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ABBREVIATIONS
Gulo-/-: gunololactone oxidase gene completely inactivated; 

cannot synthesize vitamin C; RDA: Recommended Dietary 
Allowance; SVCT: Sodium-dependent Vitamin C Transporter; 
SVCT2-/-: SVCT2 gene completely inactivated; cannot undergo 
inter-tissue distribution of vitamin C; UL: Tolerable Upper Intake 
Level 

INTRODUCTION
Vitamin C (ascorbic acid) deficiency is known to cause 

scurvy in humans [1]. Guinea pigs need dietary vitamin C as 
well and thus historically serve as the only mammalian model 
for vitamin C studies. Most other species including commonly 
used animal models, rats and mice, fulfill their need of ascorbic 
acid by liver synthesis. In the absence of significant intake, mice 
maintain plasma levels of ascorbic acid at levels comparable to 
or higher than the maximal levels observed in healthy humans 
[2-5]. Furthermore, when mice face excessive vitamin C loss, a 
compensatory change in the endogenous synthesis of ascorbic 
acid has been reported [6]. These fundamental differences 
between species make the extrapolation of results from vitamin 
C studies on rats and mice to humans challenging. 

In recent years, natural mutations and genetic engineering 
have created experimental models that facilitated the 
understanding of vitamin C. Of these ascorbic acid-producing 
species, a disruption in the endogenous synthesis (Gulo-/-) led 
to the vitamin C requirement. Similar to humans, symptoms of 
scurvy developed in Gulo-/- animals at low ascorbic acid intake 
[7-10]. Disrupting the gene encoding sodium-dependent vitamin 
C transporter 2 (SVCT2) (SVCT2-/-) prevented the inter-tissue 
distribution of ascorbic acid, leading to a near complete absence 
of ascorbic acid in the extrahepatic tissues and to perinatal 
lethality [11]. 

After much intensive studying of vitamin C since its isolation 
in 1928, it has become apparent that all its known biological 
activities originate from its chemical property as a reducing agent 
[12]. Biological activities of vitamin C relevant to the outcomes of 
recent clinical trials are first discussed. Because reducing activity 
is not a property unique to vitamin C, many vitamin C-dependent 
reactions are not vitamin C-specific although some are apparently 
more specific than others. 

The second part of the review is on the physiological relevance 
of vitamin C in disease prevention and treatment as revealed in 
recent clinical trials. The reducing activity of vitamin C, while 
essential for its physiological function, has in vivo significance 
only under selected conditions. Many seemingly contradictory 
findings on vitamin C have been demonstrated in the cell-free 
or cell culture experiment. These reactions may have little 
biologically relevance partly because of the poor bioavailability of 
vitamin C at high doses. The absorption and retention of vitamin 
C is limited by the transporter SVCT1 in the intestine and kidney, 
respectively [13]. As a result, the plasma concentration of vitamin 
C does not rise beyond 80 µM when daily intake increases over 
20 folds above the required amount of ~100 mg to 2.5 g per day 
[4, 5]. The Recommended Dietary Allowance (RDA) is 90 mg 
for adult male and 75 mg for adult female. Even an intravenous 
injection of 0.5 g vitamin C/kg body weight (i.e. 35 g for a 154 lb 
individual) only transiently raised the plasma concentration to 8 
mM [14]. 

BIOCHEMICAL AND CHEMICAL ACTIVITIES OF 
VITAMIN C

Post-translational modification of collagen by 
enzymatic reactions requiring vitamin C

Vitamin C participates in a spectrum of transition metal-
catalyzed enzymatic reactions as described in most advanced 
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nutrition textbooks. The universal property of vitamin C in these 
reactions is to reduce the oxidized iron (Fe+3) or copper (Cu+2) 
back to their reactive catalytic forms, Fe+2 or Cu+1. Some roles of 
vitamin C as the transition metal-reducing coenzyme may not be 
exclusive. For example, one function of vitamin C is to assist the 
synthesis of catecholamines, norepinephrine and epinephrine, 
by the Cu+1-dependent dopamine mono-oxygenase reaction. 
Although the adrenal gland of SVCT2-/- mice had no detectable 
vitamin C [11], catecholamines levels were decreased by only 50 
and 20%, respectively, in these mice [15].

Several lines of evidence do support an indispensable role for 
vitamin C in maintaining good-quality collagen.  Vitamin C assists 
the post-translational modification of collagen by reducing 
iron in the participating enzymes, lysyl hydroxylase and prolyl 
hydroxylase [16]. Modified/mature collagen undergoes important 
protein-protein interaction yielding a unique structure that is 
essential for its functions [17, 18]. Genetic knockouts of lysyl 
hydroxylase or prolyl hydroxylase both led to embryonic death 
[17, 19]. Although vitamin C-independent proline hydroxylation 
of collagen has been reported [20], complete collagen maturation 
cannot be achieved in vitamin C deficiency. Km is the substrate 
concentration that yields the half-maximal velocity in an enzyme-
mediated reaction. While prolyl hydroxylase has a lower affinity 
for vitamin C with Km of 100 µM, lysyl hydroxylase has a Km of 
5 µM, which is within the physiological range expected for the 
prevention of scurvy [21]. 

Many symptoms of scurvy can be explained by having 
poor-quality collagen. The evolutionarily conserved and wide-
ranged importance of collagen family has been reviewed [18]. 
Collagen is the major protein from fibroblasts, osteoblasts and 
chondrocytes [18]. A key symptoms of scurvy is microvascular 
bleeding. In the absence of vitamin C in most tissues, SVCT2-/- 
mice died perinatally from intraparenchymal brain hemorrhage 
[11, 22], a feature also found in mice and human with collagen, 
Col4a1, mutation [23-26]. In addition, aortic wall damage due to 
structural defects was observed in Gulo-/- mice fed a low vitamin 
C diet [27]. Because collage is the main protein in the bone [28], 
skeletal defects were also found in scurvy as expected [29] and in 
vitamin C-dependent animal models with low vitamin C intake [7, 
8, 10, 30]. Furthermore, high vitamin C intake has been found to 
be associated with lower bone loss in older adults [31, 32]. Skin 
was shown to be the most sensitive tissue to vitamin C deficiency 
in an animal study [33], which may relate to the function of 
collagen-producing fibroblasts. Hyperkeratosis and poor wound 
healing are also seen in scurvy. Interestingly, higher vitamin C 
intake has been linked to a better appearance of aging skin based 
on the data from NHANES [34].

Vitamin C as an antioxidant

Although vitamin C is a popular antioxidant and its ability 
to directly neutralize free radicals can be predicted from the 
reduction potential [12], the only well-established antioxidant 
role of vitamin C is its reduction of oxidized vitamin E. Fat-
soluble vitamin E helps to maintain cell membrane integrity by 
scavenging free radicals and thus breaking the oxidation chain 
reaction of unsaturated fatty acids in the phospholipid bilayer 

[35]. Vitamin E deficiency, although rare, manifested as hemolytic 
anemia caused by damaged red blood cellular membrane [36]. 
Vitamin C is known to reduce the vitamin E radical formed as a 
result of the scavenging activity back to the functional form of 
vitamin E. This indirect antioxidant role of vitamin C has been 
shown in cell membrane preparations [37] as well as in vitamin 
C-deficient tissues [38]. 

Because this antioxidant activity of vitamin C depends on the 
chemical reduction potential, it is likely not a property unique 
to vitamin C. Other dietary phytochemicals may also be able to 
recycle vitamin E [39]. Clinically, the symptoms of scurvy do 
not include the oxidative stress-induced hemolytic anemia as 
observed in vitamin E deficiency. In addition, the lipid antioxidant 
activity of vitamin E overlaps with that of endogenous antioxidant 
system such as membrane-associated glutathione peroxidase 
[40], illustrating the presence of evolutionarily conserved 
redundant antioxidant systems.

Chemical reduction by vitamin C could lead to the generation 
of toxic by-products under specific conditions. A cell-free 
experiment showed that vitamin C at 0.1 to 2 mM can react 
with lipid hydroperoxides in the absence of transition metals 
[41]. This in vitro reaction produced DNA- and histone-reactive 
compounds [41, 42]. Because the in vivo relevance of this cell-
free reaction was never demonstrated, the significance of 
this observed vitamin C toxicity was not clear. However, this 
observation illustrated the promiscuous nature of the chemical 
reactivity of vitamin C and is relevant to the discussion later on 
the potential toxicity from long-term high dose supplementation 
in Part 2.3.

Vitamin C as a toxic pro-oxidant

The transition metal-dependent toxic pro-oxidant activity of 
vitamin C is also a result of its reduction potential. In the absence 
of enzymes, vitamin C reduces free Fe+3 and Cu+2 to the reactive 
Fe+2 and Cu+1, which then participate in the radical-producing 
Fenton reaction [43]. Except among individuals with genetic 
abnormalities in iron metabolism [44], the pro-oxidant activity 
was not a concern at the physiological level of vitamin C (< 0.1 
mM) because transition metals are well-shielded by specific 
binding proteins. Redundant endogenous antioxidant systems 
are also expected to neutralize limited amount of radicals. 

Nevertheless, this pro-oxidant activity, because it can be 
easily demonstrated at high concentrations of vitamin C (1-20 
mM), has led to numerous and still ongoing cell culture-based 
studies reporting that vitamin C kills cancer cells [45-47]. Vitamin 
C at mM concentration in the transition metal-containing culture 
medium can dose-dependently increase the level of free radicals 
[14, 48], which affect cellular processes [49, 50] and eventually 
lead to cell death. The EC50, a concentration of vitamin C that is 
needed to kill 50% of cancer cells, ranges from 1 to >20 mM for 
different cancer cell lines [45, 47]. A few studies also used the 
pro-oxidant activity to demonstrate a partial efficacy of vitamin 
C in cancer treatment using mice with tumor xenografts as the 
model. Invariably, vitamin C was injected into ascorbic acid-
producing mice repeatedly at extremely high concentrations, for 
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example, 4 g/kg body weight (equal to 280 g for a 154 lb person) 
[47]. Orally ingested vitamin C did not prevent or treat cancer 
in rats [51]. The relevance of applying extremely high dose of 
vitamin C for partial cancer control is questionable when a wide 
variety of effective chemotherapeutic agents are available now.

VITAMIN C IN THE PREVENTION AND TREATMENT 
OF NON-SCURVY DISEASES IN HUMAN TRIALS
Cardiovascular diseases

Based on the essential role of vitamin C in collagen 
maturation and the role of collagen in the vascular system 
as discussed in Part 1.1, it is not surprising that various 
epidemiological studies, although not all, have found a lower 
risk for cardiovascular diseases among individuals with higher 
vitamin C intake [52, 53]. However, none of the clinical trials of 
vitamin C supplementation has demonstrated a protective effect 
of vitamin C for cardiovascular diseases. In fact, no antioxidant 
vitamin supplementation has been shown to affect the risk of 
cardiovascular diseases [54-56]. 

The difference in the outcomes of two types of human 
studies can be explained by the differences in the range of 
intake examined, and the specificity of vitamin C-mediated 
reactions. Because epidemiological studies mostly examined 
the level of consumption ranging from deficiency to an amount 
slightly above the RDA, it analyzed a range of intake that could 
impact the plasma concentration of vitamin C and thus collagen 
maturation. The supplemental trial, in contrast, led to vitamin 
C intake at levels much higher than the RDA, a range of intake 
that should not impact the collagen maturation. The hypothetical 
benefit of additional vitamin C as an antioxidant may not be seen 
in the supplement trial because of several possible factors: a 
limitation in the bioavailability that have been discussed in the 
Introduction; a limited importance of vitamin C in the overall 
antioxidant capacity of the body as discussed in Part 1.2; and a 
potential toxicity at long-term high dose that may diminish any 
benefits of vitamin C supplementation [57-59]. 

Cancers

Clinical trials on cancer prevention, similar to those on the 
prevention of cardiovascular diseases, have not found significant 
benefit of vitamin C supplementation [60, 61]. A recent review of 
trials in the past 30 years using vitamin C for cancer treatment 
also has not concluded its efficacy [62]. These results are 
expected based on the high non-physiological concentrations 
of vitamin C needed to abolish cancer growth in cell culture and 
rodent studies discussed in Part 1.3. 

While some forms of collagens have been linked to the 
inhibition of tumor growth [63], epidemiological studies 
examining the range of vitamin C intake that can affect the 
collagen maturation found either a small reduction or no change 
in cancer risk at higher dietary vitamin C intake [64-66]. One 
possible explanation is that the extracellular matrix is composed 
of various collagen family members and the net contribution 
of good-quality collagens may not be growth inhibitory. For 
example, physiological levels of vitamin C, compared to vitamin 

C depletion, have been shown to promote the cancer growth in 
cell and animal studies [59, 67]. Additionally, because vitamin 
C is mainly found in vegetables and fruits, the limited cancer-
preventing epidemiological observation of vitamin C could be 
due to an overall healthier diet [68].

Health concerns on long-term vitamin C 
supplementation

A concern of long-term supplementation is toxicity. The 
small elevation in plasma concentration of vitamin C after 
supplementation may not affect collagen maturation but the 
chemical activity of vitamin C can increase dose-dependently. 
Although the Tolerable Upper Intake Level (UL) of vitamin C is set 
at 2 g/day for adults, the safety issue associated with long-term 
vitamin C supplementation at a dose lower than UL has emerged 
after various clinical trials drew to an end in recent years. 

No apparent vitamin C supplement-related adverse effects 
were reported in the long-term cardiovascular disease or cancer 
control trials, which mostly used a vitamin C dose of 500 mg/
day. Because epidemiological studies have found a link between 
higher vitamin C intake and a reduced risk of age-related cataract 
[69], clinical trials for cataract prevention have also been carried 
out. While vitamin C at 500 mg/day had no beneficial or harmful 
effect on the risk for cataract [70], a small increase in the risk for 
age-related cataract was observed after 8 years or longer of 1 g/
day vitamin C supplementation [71, 72]. It is possible that at a 
dose much greater than the requirement, the pro-oxidant activity 
of vitamin C dominates. In a trial of single 1 g supplementation of 
vitamin C, a significant increase in the plasma level of ascorbate 
radical was observed [73]. A chemical interaction between 
vitamin C and lens protein was also proposed previously [74], 
which was consistent to the chemical reactivity of vitamin C 
discussed in Part 1.2.

CONCLUSIONS
The reducing activity of vitamin C has led to its diverse 

roles in human health. Adequate daily intake of vitamin C is 
important for the prevention of scurvy and other abnormalities 
similarly relating to the function of collagen. The contrasting 
antioxidant and pro-oxidant activities of vitamin C, although at 
times suggested disease prevention and treatment opportunities 
by supplementation, are unlikely to be significant among healthy 
population. Furthermore, long-term clinical trials observed 
adverse effect at > 500 mg vitamin C/day. The potential long-
term toxicity of vitamin C at the dose lower than the current UL 
of 2.0 g/day needs to be further evaluated. 
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