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Abstract—The multi-user communication channel, in which
multiple users exchange information with the help of a single
relay terminal, called the multi-way relay channel, is considered.
In this model, multiple interfering clusters of users communicate
simultaneously, where the users within the same cluster wish
to exchange messages among themselves. It is assumed that the
users cannot receive each other’s signals directly, and hence the
relay terminal is the enabler of communication. A relevant metric
to study in this scenario is the symmetric rate achievable byall
users, which we identify for amplify-and-forward (AF), decode-
and-forward (DF) and compress-and-forward (CF) protocols. We
also present an upper bound for comparison. The two extreme
cases, namely full data exchange, in which every user wants to
receive messages of all other users, and pairwise data exchange,
consisting of multiple two-way relay channels, are investigated
and presented in detail.

I. I NTRODUCTION

Relaying in wireless networks can provide robustness, ex-
tended coverage, and energy efficiency. The relay channel
was studied in [1] in detail as a building block for wireless
networks that employ relaying strategies. Recently, it hasbeen
recognized that effective relaying protocols can be devised to
facilitate cooperation between two users when they want to
exchange information simultaneously over a single relay ter-
minal. This channel model, called thetwo-way relay channel
(TRC), has been studied in detail; see [2], [3], [4], [5] and
the references therein. In the TRC, unlike the classical relay
channel, we can exploit the structure of the network to design
more efficient protocols and harvest the benefits of network
coding in the physical layer.

Here, we extend the TRC model studied in previous work
in two directions: First, we consider clusters of multiple nodes
that want to exchange information among themselves. Second,
we consider multiple such clusters communicating simulta-
neously over a single relay terminal. This would model, for
example, multiple sensor networks in the same environment
served by a single access point, where nodes in each network
want to exchange some control information among themselves.
We term this model themulti-way relay channel (mRC), and
consider a total ofN users grouped intoL ≥ 1 clusters of
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K ≥ 2 distinct users each, i.e.,N = KL. In the special case
of L = 1 andK = 2, this model reduces to the TRC.

We note that the symmetric rate performance is a relevant
metric in this setting, and derive the achievable symmetricrate
with the corresponding multi-way extensions of decode-and-
forward (DF), amplify-and-forward (AF) and compress-and-
forward (CF). We provide a comparison of these rates for a
symmetric Gaussian network scenario. It is shown in [5] that
the CF scheme achieves within a half bit of the capacity for
the symmetric TRC, while DF achieves the capacity when the
additional sum-rate constraint is not the bottleneck. Here, we
explore the behavior of these protocols for a large network.
We show that CF achieves a symmetric rate within a constant
bit offset from the capacity, where this gap diminishes as the
number of users in the system increases.

We also investigate the special case of two users per cluster,
i.e., K = 2, L > 1, and provide a generalization of the lattice
coding scheme proposed in [3] and [4]. While for TRC lattice
coding also achieves within a half bit of the capacity [4] and
performs close to the upper bound for a large range of power
constraints, we show here that CF outperforms lattice coding
as the number of clusters increases.

II. SYSTEM MODEL

We consider a Gaussian mRC in which multiple users
exchange messages with the help of a single relay terminal.
In this model users do not receive each other’s transmissions,
hence the relay is essential for communication. We consider
full-duplex communication, that is, all terminals including the
relay can receive and transmit simultaneously. There areL ≥ 1
clusters of nodes in the network, where each cluster hasK ≥ 2
users. Users in clusterj, j ∈ IL , {1, . . . , L} are denoted
by Tj1, . . . , TjK while the relay terminal is denoted byR (see
Fig. 1).Wji ∈ Wji is the message of userTji. UserTji wants
to decode messages(Wj1, . . . , WjK).

The Gaussian mRC channel is modeled as

Yr =
L

∑

j=1

K
∑

i=1

Xji + Zr (1)

Yji = Xr + Zji, j ∈ IL and i ∈ IL (2)

where Zr is zero-mean Gaussian noise at the relay with
varianceNr, andZij is zero-mean Gaussian noise at userTji

with varianceNji. These noise variables are independent of
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Fig. 1: The mRC withL clusters, each of which hasK distinct terminals. All terminals in a cluster want to receive the
messages of all the other terminals in the same cluster. The relay terminal facilitates the data exchange between the terminals.

each other and the channel inputs. Average power constraints
apply on the transmitted signals at the relay and at usersTji

for all j ∈ IL and i ∈ IL:

1

n
E

[

n
∑

t=1

X2
r,t

]

≤ Pr and
1

n
E

[

n
∑

t=1

X2
ji,t

]

≤ Pji. (3)

Note that, although we have a full-duplex operation, the effect
of the transmitted signal of each user on its received signal
will be ignored since it is known at the transmitter, and hence
can be subtracted.

A (2nR11 , . . . , 2nR1K , . . . , 2nRL1 , . . . , 2nRLK , n) code for
the mRC consists ofN = LK sets of integersWji =
{1, 2, . . . , 2nRji} for j ∈ IL and i ∈ IL as the message
sets,N encoding functionsfji at the users such thatxn

ji =
fji(Wji), a set of encoding functions{fr,t}

n
t=1 at the relay

such thatxr,t = fr,t(Yr,1, . . . , Yr,t−1), 1 ≤ t ≤ n, andN
decoding functionsgji : Yn

ji ×Wji → (Wj1, . . . ,WjK).
Note that we consider “restricted encoders”, that isfji

depend only on messagesWji and not on the received signals.
The average probability of error for this system is defined as

Pn
e = Pr

⋃

j∈IL,i∈IL

{

gji(Wji, Y
n
ji ) 6= (Wj1, . . . , WjK)

}

.

Observe that the conditionPn
e → 0 implies that individual

average error probabilities also go to zero. We assume that
the messagesWji, j ∈ IL, i ∈ IL, are chosen independently
and uniformly over the message setsWji.

Definition 1: A rate tuple (R11, . . . , R1K , . . . , RL1,
. . . , RLK) is said to beachievable for an mRC with L
clusters of users withK users each if there exists a sequence
of (2nR11 , . . . , 2nR1K , . . . , 2nRL1 , . . . , 2nRLK , n) codes such
that Pn

e → 0 asn → ∞. The correspondingcapacity region
is the convex closure of all achievable rate tuples.

We focus on the equal rate points of the capacity region,
i.e., Rji = R, j ∈ IL and i ∈ IL. We define the symmetric
capacity withL clusters andK users in each cluster as

CL,K
sym , sup{R : (R, . . . , R) is achievable}.

Our goal is to find lower and upper bounds on the symmetric
capacity of the network. The symmetric capacity is relevant

in applications in which the messages correspond to some
control information that needs to be shared by the nodes in
the network, and the system performance is dominated by the
minimum rate. To simplify the notation and to focus on the
fundamental behavior of the analyzed schemes, we consider
a symmetric network, that is,Pji = P and Nji = 1 for all
j ∈ IL, i ∈ IL. We use the notationC(x) , 1

2 log(1 + x).
III. B OUNDS ON THESYMMETRIC CAPACITY

In this section, we provide upper and lower bounds on
the symmetric capacity of the symmetric Gaussian mRC. The
following proposition presents an upper bound.

Proposition 1: For a symmetric Gaussian mRC withL
clusters ofK users each, the symmetric capacity is upper
bounded by

RL,K
UB = min

{

C(L(K − 1)P )

L(K − 1)
,

C(Pr)

L(K − 1)

}

. (4)

Proof: To prove this upper bound, consider an equivalent
network in which one user from each cluster does not have
a message to transmit. Moreover, assume that only the users
without messages want to decode the messages of the other
users, that is, users with messages are the source terminals
while the users without messages are the sink terminals. The
symmetric capacity for this network withL(K − 1) messages
constitutes an upper bound for the original mRC. Observe that
this remaining network is a multiple access relay network, in
whichL multiple access relay channels operate simultaneously
over a single relay terminal.

In this network, consider the cuts around the source ter-
minals and the sink terminals. The cut around the source
terminals forms a symmetric multiple access channel (MAC)
with L(K − 1) users, and the achievable symmetric rates are
bounded byC(L(K−1)P )

L(K−1) . The cut around the sink terminals
is a symmetric Gaussian broadcast channel withL messages
of rate (K − 1)R each, where each message is destined for
a single receiver. Since this is a degraded broadcast channel,
the total rate can be bounded byC(Pr).

Next we identify symmetric rates achievable with various
relaying schemes. We consider AF, DF and CF schemes,
and find the corresponding symmetric rates. A symmetric
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rate achievable with AF relaying is characterized in the next
proposition.

Proposition 2: For a symmetric Gaussian mRC withL
clusters ofK users each, the following symmetric rate is
achievable with AF relaying:

RL,K
AF =

1

L(K − 1)
C

(

PPr

1 + Pr + KP

)

. (5)

Proof: In the case of the AF protocol, we consider time
division among the clusters. Due to the symmetry of the
network and the equal number of users within each cluster,
equal time allocation maximizes the achievable symmetric
rate. Within the timeslot of each cluster, all the users in that
cluster transmit, and the relay scales its received signal and
broadcasts to the users. Within the timeslot for clusterj, the

relay’s transmit signal is given byXr =
√

Pr

KP+1 (Xj1 + · · ·+

XjK + Zr). Each user subtracts its own transmit signal from
the received signal of the relay, and decodes the messages of
the other users in its own cluster. For each receiver, this is
equivalent to a MAC withK − 1 users, and the maximum
achievable symmetric rate for this MAC is given by (5).

Next we consider DF relaying, in which the relay decodes
messages from all the users, and broadcasts each message
to its recipients. DF consists of two transmission phases:
the first phase is the MAC from the users to the relay, and
the second phase is the broadcast channel from the relay to
the users. In the broadcast phase, we consider time division
transmission among the clusters, that is, the relay dividesthe
channel block intoL timeslots, and forj ∈ IL, broadcasts the
messagesWj,1, . . . , Wj,k to usersTj,1, . . . , Tj,K within the
j-th timeslot. For broadcasting within thej-th timeslot, the
relay uses the transmission scheme introduced in [6], where
we considerWj,1, . . . , Wj,k as the source message andWj,i

as the correlated side information at userTj,i. The symmetric
rate achievable with DF is then found as given in the following
proposition.

Proposition 3: For the symmetric Gaussian mRC withL
clusters ofK users each, the following symmetric rate is
achievable with DF relaying:

RL,K
DF = min

{

C(LKP )

LK
,

C(Pr)

L(K − 1)

}

. (6)

Remark 1:Comparing (6) and (4), we can show that DF
achieves the symmetric capacity ifPr ≤ (1+LKP )1−

1

K −1.
This corresponds to the case in which the relay power is the
bottleneck, i.e., the symmetric capacity is limited by the rate
that the relay can broadcast to the users. The range ofPr for
which DF is optimal increases as the number of clusters, the
number of users within each cluster or the power constraint
P of the users increases.

Next, we consider CF relaying, in which the relay terminal
quantizes its received signal and broadcasts this quantized
channel output to the users, again using the coding scheme
that we employed with DF to exploit the side information at
the users. Similar to AF, we consider time division among the
user clusters in the multiple access phase as well as in the
broadcast phase. This will prevent multiple user clusters from

interfering with each other’s signals, which would decrease the
quality of the quantized signal broadcast by the relay. Within
the timeslot for each cluster, the transmission from the relay
can be considered as broadcasting the relay’s received signal
to the users with minimum distortion [7].

Proposition 4: For a symmetric Gaussian mRC withL
clusters ofK users each, the following symmetric rate is
achievable with CF relaying:

RL,K
CF =

1

L(K − 1)
C

(

(K − 1)PPr

1 + (K − 1)P + Pr

)

. (7)

Proof: We use Gaussian codebooks for quantization with-
out claiming optimality. Consider transmission over timeslot
j, j ∈ IL. We have

Ŷr = Xj,1 + · · · + Xk,K + Zr + Q, (8)

where Q is a zero mean Gaussian random variable with
varianceNQ. For Ŷr to be decoded at all receivers, we need

I(Yr; Ŷr|Xj,i) ≤ I(Xr; Yj,i), (9)

or equivalently, in the symmetric case,NQ ≥ (K−1)P+1
Pr

. The
achievable rate hence satisfies

(K − 1)RL,K
CF = C

(

(K − 1)P

1 + NQ

)

. (10)

Using the minimum allowableNQ, we obtain (7).
Remark 2:Comparing (5) and (7), we observe that, for an

arbitrary number of clusters and terminals within each cluster
(L ≥ 1, K ≥ 2), CF achieves ahigher symmetric ratethan
AF. Yet, in some implementations, the lowre complexity of
AF might be more compelling than the better performance of
CF.

In the next theorem, we prove that the CF protocol achieves
rates within a constant number of bits of the symmetric
capacity for an arbitrary number of clusters and users.

Theorem 1:For a symmetric Gaussian mRC withL clusters
of K users each, the CF protocol achieves rates within
log(L+1)
2L(K−1) bits of the symmetric capacity.

Proof: First, assume thatPr ≥ L(K − 1)P . Then we
have the following chain of inequalities:

RL,K
CF =

1

L(K − 1)
C

(

(K − 1)PPr

1 + (K − 1)P + Pr

)

(11)

=
1

2L(K − 1)
[log(L + L(K − 1)P )

+ log

{

1 + Pr

L(1 + (K − 1)P + Pr)

}]

(12)

≥ RL,K
UB +

1

2L(K − 1)
log

{

1 + Pr

L(1 + Pr) + Pr

}

(13)

≥ RL,K
UB −

log(L + 1)

2L(K − 1)
, (14)

where (13) follow from the assumption thatPr ≥ L(K−1)P .
Next, assumingPr < L(K − 1)P , we have

RL,K
CF =

1

2L(K − 1)
[log(1 + Pr)

+ log

{

1 + (K − 1)P

1 + (K − 1)P + Pr

}]

(15)
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Fig. 2: Achievable symmetric rate versus the user power,P .
The relay power is equal to the total user power, i.e.,Pr =
KP . We illustrate rates forK = 2, 4 and8 users.

≥ RL,K
UB +

1

2L(K − 1)
log

{

1 + (K − 1)P

1 + (L + 1)(K − 1)P

}

≥ RL,K
UB −

log(L + 1)

2L(K − 1)
. (16)

Remark 3: It is noteworthy that the constant gap to the
capacity is a function only ofL andK, and is independent of
the power constraints of the users and the relay. Moreover, the
gap goes to zero as eitherK or L goes to infinity, independent
of how the power constraints scale with the number of users.
Hence, we conclude that for a large system of many clusters
and/or many users within each cluster, the CF protocol is
nearly optimal in terms of the symmetric capacity.

IV. SPECIAL CASES

A. Multi-way Relay Channel with Full Data Exchange

In this section, we consider a special mRC with a single
cluster L = 1, that is, each user wants to decode all the
messages in the system. We term this model themRC with
full data exchange.

Assume that the relay’s power scales with the number of
users, i.e.,Pr = KP . In this case we haveR1,K

UB = C((K−1)P )
K−1

andR1,K
DF = C(KP )

K
. We can see that, with increasing power,

the gap between the two increases and can be arbitrarily large
whenP is very high. In Fig. 2, we plot the upper bound and
achievable symmetric rates for this setup. Achievable rates and
the upper bound converge as the number of users increases.
We have a finite gap between the symmetric rate achievable
with the CF scheme and the upper bound at all power values;
and especially for a small number of users, the rate of CF
dominates the rate of DF for a wide range of power values.
We can also see that the symmetric rate achievable by AF
follows that of CF with a constant gap as well. Although not
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Fig. 3: Achievable symmetric rate versus the number of users
with P = 0 dB. In the figure, the straight line is the upper
bound, while the dotted and dashed lines correspond to the
DF and CF rates, respectively. We illustrate bothPr = P and
Pr = KP .

included here due to space limitations, similar observations are
made when the relay power does not scale with the number
of users, i.e.,Pr = P .

In Fig. 3 we plot the upper bound and the achievable
rates versus the number of users for the mRC with full data
exchange. As expected, the rate per user diminishes as the
number of users increases in the system. With the number
of users increasing, both DF and CF get very close to the
upper bound. The DF scheme achieves the upper bound with
a smaller number of users when the relay power does not scale
with the number of users in the system.

B. Multi-way Relay Channel with Pairwise Data Exchange

In the previous subsection we focused on full-data ex-
change, in which case each user wants to learn the messages
of all other users. This constitutes one extreme in the mRC
model. Another extreme would be to assume that users are
paired, and each user is interested only in the data of its
partner, i.e.,L ≥ 1 and K = 2. This model is equivalent to
having multiple two-way relay channels served simultaneously
by a single relay terminal [8]. We term this model themRC
with pairwise data exchange.

In the case of the pairwise data exchange model, another
achievability scheme is obtained by structured codes. In par-
ticular, nested lattice codes are used for the Gaussian TRC
[3], [4], which allows the relay to decode only the modulo
sum of the messages rather than decoding the individual
messages. Then the relay can broadcast the modulo sum to
both users, each of which can decode the other user’s message
by subtracting its own message. Unfortunately this structured
coding scheme does not scale with an increasing number of
users within each cluster, that is, by knowing the modulo sum
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Fig. 4: Symmetric capacity upper bound and achievable rates
versus powerP for the pairwise data exchange model.

of more than two messages and only one of the messages, the
users cannot decode the remaining messages.

In pairwise data exchange withL > 1 clusters, we will
have the relay first decode the modulo sums of all the message
pairs, and then broadcast each pair’s sum only to the users in
that pair by time-division among the pairs. For the multiple
access phase, the relay employs successive decoding to decode
the modulo sums of the pairs. We consider time division for
the multiple access phase as well; however, this is not among
the users but among the decoding orders. In each time slot
the decoding order of the pairs at the relay is shifted. This
way, each pair experiences each decoding order once. Using
nested lattices as in [3], when no other transmission occurs,
the modulo sum of two messages can be decoded at the relay
at a rate1

2 log
(

1
2 + P

)

. Hence, by time division and shifted
decoding order at the relay, each pair’s modulo sum can be
decoded at the relay at a rate

1

L

L
∑

j=1

1

2
log

(

1

2
+

P

1 + 2(j − 1)P

)

(17)

=
1

2L
log

L
∏

j=1

(

1

2
+

P

1 + 2(j − 1)P

)

(18)

=
1

2L
log 2−L

L
∏

j=1

(

1 + 2jP

1 + 2(j − 1)P

)

(19)

=
1

2L
log (1 + 2LP ) −

1

2
. (20)

For the broadcasting of the modulo sums from the relay to the
pairs, the rate is bounded by the rate that can be transmitted
to each user:1

L
C(Pr). Hence, the following symmetric rate

can be achieved by nested lattice codes:

RL,2
lattice = min

{

C(2LP )

L
−

1

2
,
C(Pr)

L

}

. (21)

Remark 4: It is easy to see that lattice coding achieves rates
within 1/2 bit of the symmetric capacity. This constant bit gap
decays toL−1

2L
in the high SNR limit. ForL > 2, the gap for

lattice coding is larger than the gap for CF even in the infinite
SNR limit; however, this does not directly lead to a claim of
higher symmetric rates with CF.

In Fig. 4 we illustrate the upper bound and the achievable
rates for the pairwise data exchange model as functions of
P , while Pr = 2LP . Similar observations as in Section IV-A
apply for DF and CF schemes. The lattice coding performs
within a constant bit offset from the symmetric capacity
as well. As seen in the figure, forL = 1, lattice coding
outperforms CF and its gap with the upper bound decays
to zero. However, this is not the case when the number of
clusters increases. ForL = 4, we see that CF outperforms
lattice coding for all power values. It is also noteworthy that
DF achieves the highest rate in the low power regime.

V. CONCLUSION

We have considered the multi-way relay channel in which
multiple clusters of users communicate simultaneously over a
single relay terminal (no cross-reception between the users),
and the users in each cluster want to exchange information
among themselves. We have shown that the CF scheme
achieves a symmetric rate within a constant bit offset from the
capacity, while this constant gap decays to zero with increasing
number of users in the system independent of the scaling
behavior of the power constraints. We have also investigated
symmetric rate achievable by nested lattice codes for the case
of multiple clusters with two users each. We have shown
that lattice coding outperforms other schemes for a single
cluster, but falls short of the CF performance as the number
of clusters increases. Our results provide insights into various
design tradeoffs associated with relaying between clusters of
communicating nodes.
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