) ≤ 2q/2k+n.
Summing over all p ideal-cipher queries, the chance that this case happens is at most 2pq/2k+n.

Case 3: The event Tideal ∈ Bad8 is caused by a prim entry of sign + and a subsequent Vf query. Fix
(i∗, N∗, A∗, C∗) and let ℓ = |C∗|n+ |A∗|n. View each entry (prim,K, x, y,+) as throwing a ball into
bin y⊕HL(A

∗, C∗), where L← EK(0n). Thus we throw at most p balls into 2n bins, and while the
throws can be inter-dependent, their distribution satisfies the requirement of Lemma 3.4 due to the
hypothesis that p ≤ 2n−2. Then by Lemma 3.4, with probability at least 1−2−(3ℓ+2)n, the heaviest
bin contains at most ℓn/2 balls. Thus for any adaptive choice of T , the entry (vf, i∗, N∗, A∗, T ‖C∗)
has at most nℓ/2 corresponding entries (prim,K, x, y,−) such that y⊕HL(A

∗, C∗) = T , with L ←
EK(0n). Then for any adaptive entry (vf, i, N,A, T ‖C), the chance that it has at most n(|C|n +
|A|n) corresponding entries (prim,K, x, y,−) such that y⊕HL(A,C) = T , with L ← EK(0n), is at
least

1−
∞
∑

ℓ=2

∑

(i∗,N∗,A∗,C∗):|A∗|n+|C∗|n=ℓ

2−(3ℓ+2)n ≥ 1−
∞
∑

ℓ=2

22n+2ℓ · 2−(3ℓ+2)n ≥ 1− 2

22n
.

Moreover, the probability that one of those n(|C|n+ |A|n) entries (prim,K, x, y,+) satisfies K = Ki

is at most n(|C|n + |A|n)/2k. Summing over all verification queries, the chance that this case
happens is at most nσ/2k + 2q/22n.

Hence by the union bound,

Pr[Tideal ∈ Bad8] ≤
1

28n
+

2q

22n
+

2pq

2k+n
+

n(q + σ)

2k
.

15

Thus totally,

Pr[Tideal is bad] ≤
8

∑

i=1

Pr[Tideal ∈ Badi]

≤ d(p+ q) + n(q + σ + p)

2k
+

σ(2B + cn+ 1)

2n
+

2q + 1

22n
+

σ(σ + ncd) + 2pq

2k+n
. (2)

Transcript Ratio. Fix a good transcript τ . For a key K ∈ {0, 1}k, let the multi-set S1(K) be the
union of {(x, y) | (prim,K, x, y, ·) ∈ τ} and the set {(0n, EK(0n))} as indicated by τ . Next, initialize
the multi-set S2(K) as the empty set, and for every entry (enc, i, N,A,M, T ‖C, V0 · · ·Vℓ) ∈ τ , if
τ indicates that Ki = K then add the pairs (pad(N), V0), . . . , (pad(N) + ℓ, Vℓ) to S2(K). Finally,
initialize the multi-set S3(K) as the empty set, and for every (vf, i, N,A, T ‖C) ∈ τ , if τ indicates
that Ki = K and there is no entry of the form (pad(N), ·) or (·, Z) in S1(K) ∪ S2(K), where
Z ← HLi

(A,C)⊕T , then add the pair (pad(N), Z) to S3(K). Let

s =
∑

K∈{0,1}k

|S3(K)|

which is at most the total number of verification queries. Thus s ≤ q.

Suppose that this transcript τ contains exactly u users. Then in the ideal world, since τ is good,

pSideal
(τ) = 2−ku

∏

K∈{0,1}k

|S1(K)|−1
∏

i=0

1

2n − i
·
|S2(K)|−1

∏

j=0

1

2n
.

On the other hand, in the real world, the multi-sets S1(K) and S2(K) indicate pairs (x, y) such
that EK(x) must be y, and the multi-set S3(K) indicate pairs (u, v) such that EK(u) must not be
v. Since τ is good, those multi-sets contain no conflicting information, and S1(K) and S2(K) are
disjoint. Let V (K) = |S1(K)|+ |S2(K)|. Note that V (K) + |S3(K)| ≤ σ + q + p+ 1 ≤ 2n−1. Then

pSreal
(τ) ≥ 2−ku

∏

K∈{0,1}k

V (K)−1
∏

i=0

1

2n − i

|S3(K)|−1
∏

j=0

(

1− 1

2n − V (K)− j

)

.

Hence

pSreal
(τ)

pSideal
(τ)

≥
∏

K∈{0,1}k

|S3(K)|−1
∏

j=0

(

1− 1

2n − V (K)− j

)

≥
∏

K∈{0,1}k

|S3(K)|−1
∏

j=0

(

1− 1

2n − V (K)− |S3(K)|
)

≥
∏

K∈{0,1}k

|S3(K)|−1
∏

j=0

(

1− 1

2n−1

)

=
(

1− 1

2n−1

)s
≥ 1− s

2n−1
≥ 1− q

2n−1
, (3)

where the second last inequality is due to the fact that (1 − x)t ≥ 1 − tx for any t ≥ 1 and any
0 < x < 1.

16

procedure K∗()

K←$K(); J ←$ {0, 1}r
return K ‖ J

procedure E∗(K ‖ J,N,A,M)

N∗ ← N⊕J ; C←$ E(K,N∗, A,M)

return C

procedure D∗(K ‖ J,N,A,C)

N∗ ← N⊕J ; M ← D(K,N∗, A, C)

return M

Figure 3: The XN transform to turn an AE scheme Π = (K, E ,D) to another AE scheme Π∗ =
(K∗, E∗,D∗).

Wrapping up. From Eq. (2) and Eq. (3), by using Lemma 2.1 with ǫ = 2q/2n ≤ 2σ/2n,

Advmu-ae
CAU[H,E](A)

≤ d(p+ q) + n(q + σ + p)

2k
+

σ(2B + cn+ 3)

2n
+

2q + 1

22n
+

σ(σ + ncd) + 2pq

2k+n
.

as claimed.

Remarks. In TLS, an adversary can attempt at most one verification query per user, because
a verification failure causes termination of the connection. One might wonder if the security of
GCM can be improved in this restricted setting. In other words, we are interested in security
of GCM against an adversary who, for each user, must make at most a verification query, and
this verification query is made after all encryption queries for that particular user. However, any
bound for such an adversary will continue to contain the bottleneck terms pd

2k
and σB

2n , as there are
matching attacks that only use encryption and ideal-cipher queries. Thus in the restricted setting
above, the bound can only be slightly improved at best.

4 RGCM and the XOR transform

In this section, we introduce the XN transform that turns an AE scheme Π into another AE scheme
Π∗ by randomizing the effective nonces via an XOR operation. The scheme RGCM can be viewed
as XN(GCM). We then reduce the mu security of Π∗ under a generic adversary to that of Π under
a strongly d-repeating adversary, where d is a small constant.

The XN transform. Let Π = (K, E ,D) be an AE scheme of nonce length r and key length k.
Define the AE scheme Π∗ = (K∗, E∗,D∗) of nonce length r and key length k + r as in Fig. 3. For
a key K ‖ J of Π∗, we refer to the subkey K the encryption key, and the subkey J as the nonce
randomizer.

Security gain via XN. We now reduce security of Π∗ = XN(Π) under a generic adversary to
that of Π under a strongly d-repeating adversary. This seems to be just a direct corollary of a
generalized balls-into-bins result, where one throws q inter-dependent balls into 2r bins as follows:
(1) the marginal distribution of each ball is uniformly random, (2) balls of the same user must fall
into different bins, and (3) balls of different users are independent. This balls-into-bins phenomenon
is analyzed in Lemma 4.1 below.

Lemma 4.1 Let 0 < ǫ < 1 be a number, and let r ≥ 1 be an integer. Suppose that we throw
q ≤ 2(1−ǫ)r balls into 2r bins. Before each ball is thrown, it is associated with a user i. The marginal
distribution of each ball is uniformly random, balls of the same user must fall into different bins,
and balls of different users are independent. Let X be the random variable for the number of balls
in the heaviest bin, and let d = ⌈1.5/ǫ⌉ − 1. Then

Pr[X > d] ≤ 2−r/2 .

17

Proof: Let s = d+ 1 = ⌈1.5/ǫ⌉. Since we throw q balls, there are

(

q

s

)

≤ qs

s!

sets of s balls. For each set, if it contains two balls of the same user then the balls in this set cannot
be in the same bin. Otherwise, the balls in this set are thrown uniformly and independently, and
thus the chance that they are in the same bin is 2−r(s−1). By the union bound, the chance that
there is a bin of s or more balls is at most

qs

2r(s−1)
≤ 2(1−ǫ)rs

2r(s−1)
=

1

2r(ǫs−1)
≤ 1

2r/2
.

This concludes the proof.

Back to the security gain via the XN transform, the analysis above however only holds if the
adversary non-adaptively chooses its nonces. If the adversary is somehow able to adaptively learn
the nonce randomizers via its queries, it can then repeat the effective nonces as often as it wishes.
Theorem 4.2 below refines the prior naive argument to handle adaptivity.

Theorem 4.2 Let E be a blockcipher that we will model as an ideal cipher. Let Π[E] = (K, E ,D)
be an AE scheme of nonce length r, and let Π∗[E] = XN(Π[E]). Fix 0 < ǫ < 1. Let A be an
adversary attacking Π∗ using at most q ≤ 2(1−ǫ)r Enc queries. Then we can construct a strongly
d-repeating adversary B of the same concrete query complexity as A, where d = ⌈1.5/ǫ⌉ − 1, such
that

Advmu-ae
Π∗[E](A) ≤ Advmu-ae

Π[E] (B) +
1

2r/2
.

Proof: Adversary B initializes a flag bad← false and runs A with direct access to its ideal cipher.
For each encryption query (i, N,A,M) (respectively, verification query (i, N,A,C)) of the latter,
B initializes Ji←$ {0, 1}r if the string Ji is not defined, otherwise it uses the existing Ji, and then
creates an effective nonce N∗ ← N⊕Ji. If B did use N∗ for d other users previously, it’ll set
bad← true, terminate A, and output 1. Otherwise, B queries C ← Enc(i, N∗, A,M) (respectively,
Vf(i, N∗, A, C)), and returns the answer to A. When A finishes (without being terminated pre-
maturely) and outputs a bit b′, adversary B will output the same bit. Note that B is strongly
d-repeating, and for each individual user, if A does not repeat a nonce among encryption queries
then B also does not repeat an effective nonce among encryption queries. Moreover,

Pr[RealBΠ[E] ⇒ 1] ≥ Pr[RealAΠ∗[E] ⇒ 1] , (4)

because B either outputs 1, or agrees with A. Since game RandAΠ∗[E] and the game that B simulates
in its ideal world are identical until bad is set,

Pr[RandBΠ[E] ⇒ 1] ≤ Pr[RandBΠ[E] sets bad] + Pr[RandAΠ∗[E] ⇒ 1] . (5)

Subtracting Eq. (5) from Eq. (4) side by side, we obtain

Advmu-ae
Π[E] (B) ≥ Advmu-ae

Π∗[E](A)− Pr[RandBΠ[E] sets bad] .

18

procedure K∗()

K←$K(); J ←$ {0, 1}t
return K ‖ J

procedure E∗(K ‖ J,N,A,M)

N∗ ← J ‖N ; C←$ E(K,N∗, A,M)

return C

procedure D∗(K ‖ J,N,A,C)

N∗ ← J ‖N ; M ← D(K,N∗, A, C)

return M

Figure 4: The CN transform to turn an AE scheme Π = (K, E ,D) to another AE scheme Π∗ =
(K∗, E∗,D∗).

It now suffices to show that Pr[RandBΠ[E] sets bad] ≤ 2−r/2. Recall that B sets bad to true only
if adversary A can force B to use some effective nonce across more than d users. However, in
game RandBΠ[E], the oracle answers are completely independent of the nonce randomizers Ji that

B chooses. Hence one can view RandBΠ[E] as A’s throwing q balls into 2r bins where the throwing
distribution is specified in Lemma 4.1, and bad is set only if some bin contains d or more balls.
From Lemma 4.1, RandBΠ[E] sets bad with probability at most 2−r/2 as claimed.

Security of RGCM. Combining Theorem 4.2 above with Theorem 3.1, we immediately obtain
a strong security bound for RCAU = XN(CAU), which includes RGCM as a special case for c = 1.5,
r = 96, n = 128 and k ∈ {128, 256}.

Theorem 4.3 (Mu-security of RCAU/RGCM) Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockci-
pher that we will model as an ideal cipher, with k ≥ n ≥ 128. Let H be a c-AXU hash function,
and let r be the nonce length. Fix a number 0 < ǫ < 1, and let d = ⌈1.5/ǫ⌉ − 1. Let A be an
adversary attacking RCAU[H,E] using at most p ≤ 2n−2 ideal-cipher queries, q ≤ 2(1−ǫ)r encryp-
tion/verification queries of total block length at most σ, and the encryption queries are of at most
B blocks per user. Then

Advmu-ae
RCAU[H,E](A)

≤ d(p+ q) + n(q + σ + p)

2k
+

σ(2B + cn+ 2)

2n
+

2q + 1

22n
+

σ(σ + ncd) + 2pq

2k+n
+ 2−r/2 .

5 The Concatenation transform

In this section, we introduce the CN transform that turns an AE scheme Π into another AE scheme
Π∗ by randomizing the effective nonces by concatenating a random string. We then reduce the mu
security of Π∗ under a generic adversary to that of Π under a strongly d-repeating adversary. This
transformation is used, for example, in the GCM scheme in TLS 1.2 and IPSec.

The CN transform. Let Π = (K, E ,D) be an AE scheme of nonce length r and key length k. For
a parameter t < r, define the AE scheme Π∗ = (K∗, E∗,D∗) of nonce length r − t and key length
k + t as in Fig. 4. For a key K ‖ J of Π∗, we refer to the subkey K the encryption key, and the
subkey J as the nonce randomizer.

Security gain via CN. We now reduce security of Π∗ = CN(Π) under a generic adversary to that
of Π under a strongly d-repeating adversary. To prove this theorem, we need the following lemma
whose proof is along the same lines as that of Lemma 3.4 [7] except with the assumption that t ≥ 32
instead of t ≥ 128. We briefly recall the proof for completeness.

Lemma 5.1 Fix integers t ≥ 32, and a, ℓ ≥ 2. Suppose that we throw q ≤ a · 2t balls into 2t bins.
The throws may be inter-dependent, but for each i-th throw, conditioning on the result of the prior
throws, the conditional probability that the i-th ball falls into any particular bin is at most 21−t.
Then the chance that the heaviest bin contains ⌈aℓt/2⌉ or more balls is at most 2−t(2ℓ−1).

19

Proof: Let s = t− 1 and r = ⌈aℓt/2⌉ ≥ 32a. There are

(

q

r

)

≤ qr

r!

sets of r balls out of the thrown q balls. For each set, the chance that all the balls are in the same
bin is 2−s(r−1). By the union bound, the chance that there is a bin of r or more balls is at most

qr

r! · 2s(r−1) ≤
(2a)r2rs

r! · 2s(r−1) ≤
(2a)r2s

(r/e)r
.

The second inequality is due to the fact that n! ≥ (n/e)n for every integer n ≥ 1. Further,

(2a)r2s

(r/e)r
≤ 2t

(16/e)ℓt
≤ 2−t(2ℓ−1) .

The last inequality relies on the assumption that ℓ ≥ 2. This concludes the proof.

We are now ready to prove Theorem 5.2.

Theorem 5.2 Let E be a blockcipher that we will model as an ideal cipher. Let Π[E] = (K, E ,D) be
an AE scheme of nonce length r. Let Π∗[E] = CN(Π[E]) have nonce length r− t where r > t ≥ 32.
Let A be an adversary attacking Π∗ using at most q Enc queries. Then we can construct a strongly
d-repeating adversary B of the same concrete query complexity as A, where d = ⌈qt/2t−1⌉, such
that

Advmu-ae
Π∗[E](A) ≤ Advmu-ae

Π[E] (B) + 2−7t .

Proof of Theorem 5.2: Adversary B initializes a flag bad← false and runs A with direct access to
its ideal cipher. For each encryption query (i, N,A,M) (respectively, verification query (i, N,A,C))
of the latter, B initializes Ji←$ {0, 1}t if the string Ji is not defined, otherwise it uses the existing
Ji, and then creates an effective nonce N∗ ← Ji ‖N . If B did use N∗ for d other users previously,
it’ll set bad ← true, terminate A, and output 1. Otherwise, B queries C ← Enc(i, N∗, A,M)
(respectively, Vf(i, N∗, A, C)), and returns the answer to A. When A finishes (without being
terminated prematurely) and outputs a bit b′, adversary B will output the same bit. Note that B is
strongly d-repeating, and for each individual user, if A does not repeat a nonce among encryption
queries then B also does not repeat an effective nonce among encryption queries. Moreover,

Pr[RealBΠ[E] ⇒ 1] ≥ Pr[RealAΠ∗[E] ⇒ 1] , (6)

because B either outputs 1, or agrees with A. Since game RandAΠ∗[E] and the game that B simulates
in its ideal world are identical until bad is set,

Pr[RandBΠ[E] ⇒ 1] ≤ Pr[RandBΠ[E] sets bad] + Pr[RandAΠ∗[E] ⇒ 1] . (7)

Subtracting Eq. (7) from Eq. (6) side by side, we obtain

Advmu-ae
Π[E] (B) ≥ Advmu-ae

Π∗[E](A)− Pr[RandBΠ[E] sets bad] .

20

It now suffices to show that Pr[RandBΠ[E] sets bad] ≤ 2−7t. Recall that B sets bad to true only
if adversary A can force B to use some effective nonce across more than d users. However, in
game RandBΠ[E], the oracle answers are completely independent of the nonce randomizers Ji that

B chooses. Hence one can view RandBΠ[E] as A’s throwing q balls into 2t bins and bad is set only

if some bin contains d or more balls. Then, RandBΠ[E] sets bad with probability at most 2−7t by
Lemma 5.1 by setting ℓ = 4 in the lemma.

Combining Theorem 5.2 above with Theorem 3.1, we immediately obtain a strong security
bound for CGCM which we define as CGCM = CN(CAU).

Theorem 5.3 (mu-security of CN(CAU)) Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher
that we will model as an ideal cipher, with k ≥ n ≥ 128. Let H be a c-AXU hash function. Let the
key length of CGCM be k + t and nonce length be r − t with r > t ≥ 32. Let A be an adversary at-
tacking CGCM[H,E] using at most p ≤ 2n−2 ideal-cipher queries, q encryption/verification queries
of total block length at most σ, and the encryption queries are of at most B blocks per user. Let
d = ⌈qt/2t−1⌉. Then

Advmu-ae
CGCM[H,E](A) ≤

d(p+ q) + n(q + σ + p)

2k
+
σ(2B + cn+ 2)

2n
+
2q + 1

22n
+
σ(σ + ncd) + 2pq

2k+n
+2−7t .

Comparing RGCM and CGCM. For concreteness, consider the setting in which an adversary can
encrypt at most B = 240 blocks per user. Under TLS 1.2 and IPSec, 4 bytes of a nonce would
be a random salt and remain fixed for an entire session, whereas the remaining 8 bytes would be
implemented as a counter. Thus for CGCM in TLS 1.2 and IPSec, for d = 32 · ⌈q/231⌉ ≈ q/226 and

n = 128. The resulting bound is pq+q2

2154
+ σ

286
, which is much stronger than the bound pq+σ2

2128
in prior

works [5, 13]. Still, in the same setting, RGCM is much better: using d = 14 (meaning that q is
required to be smaller than 272), the advantage of the adversary is about p

2120
+ σ

286
.

Discussion. Recall that our security definition requires that nonces for each individual must be
distinct. In TLS 1.2, however, one might implement nonces as 64-bit random strings. To capture
security for this setting, one can relax our security definition by allowing adversaries to repeat nonces
for some users, with probability at most ε. In the case of TLS 1.2, one can pick ε = σB

264
. Next, for any

AE scheme Π and for an adversary A who repeats nonces for some user with probability ε, one can
easily construct an adversary B who is nonce-respecting, such thatAdvmu-ae

Π (A) ≤ Advmu-ae
Π (B)+ε.

Thus the security of CGCM with random nonces can be bounded by the formula in Theorem 5.3
plus an additional term σB

264
.

6 Security with Public Salting

In both the XN and CN transforms in the previous sections, the nonce randomizer (or salt) J is part
of the secret key. This reflects transformations actually used in practice. However, in general, the
secrecy of the nonce randomized is unnecessary for mu security. We observe here that as long as the
nonces are not chosen arbitrarily by the adversary one can guarantee mu security even when the
nonces are made public, and security of such schemes can be described in terms of an appropriate
d-repeating adversary.

An example. Somewhat informally, imagine that we are in a scenario where each user picks a
nonce randomizer Ji ∈ {0, 1}r. Then, the nonce of the c-th message sent by user i is in particular

21

Ji⊕c, and is sent along with the message. More generally, the XOR can be replaced by any operator
⊞ such that ({0, 1}r,⊞) is an abelian group.

Our formalism allows us to capture this scenario by restricting ourselves to d-repeating adver-
saries A (for an appropriate d) which only invoke the encryption oracle with queries of the form
Enc(i, Ji ⊞ ci, A,M), where ci is a counter increased each time a message is encrypted for user i.
Note that we allow here A to make unrestricted verification queries, exploiting the full power of
our model – this is consistent with the fact that a person-in-the-middle attacker may attempt to
inject ciphertexts with arbitrary nonces.

In particular, by an argument similar to that of Lemma 4.1, if such A makes at most q ≤ 2(1−ǫ)r

encryption/verification queries, it is d-repeating for d = ⌈1.5/ǫ⌉ − 1 except with probability 2−r/2.
Thus, for CAU, the mu security with respect to such A follows from Theorem 3.1, and is such that

Advmu-ae
Π[H,E](A) ≤

d(p+ q) + n(q + σ + p)

2k
+

σ(2B + cn+ 2)

2n
+

2q + 1

22n
+

σ(σ + ncd) + 2pq

2k+n
+2−r/2 .

This is the same bounds as that obtained for RGCM in Theorem 4.3. In particular, this means that
we can obtain the same security for GCM without keeping any part of the nonces secret and hence
potentially saving on key length.

Acknowledgments

We thank the CCS reviewers for their insightful comments, and Kenny Paterson and Eric Rescorla
for providing very useful information on the TLS protocol.

References

[1] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The Secure Real-time Transport
Protocol (SRTP). Internet-draft, Internet Engineering Task Force, 2004. 4

[2] M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC and its multi-user
security. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 566–595. Springer, Heidelberg, May 2016. 3

[3] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs
and improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274.
Springer, Heidelberg, May 2000. 3

[4] M. Bellare and V. T. Hoang. Identity-based format-preserving encryption. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 17, pages 1515–1532. ACM Press, Oct. / Nov.
2017. 10

[5] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption: AES-GCM in
TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
247–276. Springer, Heidelberg, Aug. 2016. 3, 4, 5, 6, 8, 21

[6] E. Biham. How to decrypt or even substitute DES-encrypted messages in 228 steps. Inf. Process. Lett.,
pages 117–124, 2002. 3

[7] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key deriva-
tion, and better bounds. In EUROCRYPT 2018, 2018. 3, 4, 5, 11, 19

[8] S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, Heidelberg,
May 2014. 8

22

[9] S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer Course “Cryptography and
Computer Security” at MIT, 1999. 10

[10] V. T. Hoang and S. Tessaro. Key-alternating ciphers and key-length extension: Exact bounds and
multi-user security. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 3–32. Springer, Heidelberg, Aug. 2016. 3, 7

[11] V. T. Hoang and S. Tessaro. The multi-user security of double encryption. In J. Coron and J. B. Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 381–411. Springer, Heidelberg, May
2017. 3

[12] T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In R. Safavi-
Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 31–49. Springer, Heidelberg,
Aug. 2012. 5

[13] A. Luykx, B. Mennink, and K. G. Paterson. Analyzing multi-key security degradation. In T. Takagi
and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 575–605. Springer,
Heidelberg, Dec. 2017. 3, 5, 21

[14] U. M. Maurer. Indistinguishability of random systems. In L. R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 110–132. Springer, Heidelberg, Apr. / May 2002. 7

[15] D. A. McGrew. Generation of Deterministic Initialization Vectors (IVs) and Nonces. Internet-Draft
draft-mcgrew-iv-gen-03, Internet Engineering Task Force, Oct. 2013. Work in Progress. 4

[16] D. A. McGrew and S. R. Fluhrer. Attacks on additive encryption of redundant plaintext and implications
on internet security. In D. R. Stinson and S. E. Tavares, editors, SAC 2000, volume 2012 of LNCS,
pages 14–28. Springer, Heidelberg, Aug. 2001. 4

[17] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM) of
operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348 of LNCS,
pages 343–355. Springer, Heidelberg, Dec. 2004. 3, 9

[18] N. Mouha and A. Luykx. Multi-key security: The Even-Mansour construction revisited. In R. Gennaro
and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 209–223. Springer,
Heidelberg, Aug. 2015. 3

[19] J. Patarin. The “coefficients H” technique (invited talk). In R. M. Avanzi, L. Keliher, and F. Sica,
editors, SAC 2008, volume 5381 of LNCS, pages 328–345. Springer, Heidelberg, Aug. 2009. 8

[20] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet-draft, Internet Engi-
neering Task Force, 2018. Work in Progress. 3, 4

[21] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June
2006. 3

[22] J. Salowey, A. Choudhury, and D. A. McGrew. AES galois counter mode (GCM) cipher suites for TLS.
RFC, 5288:1–8, 2008. 4

[23] S. Tessaro. Optimally secure block ciphers from ideal primitives. In T. Iwata and J. H. Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 437–462. Springer, Heidelberg, Nov. / Dec.
2015. 3

23

	Introduction
	Mu Security and Nonce Randomization
	Our Results

	Preliminaries
	Authenticated Encryption
	The H-coefficient Technique

	Multi-security of GCM
	The CAU Scheme
	Security of CAU

	RGCM and the XOR transform
	The Concatenation transform
	Security with Public Salting
	References

