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Abstract. An analytical approach is proposed to study the contribution of edge ef-

fects in the multiple high-frequency diffraction, according to guidelines of classical Kirch-

hoff theory in (scalar) wave propagation. We start from a suitable asymptotic analysis of

the Kirchhoff diffraction integral, here set up in a generalized (iterated) form to describe

the multiple reflections from an arbitrary sequence of curved reflecting (smooth) surfaces.

The explicit formula obtained for a concrete example of double reflection is compared

with the results from direct numerical simulation.

1. Introduction. Mathematical diffraction theories have many important practical

applications in acoustics, optics and electromagnetism [1]–[4]. Two different viewpoints,

resulting in geometrical or analytical approaches, did appear in these theories from the

very beginning, being applied to the same physical phenomena. The first geometrical

approach was originated from the classical Gaussian wave beam ideas [5], both in optics

and acoustics. Its further development led to the modern Ray theory [6], [7], and finally

to the powerful instrument of the Geometrical Diffraction Theory [8], [9] (see also [3]). In

common, the basic concepts of this approach to diffraction phenomena are founded upon

a certain high-frequency asymptotic analysis of the wave equation, aimed to find purely

geometrical quantities: phase, wave beam spreading, amplitude change on the act of

diffraction and its further decrease with distance, etc. It should be noted that such ideas

have been tested in a number of special cases for which exact analytical solutions exist

(e.g., diffraction by half-planes and wedges). Typically, the latter ones can be attained
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either by Sommerfeld’s exact diffraction theory [10], or by the Biot-Tolstoy theory [11],

or by some others close to them.

The classical Kirchhoff Physical Diffraction Theory represents an alternative ana-

lytical approach which moved forward from absolutely different ideas. Starting from

the Kirchhoff-Helmholtz integral representation for the exact general solution of the

Helmholtz wave equation [4], [10], where one can find two unknown functions in the inte-

grand (namely, the scalar wave field and its normal derivative on the boundary surface),

Kirchhoff theory is founded on some reliable physical hypotheses which in the case of

rigid scatterer lead to an explicit mathematical expression for the amplitude of the wave

field over the scatterer’s surface [3], [12], [13]. When estimating its precision, it should

be noted that for a long time there were numerous heated debates as to whether this

theory is asymptotic at k → ∞ (k is the wave number). Recently, it was proved that

the leading asymptotic term of the exact solution coincides with Kirchhoff’s prediction if

the solution is constructed in the “light” zone and the boundary surface of the obstacle

is convex. A strict mathematical proof of that is given for soft obstacles in [12] and for

rigid ones in [13]. Therefore, despite the fact that in some particular cases Kirchhoff

theory is numerically less precise when compared with experimental data [14], in the

regimes where it works well this theory provides the correct high-frequency asymptotic

representation.

If under Kirchhoff’s assumption all quantities in the integrand become known, it is

evident that - in frames of Kirchhoff theory - the problem is reduced to the evaluation of

a certain surface integral. Generally, such an integral can be calculated by an appropriate

direct numerical method. However, when working in the high-frequency regime, the more

natural procedure is to construct its asymptotic representation. This can be attained

analytically by the use of the multidimensional stationary phase method, which has been

developed for smooth reflecting surfaces by many authors independently; see for example

[15]–[18]. While, in its basic form, Kirchhoff’s diffraction theory was proposed for single

reflection only, in [19] we extended it to the case of multiple reflection by an iterated

procedure accounting for an arbitrary sequence of smooth reflecting surfaces; in such a

paper, the problem was reduced to a 2N -fold diffraction integral, where N is the number

of the surfaces, and then partially estimated by the quoted method.

When comparing the two classes of methods - geometrical vs. analytical - the early

experience of their application showed that if a certain diffraction problem can be studied

by a method from the first class, then, as a rule, this can also be solved by an analytical

approach, perhaps with a longer mathematical treatment but still successful (or vice

versa). However, some time later it was recognized that this rule is not universal. In the

case of multiple reflections, a two-dimensional extension of the Kirchhoff theory permitted

us to analytically solve many new problems with curved reflectors [20], and we could not

find in literature analogous solutions (for most of them) constructed by any alternative

method. Moreover, when the approach of [20] has been extended to a three-dimensional

context in [19], some new analytical solutions, again for curved surfaces, could also be

constructed in explicit form (see in particular the treatment given there for the double

diffraction by two different spheres). One thus should conclude that in some cases the

analytical approach looks more powerful than the geometrical one.
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The comment in the previous paragraph is related to the leading high-frequency as-

ymptotic term. Coming back to the question of the precision of Kirchhoff’s theory, it is

shown in [19], [20] that there is a significant disagreement between direct numerical and

analytical asymptotic predictions, either for single or multiple reflections. This difference

is more significant in the three-dimensional case. As discovered in those papers, the dif-

ference occurs because, in the asymptotic estimate of the multiple Kirchhoff diffraction

integral, only the leading term is usually taken into account. In [21] we improve the

precision of Kirchhoff theory by extracting the subsequent (second) term in the high-

frequency asymptotic expansion, in the case of single reflection only: it is proved that

such a second term is related to the so-called edge effects, namely to the wave contribution

coming from the boundary edge line of the given reflecting surface. From the mathemat-

ical procedure, it turns out that the leading asymptotic term (which is physically related

to the simple specular reflection) is of the order O(1), while the second asymptotic term

has the order O(1/
√
k), k → ∞. In our recent works [22], [23], we extended this re-

sult to the case of multiple diffraction, but only for flat reflecting surfaces. Therefore,

the real goal of the present study is to extend these results to multiple reflections from

curved surfaces, by again using the multidimensional stationary-phase method applied

to a multifold diffraction integral of Kirchhoff type. As it will be seen, this study requires

very lengthy mathematical transformations, which, to our knowledge, have never been

previously performed by any other existing (non-numerical) method. We will illustrate

the analytical procedure by a concrete example of double diffraction, and compare the

explicit formula obtained with the results coming from a direct numerical treatment of

the relevant integrals.

2. Basics and analysis of the proposed method. In a given high-frequency (har-

monic) regime, let us consider the sequence of reflections of a scalar wave, radiated from

the source point x0, from a set of thin rigid surfaces S1, S2, . . . , SN , as shown in Figure

1. The extension of the classical Kirchhoff diffraction theory, from single to multiple

reflection [19], [22], [23], reduces the amplitude of the re-reflected (scattered) wave at

the receiving point x, psc(x), to the following repeated integral taken over all surfaces

S1, S2, . . . , SN :

psc(x) ∼
(

ik

2π

)N ∫

S1

· · ·
∫

SN

eikg

r01

N
∏

ν=1

cos
(

�r ∧

ν,ν+1 �nν

)

rν,ν+1
dS1 . . . dSN , k → ∞ . (2.1)

Here k is the wave number; �rν,ν+1 = yν−yν+1 (yν ∈ Sν); rν,ν+1 = |�rν,ν+1| (ν = 1, . . . , N);

yN+1 ≡ x; �rN,N+1 ≡ �rNx; �r01 = y1 −x0, r01 = |�r01|. �nν are the unit outer normals to

Sν . The phase function g in (2.1) has the form

g = g(y1, . . . , yN ) = r01 +
N
∑

ν=1

rν,ν+1 = |y1 − x0|+ · · ·+ |yN − x| . (2.2)

It is assumed that all reflecting surfaces are convex and all of them are illuminated;

moreover, both source and receiving points are placed in the light zone.
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Fig. 1. Multiple reflections from a set of smooth curved surfaces: x0
- source, x - receiver, y∗ - specular reflection points, γ - incidence
and reflection angles

The integral in (2.1) can be further estimated asymptotically as k → ∞. From classical

results on the asymptotic expansions of integrals [1]–[18], it follows that, if ∇g 	= 0, then

this integral has the order o (k−N ); hence, in such a case psc(x) → 0, k → ∞. Therefore,

a not trivial asymptotic value of the scattered field is possible only when there is at least

one stationary point y∗, defined by ∇g(y∗) = 0, y∗ = (y∗1 , · · · , y∗N ). Let us restrict our

consideration to the case when such a special point is isolated; then, integral (2.1) can be

estimated by the multidimensional stationary-phase method. To this aim, let us write

out the first two asymptotic terms for an integral - over some domain Ω ⊂ EM - having
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the following general form [24]:

IM (k) =
∫

Ω

f(y)eikg(y) dy

∼
(

2π

k

)M/2

exp

[

ikg(y∗)+
πi

4
sign (g′′

∗
)

]

f(y∗)

|det g′′
∗
|1/2

[

1+O

(

1

k

)]

+ F∂Ω(k)

[

1+O

(

1

k

)]

,

(2.3a)

F∂Ω(k) ∼
1

ik

∫

∂Ω

f(y)

|∇g(y)|2
∂g

∂ny
eikg(y) dσy , k → ∞ , (2.3b)

where, as indicated above, y∗ is a (M -dimensional) stationary point for function g:

∂g(y∗)

∂y1
= · · · = ∂g(y∗)

∂yM
= 0 . (2.4)

Moreover, g′′
∗
=

{

∂2g/∂ym∂yµ
}

, m, μ = 1, . . . ,M, denotes the symmetric Hessian matrix

of function g, calculated at the stationary point, and sign(g′′
∗
) is its sign, namely, the

difference between the numbers of its positive and negative eigenvalues. Note that the

contribution F∂Ω(k) given by the boundary of domain Ω into IM (k) is expressed by an

integral over the hyper-surface ∂Ω, of dimension M − 1; it is proved that this term has

a greater vanishing order, as k → ∞, than the first (leading) term in Eq. (2.3a).

Formula (2.3), when applied to integral (2.1), attains a great amount of physical

meaning. The first leading asymptotic term in (2.3a) corresponds to the “specular”

multiple reflections [19] (the residue term, of the order O(1/kM/2+1), can be neglected).

Let us pass to the asymptotic analysis of the boundary contribution F∂Ω(k) in more

detail, addressed to its physical interpretation. In this connection, the following two

special cases for stationary points may occur, which are discussed here in the order of

their decreasing asymptotic importance [24]:

(i) Boundary stationary point of the first kind. This is a usual isolated stationary point

of the fullM -dimensional phase function g(y) (see Eq. (2.4)) falling on the boundary ∂Ω :

y∗ ∈ ∂Ω. It is proved [24] that if the boundary hyper-surface is smooth in a vicinity of

such a boundary stationary point, then its asymptotic contribution to integral IM (k) in

(2.3) is simply one half of the contribution from the interior stationary points of the phase

function. So, it is obvious from Eq. (2.3) that the asymptotic contribution of 1st kind

boundary stationary points has the order O(1/kM/2), the same as the leading asymptotic

term given by the explicit expression in Eq. (2.3a). We assume that no stationary point

y∗ of function g(y) falls on the boundary ∂Ω; with such an assumption, the denominator

present in F∂Ω never vanishes. For the example considered below, this assumption is

valid, hence we do not further study this kind of boundary stationary point.

(ii) Boundary stationary point of the second kind. This is a stationary point of the

phase function appearing in the boundary integral of Eq. (2.3b). Of course, the phase

function here is the same full phase function but restricted to the boundary hyper-surface

∂Ω : g̃(y) = g(y), y ∈ ∂Ω.

In order to estimate the boundary contribution of such boundary stationary points,

through quantity F∂Ω(k), let us notice that this quantity itself is expressed in the form

of a certain integral like IM (k) in Eq. (2.3a). It is sufficient to take into account only

its principal contribution, given by Eq. (2.3a) with ∂Ω (M − 1- dim) in place of Ω (M
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- dim) and a suitable re-definition of the integrand. Let us assume that the (M − 1)-

dimensional phase function g̃(y), for F∂Ω(k), has itself at least one stationary point.

Thus, in this case the asymptotic behaviour of the boundary integral is defined by the

factor (2π/k)(M−1)/2. When formula (2.3) is applied to integral (2.1), one has M = 2N .

Therefore, the leading contribution given by the full-phase stationary point (physically

by the specular reflection) to integral (2.1) has the asymptotic order O(1/kN ), while the

contribution coming from the boundary is given by the factor (1/ik) · (2π/k)(M−1)/2,

i.e., has the order O(1/kN+1/2). The latter contribution is physically interpreted as the

contribution due to the edge effects, and thus this contribution (when there is at least

one boundary stationary point) turns out to be asymptotically more significant than all

other residue terms in Eq. (2.3), so becoming the second leading term in the asymptotic

representation of psc as k → ∞ (of course, the final asymptotic estimate of psc must take

into account the factor (ik/2π)N ; see Eq. (2.1)).

Clearly, when there are several stationary points for any phase function, the total con-

tribution is given by the sum of the contributions from all stationary points. The reader

can easily imagine what happens when either full phase function g(y), y ∈ Ω, or/and

boundary phase function g̃(y), y ∈ ∂Ω, have no stationary point in their domain. In

this case, the corresponding terms will be absent in the (two-leading-terms) asymptotic

expansion.

Several examples of an application of these asymptotic ideas, in the case of single

reflection, can be found in our recent work [21]. Here below we will study one example

showing the application of the proposed approach to the case of double reflection from

spherical reflecting surfaces.

3. Double reflection from a pair of spherical domes. The geometry of this

example is shown in Figure 2. One can see two reflectors (N = 2) in the form of spherical

domes S1, S2 of the same size. Axes η1, ζ1, η2, ζ2 all lie in the same plane (that of the

sheet) which arranges a symmetric cross-section; axes ξ1, ξ2 are thus orthogonal to this

plane. Due to evident symmetry, the double specular reflection x0 → y∗1 → y∗2 → x

takes place with both incident angles γ1 = γ2 = 450. Axes ζ1 and ζ2 are directed so that

they pass through specular reflection points y∗1 and y∗2 , respectively, which are the apical

points of the domes.

Any point P with Cartesian coordinates (ξP1 , η
P
1 , ζ

P
1 ) in the first system has different

coordinates in the second system given by

ξP2 = ξP1 , ηP2 =
√
2a− ηP1 , ζP2 = (

√
2 + 2)a− ζP1 , (3.1)

where a is the common radius of the spherical domes.

It follows from (2.1) that, with k → ∞,

psc(x) ∼
(

ik

2π

)2 ∫

S1

∫

S2

f1(y)f2(y)e
ikg(y)

ϕ(y)μ(y)ψ(y)
dS1dS2 , (3.2a)

g(y) = ϕ(y) + μ(y) + ψ(y), y = y1 × y2 (y1 ∈ S1, y2 ∈ S2), (3.2b)

ϕ(y) = r01 = |y1 − x0|, μ(y) = r1,2 = |y1 − y2|, ψ(y) = r2x = |y2 − x|, (3.2c)
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Fig. 2. Double reflection from two spherical domes

f1(y) = cos
(

�r ∧

1,2 �n1

)

=
(�r1,2 · �n1)

μ
, f2(y) = cos (�r ∧

2x �n2) =
(�r2x · �n2)

ψ
. (3.2d)

For further analysis, it is convenient to introduce the local polar coordinate systems
{

ξ1 = ρ1 cos θ1
η1 = ρ1 sin θ1

,

{

ξ2 = ρ2 cos θ2
η2 = ρ2 sin θ2

, (3.3)

for the points on the spherical domes:

y1 =

(

ξ1, η1, ζ1 =
√

a2 − ρ21

)

, y2 =

(

ξ2, η2, ζ2 =
√

a2 − ρ22

)

, (3.4)

with −π ≤ θ1, θ2 ≤ π, 0 ≤ ρ1, ρ2 ≤ d (< a). It holds that

dS1 =
a

ζ1
dξ1 dη1 =

aρ1dρ1dθ1
√

a2 − ρ21
, dS2 =

a

ζ2
dξ2 dη2 =

aρ2dρ2dθ2
√

a2 − ρ22
. (3.5)

By choosing d = a/2, the outer radius of the domes forms an angle of 30◦ with respect to

the corresponding axis of symmetry, ζ1 or ζ2. Moreover, the source and receiver points

have the following cartesian coordinates:

x0 = (ξ0 = 0, η0 = −a/
√
2, ζ0 = a+ a/

√
2 ),

x = (ξ = 0, η = −a/
√
2, ζ = a+ a/

√
2 ),

(3.6)

while the unit normals to the domes are

�n1 = ( ξ1/a, η1/a,
√

a2 − ρ21 /a ), �n2 = ( ξ2/a, η2/a,
√

a2 − ρ22 /a ), (3.7)
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in the respective coordinate systems.

The leading asymptotic term in Eq. (3.2), corresponding physically to the double

specular reflection, has been studied in detail in the authors’ recent work [19, Section 5],

hence there is no need to repeat the development. The symmetric geometry considered

here can be directly extracted from the general asymmetric case there treated, if one

puts in all relevant formulas of that section the following particular values:

h cosα = a
√
2, h sinα = (2 +

√
2)a ,

α+ β = π, b = a, γ1 = γ2 = π/4 ,

L0 = L = a, L1 = 2a, g(y∗) = L0 + L+ L1 = 4a .

(3.8)

After that, the quoted leading term can be taken from Eq. (47) of [19]. By adding to

(3.2) the full application of Eq. (2.3a, 2.3b), we further get

psc(x) ∼ pscspec(x)

[

1 +O

(

1

k

)]

+ FΓ(k)

[

1 +O

(

1

k

)]

, k → ∞ , (3.9a)

where

pscspec(x) =
cos γ1 cos γ2

L0L1L
√

det g′′
∗

eik(L0+L1+L) =
e4ika

4a3
√

det g′′
∗

(3.9b)

denotes the scattered field coming from the specular reflections, and it holds that

det g′′
∗
=

[(

2 cos γ1
a

+
1

L0
+

1

L1

)(

2 cos γ2
b

+
1

L
+

1

L1

)

− 1

L2
1

]

×
{[

2cosγ1
a

+

(

1

L0
+

1

L1

)

cos2γ1

][

2cosγ2
b

+

(

1

L
+

1

L1

)

cos2γ2

]

−
(

cosγ1cos γ2
L1

)2
}

=
(3 + 2

√
2)(6 + 5

√
2)

2a4
.

(3.9c)

Moreover, recalling Eqs. (3.5), it is clear that

FΓ(k) =
ika2

4π2

∫

Γ

f1f2
ϕμψ

(∇g · �n)
|∇g|2

ρ1ρ2 e
ikgdσρθ

√

a2 − ρ21
√

a2 − ρ22
, (3.10)

where Γ denotes a union of the boundary hyper-planes for domain S1×S2 when surfaces

S1 and S2 are represented in the chosen polar coordinate systems; the symbol dσρθ stands

for an elementary area of such (three-dimensional) boundary hyper-planes, to which �n

is a unit normal. Our aim is now to asymptotically estimate this integral by using Eq.

(2.3a) itself.
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It can be easily shown that all quantities involved in Eq. (3.10) can be expressed in

polar coordinates, as follows:

ϕ = ϕ(ρ1, θ1) =
[√

2aρ1 sin θ1 + (3 +
√
2)a2 − (2 +

√
2)a

√

a2 − ρ21

]1/2

,

ψ = ψ(ρ2, θ2) =
[√

2aρ2 sin θ2 + (3 +
√
2)a2 − (2 +

√
2)a

√

a2 − ρ22

]1/2

,

μ = μ(ρ1, θ1, ρ2, θ2) =
[

(10 + 4
√
2)a2−2(2 +

√
2)a

(

√

a2−ρ21 +
√

a2−ρ22

)

+2
√

a2−ρ21
√

a2−ρ22 − 2
√
2a(ρ1 sin θ1 + ρ2 sin θ2)− 2ρ1ρ2 cos(θ1 + θ2)

]1/2

,

g = ϕ+ μ+ ψ = g(ρ1, θ1, ρ2, θ2),

(3.11a)

while functions f1 and f2 are (from Eqs. (3.2d); see also Eqs. (3.1), (3.6), (3.7)):

f1 =
1

aμ
[a2 − ξ1ξ2 + η1η2 + ζ1ζ2 −

√
2aη1 − (2 +

√
2)aζ1]

=
a2−ρ1ρ2 cos(θ1+θ2)+

√

a2−ρ21
√

a2−ρ22−
√
2a ρ1 sin θ1−(2+

√
2)a

√

a2−ρ21
aμ

,

f2 =
a2 − ηη2 − ζζ2

aψ
=

a+ (1/
√
2)ρ2 sin θ2 − (1 + 1/

√
2)
√

a2 − ρ22
ψ

.

(3.11b)

In the polar coordinate system (ρ1, θ1, ρ2, θ2), the domain S1 × S2 is a four-dimensional

rectangular parallelepiped, hence its boundary Γ is given by the union of some three-

dimensional rectangular parallelepipeds. Let us list all such three-dimensional boundary

hyper-planes for S1 × S2. They are: (i) ρ1 = d; (ii) ρ2 = d; (iii) ρ1 = 0; (iv) ρ2 = 0; (v)

θ1 = −π; (vi) θ1 = π; (vii) θ2 = −π; (viii) θ2 = π.

Obviously, cases (iii) and (iv) give no contribution since in these cases the trivial values

ρ1 = 0 or ρ2 = 0 are involved as factors in the integrand in (3.10). The pair of cases (v)

and (vi) gives contributions which cancel out each other, since (in view of the evident

periodicity) all terms included in the integrand are the same, except terms (∇g ·�n) which
are of the same value but with opposite signs, due to the opposite direction of the unit

normals for θ1 = −π and θ1 = π. By analogy, cases (vii) and (viii) give contributions

canceling out each other too. Hence, the only non-trivial cases that remain are the first

two, which are studied in detail below.

First of all, it is convenient to write the components of gradient ∇g(ρ1, θ1, ρ2, θ2):

∂g

∂ρ1
=

ζ0ρ1/
√

a2−ρ21 − η0 sin θ1
ϕ

+
[(2+

√
2)a−

√

a2−ρ22] ρ1/
√

a2−ρ21−
√
2a sin θ1−ρ2cos(θ1+θ2)

μ
,

(3.12a)

∂g

∂θ1
= −η0ρ1 cos θ1

ϕ
+

ρ1ρ2 sin(θ1+θ2)−
√
2aρ1 cos θ1

μ
, (3.12b)
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∂g

∂ρ2
=

ζρ2/
√

a2−ρ22 − η sin θ2
ψ

+
[(2+

√
2)a−

√

a2−ρ21] ρ2/
√

a2−ρ22−
√
2a sin θ2−ρ1cos(θ1+θ2)

μ
,

(3.12c)

∂g

∂θ2
= −ηρ2 cos θ2

ψ
+

ρ1ρ2 sin(θ1+θ2)−
√
2aρ2 cos θ2

μ
. (3.12d)

After that, let us begin to treat the case:

(i) ρ1 = d. Here the phase function is three-dimensional: g̃1(θ1, ρ2, θ2)=g(d, θ1, ρ2, θ2);

moreover, in Eq. (3.10) it holds that dσρθ = dθ1 dρ2 dθ2 and (∇g · �n) = ∂g/∂ρ1. The

stationary points of function g̃1(θ1, ρ2, θ2) are defined by Eqs. (3.12, b-d) set equal to

zero. The first two of them are easily calculated as follows.

(i1) The values θ∗1 = π/2, θ∗2 = −π/2 automatically provide vanishing expressions

(3.12b) and (3.12d). Thus, Eq. (3.12c) gives an equation to find the stationary value for

quantity ρ2; to this aim, let us introduce the new function

F (ρ2) = (∂g̃1/∂ρ2)(π/2, ρ2,−π/2).

Obviously, it is a continuous function on the interval ρ2 ∈ [0, d] (recall that d = a/2). Its

values at the ends of this interval are

F (0) = − a√
2ψ(0,−π/2)

+

√
2a− a/2

μ(d, π/2, 0,−π/2)
= − 1√

2
+

√
2− 1/2

√

6 +
√
2−

√
3−

√
6
< 0,

(3.13a)

since ψ(0,−π/2) = a and μ(d, π/2, 0,−π/2) =
√

6 +
√
2−

√
3−

√
6a, along with

F (d) =
(1 +

√
2−

√
3)a√

6 ψ(d,−π/2)
+

(2 +
√
2−

√
3 +

√
6)a√

3 μ(d, π/2, d,−π/2)
> 0. (3.13b)

Due to opposite signs at the ends of the interval, there is at least one point ρ∗2 such that

F (ρ∗2) = 0; a detailed investigation shows that such a point is actually unique and holds:

ρ∗2 = 0.07792a.

The contribution of this boundary stationary point to the value of integral (3.10) can

be obtained by using the leading asymptotic term in Eq. (2.3a), with M = 3, Ω = Γ and

integrand f =
f1f2
ϕμψ

(∇g · �n)
|∇g|2

ρ1ρ2
√

a2 − ρ21
√

a2 − ρ22
. For this, one needs to calculate the
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components of the 3× 3 Hessian matrix g̃′′1∗ :
(

∂2g̃1
∂θ21

)

∗

=
η0d

ϕ∗

+
ρ∗2 +

√
2a

μ∗

d,

(

∂2g̃1
∂θ1∂ρ2

)

∗

=

(

∂2g̃1
∂ρ2∂θ2

)

∗

= 0,

(

∂2g̃1
∂θ1∂θ2

)

∗

=
ρ∗2 d

μ∗

,

(

∂2g̃1
∂θ22

)

∗

= − ηρ∗2
ψ∗

+
d−

√
2a

μ∗

ρ∗2 ,

(

∂2g̃1
∂ρ22

)

∗

=
a2ζ

ψ∗(a2−ρ∗22 )3/2
− 1

ψ3
∗

[

ζρ∗2
√

a2−ρ∗22
+ η

]2

+
a2

(a2−ρ∗22 )3/2

× (2+
√
2)a−

√
a2−d 2

μ∗

− 1

μ3
∗

{

[(2 +
√
2)a−

√

a2 − d 2]
ρ∗2

√

a2 − ρ∗22
+
√
2a− d

}2

,

(3.14)

from which we can deduce

det g̃′′1∗ =

(

∂2g̃1
∂ρ22

)

∗

[

(

∂2g̃1
∂θ21

)

∗

(

∂2g̃1
∂θ22

)

∗

−
(

∂2g̃1
∂θ1∂θ2

)2

∗

]

(> 0) (3.15)

along with sign (g̃′′1∗) = 3. As a consequence, the corresponding contribution is given by

applying Eq. (2.3a) to Eq. (3.10), as follows:

J(i1)=
ika2

4π2

(

2π

k

)3/2
[

f1 f2
ϕμψ (det g̃′′1 )

1/2

∇g · �n
|∇g|2

ρ1ρ2 e
i(kg̃1+3π/4)

√
a2−d2

√

a2−ρ22

]

∗

[

1+O

(

1

k

)]

=
1√
k

ia2f∗

1 f
∗

2√
6π ϕ∗ μ∗ ψ∗ (det g̃′′1∗)

1/2

(

∂g/∂ρ1
|∇g|2

)

∗

ρ∗2 e
i(kg̃1∗+3π/4)
√

a2−ρ∗22

[

1+O

(

1

k

)]

≡ J1(k) ,

(3.16)

where the asterisks mean that all quantities involved are to be calculated for θ1 = θ∗1 =

π/2, θ2 = θ∗2 = −π/2, ρ2 = ρ∗2 = 0.07792a.

(i2) The values θ
∗

1 = −π/2, θ∗2 = π/2 also automatically provide vanishing expressions

(3.12b) and (3.12d). By analogy to case (i1), it can be proved that again only one value

ρ∗2 = 0.03581a exists for which expression (3.12c) is trivial.

The elements of the Hessian now are
(

∂2g̃1
∂θ21

)

∗

= −η0d

ϕ∗

+
ρ∗2 −

√
2a

μ∗

d,

(

∂2g̃1
∂θ1∂ρ2

)

∗

=

(

∂2g̃1
∂ρ2∂θ2

)

∗

= 0,

(

∂2g̃1
∂θ1∂θ2

)

∗

=
ρ∗2 d

μ∗

,

(

∂2g̃1
∂θ22

)

∗

=
ηρ∗2
ψ∗

+
d+

√
2a

μ∗

ρ∗2 ,

(

∂2g̃1
∂ρ22

)

∗

=
a2ζ

ψ∗(a2−ρ∗22 )3/2
− 1

ψ3
∗

[

ζρ∗2
√

a2−ρ∗22
− η

]2

+
a2

(a2−ρ∗22 )3/2

× (2+
√
2)a−

√
a2−d 2

μ∗

− 1

μ3
∗

{

[(2 +
√
2)a−

√

a2 − d 2]
ρ∗2

√

a2 − ρ∗22
−
√
2a− d

}2

,

(3.17)
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whence determinant (> 0) and sign (= 3) can be calculated. The corresponding contri-

bution is given by

J(i2)=
1√
k

ia2f∗

1 f
∗

2√
6π ϕ∗ μ∗ ψ∗ (det g̃′′1∗)

1/2

(

∂g/∂ρ1
|∇g|2

)

∗

ρ∗2 e
i(kg̃1∗+3π/4)
√

a2−ρ∗22

[

1+O

(

1

k

)]

≡J2(k),

(3.18)

where the asterisks mean that the quantities involved are to be calculated for θ1 = θ∗1 =

−π/2, θ2 = θ∗2 = π/2, ρ2 = ρ∗2 = 0.03581a.

A detailed analysis of Eqs. (3.12) shows that in case (i) two other (less evident)

stationary points exist, additionally to those of sub-cases (i1) and (i2). They are:

(i3) θ
∗

1 = −19.5960, ρ∗2 = 0.07370a, θ∗2 = −0.3630.

(i4) θ
∗

1 = −160.4040, ρ∗2 = 0.07370a, θ∗2 = −179.6370.

These two points possess the same value of ρ∗2 but angular arguments θ∗1 and θ∗2 shifted

by 180◦ with respect to each other. The contributions from them, namely J3 ≡ J(i3)

and J4≡J(i4), are rather similar to those given by expressions (3.16), (3.18). The only

difference is that the elements of the Hesssian (and, as a result, some related quantities)

have a much more complex form, which is omitted for brevity.

(ii) ρ2 = d. Again, for the sake of brevity, we give only a brief sketch of the four

analogous boundary stationary points.

First of all, the phase function here is three-dimensional too: g̃2(ρ1, θ1, θ2) =

g(ρ1, θ1, d, θ2), and in Eq. (3.10) it holds that dσρθ = dρ1 dθ1 dθ2, (∇g · �n) = ∂g/∂ρ2.

The stationary points of function g̃2(ρ1, θ1, θ2) are defined by Eqs. (3.10a,b,d) set equal

to zero. The analysis, like the previous one performed above, shows evident properties

of symmetry with respect to the following change: ρ1 ⇆ ρ2, θ1 ⇆ θ2. In fact, all func-

tions involved in integral (3.10) have that symmetry, except functions f1 and f2. If these

functions also would have the same symmetry, then case (ii) would be absolutely the

same as case (i), and the final result could be simply obtained by taking into account the

above quantities J1, . . . , J4 two times. Nonetheless, it can be easily understood how to

correctly calculate the arising quantities J5, . . . , J8 , analogous to J1, . . . , J4 , in the case

when they are slightly different, due to the presence of non-symmetric functions f1 and

f2 (we omit such calculations).

As a consequence, the final asymptotic estimate of the diffraction integral (3.2),

through Eqs. (3.9) and (3.10), consists of the following expression for the total scat-

tered wave field:

psc(x) ∼ e4ika

4a

[

2

(3 + 2
√
2)(6 + 5

√
2)

]1/2

+

8
∑

h=1

Jh(k) +O

(

1

k

)

, k → ∞, (3.19)

where all quantities J have the order O(1/
√
k). One thus can see that the contribution

given by the edge effects has an asymptotic order which is more significant than the

neglected residue O(1/k).

A comparison of this explicit expression (versus wave number) with respect to other

results including the direct numerical evaluation of integral (3.2) is reflected in Figure 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE MULTIDIMENSIONAL STATIONARY-PHASE METHOD 743

Fig. 3. Comparison of explicit asymptotic result (3.19) (short dashed
line: - - - ) with exact numerical treatment of integral (3.2) (solid
line: ——) and leading asymptotic term (3.9b) (long dashed line:
— — —).

4. Concluding remarks and numerical investigation. 1. In the present paper

a new asymptotic method is proposed to study high-frequency multiple diffraction by

curved surfaces, in frames of the Kirchhoff diffraction theory. For this aim, we use an

iterated multi-fold version of the standard Kirchhoff integral (early known for single

reflection) suitable for arbitrary number of re-reflections, as established in some authors’

previous works. We show that, in the case of curved reflecting surfaces, two types of

stationary points may arise, and accept the assumption that only the second-type ones

are important for the present study. The main goal of the paper is to give the basics for

an analytical construction of the two leading terms arising from Kirchhoff theory when

applied to multiple diffraction by non-plane surfaces. It is proved that the full value of

the diffracted wave’s amplitude, at high frequencies, is given by the sum of the (leading)

specular reflection term plus the boundary edges contribution. An example of double

reflection from two spherical domes shows the application of such a general approach.
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2. It is shown that the main contribution from the boundary edges comes out from the

stationary points of the corresponding phase functions, which are functions of three vari-

ables. When such special points exist, the respective contributions become more signifi-

cant than the (neglected) second asymptotic term of the classical ray-theory prediction.

More precisely, the neglected terms have the order O (1/k), while the stationary points

of the boundary phase functions give a (greater) contribution of the order O
(

1/
√
k
)

,

as k → ∞. In all cases, the asymptotic estimate of the edge effects is made through the

application of the multidimensional stationary phase method [16]–[18].

3. There are three lines in Figure 3. The solid line reflects a simple direct numerical

calculation of the pertinent four-dimensional Kirchhoff’s diffraction integral; this has

been performed by applying a standard quadrature formula over all four variables, with

a dense mesh of nodes (the number of nodes should be very large when one operates with

a short-wavelength analysis, to keep at least 10 nodes per wave length; concrete examples

show that the desired precision in drawing the graph, with a relative error of 10−3, can

be attained with a few days’ calculation implemented on a personal computer). The

short dashed line shows indeed the key result of the present paper, since it is obtained

as a sum of the specular reflection term plus the explicit asymptotic estimate of the

boundary integral giving the edge effects, here analytically calculated by the stationary

phase method. The long dashed line simply represents the specular reflection leading

term.

4. From the figure, it is clearly seen that the “specular reflection” term (typical of Ray

theory procedures) provides only a poor precision, even for sufficiently high frequencies.

In the approach proposed here, where the improvement in precision is achieved by an

explicit analytical estimate of the edge effects, the results obtained are quite precise, as

shown by the comparison between lines 1 and 2. In the considered example, the relative

error does not exceed a few percents for ak > 12. Finally, we would emphasize that,

when double reflection from curved surfaces is involved, the authors do not know of any

other published theory which can predict correctly in explicit form even the first leading

ray-theory asymptotic term.
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[1] H. Hönl, A. W. Maue, and R. Westpfahl, Theory of Diffraction, Naval Intelligence Support Center,
New York, 1978.

[2] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, John Wiley, Hoboken, New

Jersey, 2003.
[3] V. A. Borovikov and B. Ye. Kinber, Geometrical theory of diffraction, IEE Electromagnetic Waves

Series, vol. 37, Institution of Electrical Engineers (IEE), London, 1994. Translated and revised from
the Russian original. MR1292857 (95j:78003)

[4] M. Born and E. Wolf, Principles of Optics (7th ed.), Cambridge University Press, 1999.
[5] R. Guenther, Diffraction and Gaussian Beams. In: Modern Optics, John Wiley, New York, 1990,

323-360.
[6] V. M. Babich, V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory,

Springer-Verlag, Berlin / Heidelberg, 1989.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1292857
http://www.ams.org/mathscinet-getitem?mr=1292857


THE MULTIDIMENSIONAL STATIONARY-PHASE METHOD 745

[7] H. Kuttruff, Room Acoustics, Applied Science, London, 1973.
[8] Joseph B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962), 116–130.

MR0135064 (24 #B1115)
[9] D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the uniform geometrical

theory of diffraction, The Artech House Antennas and Propagation Library, Artech House Inc.,
Boston, MA, 1990. MR1118379 (92m:78017)

[10] Eugen Skudrzyk, The foundations of acoustics, Springer-Verlag, New York, 1971. Basic mathematics

and basic acoustics. MR0502736 (58 #19668)
[11] I. Tolstoy, Wave Propagation, McGraw-Hill, New York, 1973.
[12] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton

University Press, Princeton, N.J., 1981. MR618463 (82i:35172)
[13] Mezhlum A. Sumbatyan and Antonio Scalia, Equations of mathematical diffraction theory, Differ-

ential and Integral Equations and Their Applications, vol. 5, Chapman & Hall/CRC, Boca Raton,
FL, 2005. MR2099746 (2005i:74044)

[14] Gary M. Jebsen and Herman Medwin, On the failure of the Kirchhoff assumption in backscatter, J.
Acoust. Soc. Amer. 72 (1982), no. 5, 1607–1611, DOI 10.1121/1.388496. MR677408 (83m:73030)

[15] Joachim Focke,Asymptotische Entwicklungen mittels der Methode der stationären Phase (German),
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