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Abstract

Although classically appreciated for their role as the powerhouse of the cell, the metabolic 

functions of mitochondria reach far beyond bioenergetics. Mitochondria catabolize nutrients for 

energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for 

the maintenance of redox homeostasis, and function as hubs for metabolic waste management. We 

discuss the importance of these roles in both normal physiology and in disease.

Introduction

The transition to a highly oxidizing atmosphere in early earth development created a 

selective pressure that favored organisms with respiratory capacity1,2 including heterotrophic 

anaerobes, which consumed aerobic prokaryotic microbes (protomitochondrion).3 Following 

endosymbiosis, mitochondrial signals have been synchronized with the eukaryotic cell4. 

This integral relationship is demonstrated by the compartmentalized nature of cellular 

metabolism, in which mitochondrial reactions are required components of metabolic 

pathways.

Mitochondria coordinate cellular adaptation to stressors such as nutrient deprivation, 

oxidative stress, DNA damage and ER stress.5 Although long known to be critical for 

bioenergetics, emerging research shows that mitochondrial metabolism is multifaceted, 

mirroring their diverse functions. In addition to ATP, mitochondria produce metabolic 

precursors for macromolecules such as lipids, proteins, DNA and RNA. Mitochondria also 

generate metabolic by-products, such as reactive oxygen species (ROS) and ammonia, and 

possess mechanisms to clear or utilize waste products.

In this review, we discuss the metabolic functions of mitochondria as bioenergetics 

powerhouses, biosynthetic centres, balancers of reducing equivalents, and waste 

management hubs. Metabolic compartmentalization is instrumental for mitochondria to 

perform these functions. We highlight how mitochondrial metabolism supports their diverse 

functions in cell biology and how metabolism is compartmentalized in normal physiology 

and disease. A deeper understanding of mitochondrial contributions to metabolism will 
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further elucidate their roles in disease and may reveal co-dependent pathways to target in 

therapies.

Mitochondria are the powerhouses of the cell

Cells consume fuels such as sugars, amino acids and fatty acids to generate energy in the 

form of ATP and GTP.6 Nutrients are metabolized and shuttled into the tricarboxylic acid 

(TCA) cycle, and through iterative oxidations, electrons are stored in the reducing 

equivalents NADH and FADH2.6 These carriers deposit electrons into the electron transport 

chain (ETC) in the Inner Mitochondrial Membrane (IMM), and use electron flow to pump 

protons into the intermembrane space.7, Protons flow down their electrochemical gradient 

through F1F0-ATP synthase to generate ATP.8 Whereas oxidative phosphorylation is the 

largest source of cellular ATP, the potential energy generated by the ETC is also harnessed 

for biosynthetic purposes. Many diseases arise when the ETC is perturbed.9,10 We discuss 

how mitochondria integrate fuel metabolism to generate energy for the cell, encompassing 

both classical and unconventional fuel sources (Figure 1).

Pyruvate

Pyruvate is generated by a number of sources, depending on nutrient availability and tissue, 

including glucose catabolism (thought to be a major source), and lactate.11–13 Pyruvate 

utilization in the cytosol versus mitochondria is one of the clearest examples of how 

compartmentalization is a major determinant of cellular bioenergetics. In healthy tissue, the 

fate of pyruvate is dependent on oxygen availability and mitochondrial respiratory capacity.
14 In normoxia, pyruvate is generated via glycolysis and transported across the IMM through 

the Mitochondrial Pyruvate Carrier (MPC).15,16 Pyruvate is further catabolized inside 

mitochondria through the TCA cycle. During hypoxia, mitochondrial respiration is 

repressed, causing cells to adaptively sink electrons onto pyruvate through lactate 

dehydrogenase (LDH), generating lactate in the cytosol.17 This pathway is engaged in 

muscle during exercise, the intestines, and the renal medulla of the kidneys.18–20 Otto 

Warburg observed that cancer cells rewire glucose metabolism for lactate synthesis even in 

normoxia, known as the Warburg Effect.14,21 Additional studies must be performed to 

determine the net catalytic activity of LDH in tumors, given that metabolic tracing studies in 

lung cancer patients have demonstrated that lactate is a major source of TCA cycle 

intermediates.13 The extent of LDH-mediated pyruvate production may depend on in vitro 

versus in vivo models of tumor metabolism, emphasizing the need to test metabolic flux in 

vivo.

The critical role of pyruvate compartmentalization in bioenergetics and metabolism is 

highlighted by recent elegant studies of the MPC.15,16 Pharmacological inhibition of MPC 

represses mitochondrial pyruvate uptake, shifting reliance to glycolysis for ATP production. 

This shift is evident in cancer cells, which repress MPC1 to promote the Warburg Effect, and 

in myocytes of diabetic mice, which elevate glucose consumption in response to MPC 

inhibition22,23 Suppression of MPC accelerates proliferation in intestinal stem cells,24 

suggesting that the role of MPC is context-dependent and sensitive to mitochondrial 

respiratory capacity and/or nutrient availability.
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Within mitochondria, pyruvate may enter the TCA cycle via the activity of two distinct 

enzymes: Pyruvate Dehydrogenase Complex (PDC), which generates acetyl CoA, and 

Pyruvate Carboxylase (PC), which generates oxaloacetate.25 Although PDC and PC both 

catalyze the flux of pyruvate into the TCA cycle, their enzymatic activities can be 

distinguished by stable isotope tracing26,27, and their metabolic roles do not appear to be 

interchangeable. PDC deficiency is sufficient to rewire energy metabolism towards aerobic 

glycolysis despite the potential adaptive node for TCA cycle anaplerosis (a process to 

replenish TCA cycle intermediates), mediated by PC.28 Many cancers favor PC-mediated 

anaplerosis, although the factors that dictate the choice for pyruvate flux between PC and 

PDC are little studied.27,29,30 Therefore, these enzymes may have important functions 

beyond TCA cycle flux for bioenergetics.

Glutamine and Branched Chain Amino Acids (BCAAs)

The catabolism of glutamine, the most abundant amino acid, often starts in the mitochondria 

and its carbon and nitrogen atoms are distributed into macromolecules throughout the cell, 

including TCA cycle intermediates (important in bioenergetics), amino acids, nucleotides, 

glutathione, and lipids.31

In mitochondria, glutaminase (GLS) converts glutamine into glutamate and ammonia. Either 

transaminase or glutamate dehydrogenase (GDH) converts glutamate into α-ketoglutarate.
32,33 Glutamine anaplerosis sustains TCA cycle intermediates in conditions of limiting 

glucose and MPC inhibition, demonstrating the potential flexibility of these metabolic 

nodes.34,35 Glutamine anaplerosis is critical for meeting the energetic requirements of 

proliferative cells, such as T cells during the transition from quiescent naïve T cells to 

effector cells, and in cancers, particularly with MYC elevation.32,36,37 GLS inhibition 

suppresses proliferation, and GLS inhibitors are being evaluated in clinical studies for a 

number of cancers.31,38,39 However, sensitivity to GLS inhibition in vitro is not always 

consistent in vivo, and is dependent on extracellular cystine levels.40 This emphasizes the 

need for investigators to study the effect of the microenvironment on metabolic 

dependencies and to validate experiments in vivo.

Although glutamine transporters at the plasma membrane have been identified,41 the 

mitochondrial glutamine transporter has not been fully characterized.42,43 This critical area 

of research is challenging to address because there are likely multiple mechanisms for 

glutamine import.

The BCAAs leucine, isoleucine, and valine are a major source of cellular energy via acetyl 

CoA and succinyl CoA generation.44 The tissue of origin dictates dependency on BCAA 

catabolism in normal physiology and in cancer.45 In normal physiology, myocytes and 

adipocytes activate mitochondrial BCAA catabolic enzymes to support ATP production 

during exercise or fasting and differentiation, respectively.46,47 BCAA catabolism is 

repressed in maple syrup urine disease, which is caused by mutations to branched-chain keto 

acid dehydrogenase (BCKDH) and causes dysfunction of immune cells, skeletal muscle and 

the central nervous system.48 Although mitochondrial BCAA catabolism is critical in these 

pathologies, it is unknown how BCAAs are imported into the mitochondria. Identifying their 
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transport mechanisms will be critical to our understanding of mitochondrial BCAA 

catabolism in cellular homeostasis.

Fatty Acid Oxidation

Palmitate, a 16-carbon fatty acid (FA), stores 39KJ/g of energy compared to 16KJ/g stored 

in glucose.49 Therefore, FAs are a major source of cellular energy, particularly under 

conditions of nutrient stress. Mitochondrial FA import is a rate-determining step for fatty 

acid oxidation (FAO) and demonstrates how metabolic compartmentalization adapts to 

cellular state. As long chain FAs are unable to cross mitochondrial membranes, 

mitochondria have evolved an intricate set of reactions and transporter activities to allow fat 

to access mitochondrial β-oxidation machinery. The outer mitochondrial membrane (OMM) 

enzyme carnitine palmitoyl transferase 1 (CPT1) forms acylcarnitines from fatty acyl CoAs.
50 Acylcarnitines are shuttled into mitochondria through the carnitine–acylcarnitine 

translocase (SLC25A20) in the IMM. CPT2 liberates FA from carnitine, initiating FAO.51 

Acetyl CoA from FAO is used for the TCA cycle as well as for aspartate and nucleotide 

synthesis.52

CPT1 activity is tightly controlled by a network of metabolites, linking it to cellular nutrient 

status. Malonyl CoA, generated by the enzyme acetyl CoA carboxylase (ACC), represses 

CPT1 to inhibit acylcarnitine import.53 Malonyl CoA is the initiating metabolite for FAS, 

and its levels dictate the balance of fat synthesis or oxidation within a cell. In low energy 

conditions, AMP-activated protein kinase (AMPK) phosphorylates and inhibits ACC, 

decreasing malonyl CoA and increasing CPT1 activity.54 ACC2 is also hydroxylated by the 

dioxygenase prolyl hydroxylase 3 (PHD3).55 Hydroxylation promotes ACC2 activity in 

nutrient abundance. These enzymes are altered in some cancers and human diseases as the 

mechanism that dictates fat utilization. PHD3 is suppressed in cancers that rely on FAO, 

such as AML and prostate cancer, and elevated in cancers that rely on FAS such as breast 

and non-small-lung-cell cancer.55–57 Reciprocally, AMPK is linked to fat utilization in 

diseases and cancers.58,59

The dynamic regulation of FAO is key to cellular physiology. FAO is fundamental for the 

survival and function of memory CD8+ T cells, unlike effector cells that rely on glycolysis 

and glutaminolysis for energy.60,61 Likewise, FAO is activated in insulin resistance, in which 

free fatty acids provide a compensatory fuel for repressed glucose uptake.62,63

Mitochondria are biosynthetic hubs

Mitochondria participate in the biosynthesis of nucleotides, FAs, cholesterol, amino acids, 

glucose, and heme (Figure 2).64 These biosynthetic pathways are engaged in stress 

responses, and are often mis-regulated in disease.5 Rather than being dysfunctional, highly 

proliferative cells such as cancer cells and activated T cells rely on mitochondrial 

metabolites to form biomass.5,65 Below we review the mitochondrial compartmentalization 

of anabolic pathways and its role in cell stress responses and disease.
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Nucleotides

The 1C metabolic pathway involves a set of reactions that generate and transfer activated 

one carbon (1C) units for de novo nucleotide synthesis, compartmentalize amino acids, and 

contribute to redox homeostasis. The co-factor tetrahydrofolate (THF) is the carrier that 

mediates 1C transfer reactions for de novo nucleotide synthesis.66,67 Activated THF 

molecules are generated through an oxidative/reductive cycle that catabolizes serine (to 

generate glycine) in the mitochondria and synthesizes serine in the cytosol.

The carrier SLC25A32 imports THF into the mitochondria, where it is converted by serine 

hydroxymethyltransferase (SHMT2) into 5,10 methylene-THF and glycine. Like many 

enzymes in 1C metabolism, SHMT2 is bi-directional. SHMT2 favors production of glycine 

and 5,10 methylene-THF, and cells deficient in mitochondrial 1C metabolism are glycine 

auxotrophs.68 In the absence of SHMT2, cytosolic SHMT1 reverses flux to compensate69 

demonstrating how metabolic flexibility among subcellular compartments is critical to stress 

adaptation.

Mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD2) converts 5,10 

methylene-THF to 10-formyl-THF. MTHFD2 expression is regulated by mTORC1, and is 

critical for growth and proliferation.70 MTHFD2 is overexpressed in many human cancers71 

and mitochondrial biogenesis and SHMT2/MTHFD2 expression are promoted during T-cell 

activation to support proliferation.72 10-formyl-THF has multiple fates: conversion into THF 

by 10-formyl-THF dehydrogenase, production of formyl-methionine for mitochondrial 

translation, or hydrolyzation to formate by MTHFD1L. Mitochondrial contributions to this 

pathway are critical, as mitochondrial formate is the main carbon source for cytosolic 1C 

metabolism 66

The IMM enzyme dihydroorotate dehydrogenase (DHODH), which oxidizes dihydroorotate 

to orotate, is required for de novo pyrimidine synthesis.73 Consistent with their reliance on 

1C metabolism, T cells require DHODH for clonal expansion and differentiation into 

effector cells.74 DHODH is targeted in autoimmune disorders and inhibition suppresses 

myeloid differentiation of AML cells.75 DHODH activity is also elevated in response to 

DNA damage and upon genotoxic chemotherapy treatment to increase nucleotide synthesis 

for DNA repair.76,77

Citrate

In addition to generating electron carriers for the ETC, TCA cycle intermediates such as 

citrate regulate anabolic reactions. Mitochondrial citrate controls anabolic reactions by 

directly acting as the carbon source for FAs, cholesterol and ketone bodies through ATP 

citrate lyase (ACLY),78 and by allosteric modulation. Citrate is generated by citrate synthase 

(CS) or through the reduction of α-ketoglutarate by isocitrate dehydrogenase (IDH).79–81 

Mitochondrial citrate is exported by the malate-citrate antiporter SLC25A1.82 In the cytosol, 

citrate is converted to acetyl CoA via ACLY, which can access many pathways, including 

conversion to malonyl CoA by the activity of ACC (as described above). Cytosolic citrate is 

a potent allosteric regulator of ACC by increasing its polymerization and activity.83
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Regulation of citrate export may provide a physiological node for the cell to communicate 

lipid homeostasis to the mitochondria. SLC25A1 is sensitive to membrane rigidity, and high 

levels of cholesterol or acidic phospholipids in the IMM repress mitochondrial citrate export.
84 Moreover, fasting causes a 40% reduction in mitochondrial citrate export.85 Although 

these studies indicate that citrate export is affected by lipid abundance, it is unknown if 

repression of SLC25A1-mediated citrate export affects ACC2 polymerization and FAS 

initiation.

Acetyl CoA is required for epigenetic modifications such as histone acetylation.86–88 Thus, 

fat metabolism may be intimately linked with the epigenetic state, although it is unknown 

whether the connection is direct. The emerging role of mitochondrial metabolism in 

epigenetic reprogramming may extend beyond acetyl CoA to include other mitochondrial 

metabolites such as succinate, fumarate, and ROS, which directly affect the activity of Fe 

(II)/α-KG-dependent dioxygenases, including hydroxylases, DNA demethylases and histone 

demethylases.89

Amino Acids

The mitochondria is a hub for amino acid synthesis, including glutamine, glutamate, alanine, 

proline, and aspartate. Glutamine synthetase (GS) condenses glutamate and ammonia to 

make glutamine.90 GS has been reported to have activity in cytosol and mitochondria, and 

its biological role may differ depending on its subcellular localization. GS has a “weak” 

mitochondrial localization sequence and is imported into the mitochondria in the liver, 

whereas GS is cytoplasmic in astrocytes.91 In glioblastoma, GS generates a source of 

glutamine for de novo purine synthesis.92 However, in breast cancer cells, GS-derived 

glutamine is not used for de novo nucleotide synthesis.93 One possible explanation for this 

difference is the subcellular localization of GS in these systems.

Glutamate is generated by and utilized as a nitrogen source for numerous reactions.94 

Glutamate metabolism stratifies in proliferating and quiescent cells; proliferating cells 

elevate the expression of glutamate-dependent transaminases, whereas quiescent cells 

suppress them.95 Many of the glutamate-dependent transaminases, such as glutamate 

oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) have two 

(cytosolic and mitochondrial) isoforms.95 It will be key for future studies to elucidate the 

role of subcellular compartmentalization of glutamate metabolism in proliferation.

Proline and ornithine metabolism are centrally mitochondrial. The mitochondrial enzyme 

Pyrroline-5-carboxylate synthase (P5CS) generates pyrroline-5-carboxylate (P5C), which 

can be used for proline and ornithine production.96 Ornithine is made by ornithine amino 

transferase (OAT) and proline is produced through reduction of P5C by Pyrroline-5-

carboxylate reductase (PYCR). The mechanisms underlying compartmentalization of 

proteinogenic amino acids, such as proline and glutamate are little studied.97

Gluconeogenesis

Gluconeogenesis is predominantly a cytosolic process, although the initiating step by PC 

occurs inside the mitochondria.98 PC-derived oxaloacetate is converted to malate and 

exported from the mitochondria for the remaining steps of gluconeogenesis.99 This export 
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can occur through SLC25A1 (citrate-malate antiporter), SLC25A11 (α-ketoglutarate-malate 

antiporter) or SLC25A10 (dicarboxylate-phosphate antiporter).100 The dominant mechanism 

for malate export in gluconeogenesis is unknown. Furthermore, it is unclear if metabolic 

stressors such as nutrient deprivation or hypoxia dictate this mechanism. In the cytosol, 

phosphoenolpyruvate carboxykinase (PCK) converts oxaloacetate into phosphoenol pyruvate 

(PEP) for gluconeogenesis.101 The mitochondrial isoform of this enzyme, PCK2, has no 

known connections to gluconeogenesis.101

Heme

Heme metabolism illustrates an extraordinary example of metabolic compartmentalization. 

The committed step of the pathway is catalyzed by mitochondrial aminolevulinate synthase 

(ALAS), which generates ALA from glycine and succinyl CoA.102 ALA is exported via 

SLC25A38 and, through four cytosolic reactions, is converted into coproporphyrinogen III 

(CPGIII). Next, CPGIII enters the intermembrane mitochondrial space through the ATP-

dependent transporter ABCB6 for further catalysis by coproporphyrinogen oxidase (CPOX).
103 The intermembrane space is a region in which few metabolic reactions occur. The 

terminal step of heme synthesis is in the mitochondrial matrix, in which ferrochelatase 

(FECH) catalyzes the insertion of ferrous iron into the macrocycle.104 As heme biosynthesis 

generates H2O2 in the intermembrane region, we speculate that there may be direct links 

between heme metabolism and ROS-sensitive signaling pathways.

Mitochondria balance redox equivalents

The mitochondria and cytosol have distinct requirements for NAD+, and proper 

compartmentalization of redox equivalents is crucial for maintenance of cellular homeostasis 

and survival in response to environmental stressors.105–107 The cytosol is a more oxidizing 

environment in which the NAD+/NADH ratio ranges between 60-700.108 Conversely, 

mitochondria employ more reductive metabolic reactions, and the NAD+/NADH ratio is 

approximately 7-8.108 To sustain the imbalanced distribution of NAD, mammalian cells 

engage indirect pathways (Figure 3) because there is no known mammalian transporter for 

NAD+ or NADH, contrary to yeast which facilitate NAD transport through NDT1.109

Malate-Aspartate Shuttle

The malate-aspartate shuttle is ubiquitously engaged to generate cytosolic NAD+ and 

mitochondrial NADH.110 This cycle involves an oxidation or reduction catalyzed by malate 

dehydrogenase (MDH1: cytosolic, MDH2: mitochondrial), a transamination catalyzed by 

glutamate-oxaloacetate transaminase (GOT1:cytosolic, GOT2: mitochondrial), and two 

antiporters localized to the IMM (aspartate-glutamate antiporter AGC and malate α-

ketoglutarate antiporter MαA).111 Compartmentalization of reducing equivalents through 

the malate-aspartate shuttle is key for survival in stress conditions such as exercise, in which 

cytosolic NAD+ is required to promote glucose catabolism and mitochondrial NADH for 

ATP production.112 Moreover, in PDAC cancers with oncogenic KRAS, glutamine is fluxed 

through the malate-aspartate shuttle to raise the NADPH/NADP+ ratio for glutathione 

synthesis.113 When oxidative phosphorylation is repressed, cells utilize the reverse flux of 
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GOT1 to generate aspartate114,115. In addition to its regulation of redox balance, the malate-

aspartate shuttle may also contribute to cellular amino acid compartmentalization.

Citrate-Malate Shuttle

In contrast to the malate-aspartate shuttle, the citrate-malate shuttle functions equally (with 

respect to reducing equivalents), but is less studied in the context of disease. Similar to 

malate-aspartate shuttle, the citrate-malate shuttle utilizes both isoforms of MDH. However, 

MDH activity is paired with CS, ACLY, and the malate-citrate antiporter (CIC).116 Rather 

than elevating cytosolic aspartate, the citrate-malate shuttle increases cytosolic citrate levels. 

Therefore, flux through the citrate-malate shuttle promotes FAS through citrate 

compartmentalization.117 Thus, although both the malate-aspartate and citrate-malate 

shuttles balance reducing equivalents through MDH activity, these shuttles are not 

interchangeable. The implications of cytosolic citrate accumulation in the malate-citrate 

shuttle are yet to be defined beyond FAS. For example, flux through the citrate-malate 

shuttle may also affect epigenetics through ACLY activity and acetyl CoA production.88

α-glycerophosphate Shuttle

The α-glycerophosphate shuttle is a unique redox balancing pathway, which intersects the 

mitochondria but does not directly affect mitochondrial NAD/NADH.118 The α-

glycerophosphate shuttle is composed of cytosolic and mitochondrial α-glycerophosphate 

dehydrogenase (cGPDH and mGPDH). In this cycle, cGPDH utilizes NADH to reduce 

dihydroxyacetone phosphate (DHAP) to glycerophosphate (GAP) and generate cytosolic 

NAD+. GAP is subsequently oxidized to DHAP by the flavin-dependent mGPDH, which 

directly deposits electrons into the ETC. The α-glycerophosphate shuttle is tightly linked to 

glycolysis and is highly active in brown adipose tissue (BAT) to regenerate cytosolic NAD+ 

while simultaneously sinking electrons into the ETC for thermogenesis.118 As this pathway 

is engaged in highly glycolytic cells, it would be interesting for future studies to investigate 

the potential role of this redox shuttle in cancer.

One Carbon Metabolism

MTHFD is among the largest contributors to cellular NADPH, in addition to the pentose 

phosphate pathway and malic enzyme (ME).119 MTHFD isozymes are bi-directional, 

however, stable isotope tracing of NADPH revealed that the mitochondrial MTHFD favors 

NADPH production, and the cytosolic isoform favors NADP+ production.120 The 1C 

metabolic pathway is an adaptive mechanism to survive oxidative stress. Upon ETC 

inhibition, flux through the mitochondrial arm of 1C metabolism is activated for NADPH/

NADP+ balance.121 NADPH is required for reduction of glutathione for clearance of ROS. 

In cancer cells, flux through the mitochondrial 1C pathway generates cytosolic NADPH for 

FAS.122

Mitochondria orchestrate waste management

The by-products of metabolic reactions are often depicted as waste. However, emerging 

studies have revealed a functional role for metabolic by-products such as lactate, ammonia, 

ROS and hydrogen sulfide (H2S).12,13,93,123,124 The study of metabolic by-products is a 
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growing area of research, especially in cancer, in which metabolic by-products accumulate 

in the tumor microenvironment (TME)125 (Figure 4A). Mitochondria are indispensable in 

cellular waste management (Figure 4B–D). Below, we review the pathways that 

mitochondria utilize to re-purpose cellular waste.

Ammonia

Ammonia is generated in mammalian cells by amino acid lyases and nucleotide deaminases, 

however, the largest contributor to ammonia in mammals is the microbiome.126 Ammonia is 

a neurotoxin that is sustained below 50 μM in plasma of healthy adults, and can induce 

seizure when plasma levels become elevated.122 Moreover, high ammonia may induce 

autophagy in some cultured cells.127,128 To evade toxicity, mammalian cells possess three 

ammonia-assimilating enzymes: carbamoyl phosphate synthetase 1 (CPS1), GS, and GDH.

The urea cycle is a sink for ammonia, ultimately generating urea, which cannot be 

metabolized by mammalian enzymes. CPS1 is the rate-limiting step of the urea cycle, 

generating carbamoyl phosphate (CP).129 N-acetyl glutamate (NAG) is an essential activator 

of CPS1, and congenital NAGS mutations cause hyperammonemia.130 CP is condensed with 

ornithine by ornithine carbamoyltransferase (OTC) to generate citrulline, which is exported 

through ORNT1, the citrulline-ornithine antiporter for the remaining steps of the cycle. 

Interestingly, in KRAS/LKB1 mutant cancer, CP from CPS1 is diverted into de novo 

pyrimidine synthesis.131 The mechanism of CP export from the mitochondria is unknown 

and may be a potential therapeutic target.

Although urea is a metabolic waste product for mammalian cells, urease-positive bacteria in 

the microbiome re-catabolize 15-30% of urea to regenerate ammonia.132 Consequently, 

similar to congenital mutations in urea cycle enzymes, the microbiome can contribute to 

hyperammonemia.126,133 Beyond ammonia metabolism, many microbial metabolites 

intersect host biology and their roles remain an active area of research.134

GDH and GS assimilate ammonia, generating glutamate and glutamine. Glutamate 

contributes to the urea cycle through conversion to aspartate by GOT2 and mitochondrial 

export via AGC1/2. GDH is a bidirectional enzyme, and high ammonia levels reverse the 

direction of GDH, favoring the reductive activity.135 This bi-directionality is particularly 

relevant in breast cancers, as ammonia accumulates in the TME, driving GDH towards 

glutamate synthesis.93 Beyond the TME, physiological niches with high ammonia levels (the 

microbiome, liver, and kidneys) may promote the reductive activity of GDH. Additionally, 

GDH-mediated ammonia assimilation requires NAD(P)H and therefore may contribute to 

redox balance.

ROS

Mitochondria generate, sequester and interconvert ROS in response to stressors such as 

hypoxia, nutrient availability, cytokine stimulation and changes in mitochondrial membrane 

potential.136 ROS are generated from the reduction of oxygen (O2) to superoxide (O2
.), 

hydrogen peroxide (H2O2) and hydroxyl radical (OH.). Mitochondrial ROS are generated in 

reactions such as NADPH oxidase (NOX4) and the Fenton Reaction, and through electron 
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leak from ETC complexes123, although NOX4 is not strictly localized to mitochondria.137 

ROS are highly reactive and inflict oxidative damage to macromolecules.138

Mitochondria rely on ROS clearance to protect the concentrated iron-sulfur clusters in the 

ETC and iron-dependent enzymes such as aconitase. Superoxide dismutase (SOD2) converts 

superoxide into a less reactive molecule, H2O2.123 Cellular H2O2 can be degraded to water 

by catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx), however mitochondria 

do not have catalase and only a single splice variant of GPx4 has been demonstrated to be 

localized to mitochondria.139,140 Mitochondria rely on the combined activities of 

peroxiredoxins (Prx3 and Prx5), thioredoxins (Trx2), and thioredoxin reductase 2 (TRXR2) 

to decompose the locally generated H2O2.141

Beyond toxicity, ROS are potent mitogen signaling agents that foster proliferation, 

differentiation, and migration.123,142 Specifically, ROS oxidize cysteine residues, linking 

mitochondria to signaling cascades. ROS inactivates the catalytic cysteine of phosphatase 1B 

(PTP1B), enabling receptor tyrosine phosphorylation required for growth-factor signaling.
143 ROS inactivate PTEN, which represses the PI-3 Kinase/AKT signaling cascade and 

PHDs to repress HIF hydroxylation.144,145 In breast cancer, low levels of the mitochondrial 

sirtuin 3 promote HIF stabilization through ROS, stimulating the Warburg Effect.146 In 

macrophages, mROS promote the antibacterial innate immune response, and mice harboring 

mROS-deficient macrophages are susceptible to infection.147 Similarly, mitochondria 

provide ROS for B-cell and T-cell activation.148,149 ROS are thus critical to proliferating 

systems.

Hydrogen Sulfide

H2S is produced in the microbiome by sulfur-reducing bacteria and by mammalian cells 

through cystathionine β synthase (CBS), cystathionine γ lyase (CSE), and 3-

mercaptopyruvate sulfurtransferase (3MST).150 H2S-producing enzymes are localized to the 

cytosol and mitochondria, depending on the tissue type.124

High levels of H2S are toxic and repress respiration through complex IV inhibition.137 To 

dampen H2S toxicity, mitochondria sequentially oxidize H2S generating thiosulfate, sulfite, 

and ultimately sulfate.151 The first and last reactions catalyzed by flavin-dependent sulfide 

quinone reductase (SQR) and sulfite oxidase (SO) directly deposit electrons onto Coenzyme 

Q (CoQ) of the ETC.136 In CoQ deficiency, H2S oxidation is significantly repressed.152 The 

intermediate oxidation step of H2S is catalyzed by thiosulfate reductase (TR) and requires 

oxidized glutathione as an electron sink. Because the enzymes for glutathione synthesis are 

cytosolic, mitochondria must import glutathione for this process. Glutathione can utilize the 

dicarboxylate carrier SLC2510 and the α-kg carrier SLC25A11 for import, although a 

selective mechanism of transport remains unknown and may be pivotal for H2S clearance.153

H2S metabolism is directly linked with oxidative phosphorylation.154 Hypoxia represses 

H2S detoxification through respiratory chain inhibition.124 Interestingly, the microbiome, 

which has the highest H2S levels, is hypoxic in some regions.155 The mechanism for H2S 

tolerance in the microbiome remains unknown. H2S production and clearance may be 

critical in diseases such as cancer and diabetes, which are associated with altered respiration.
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Future directions of mitochondrial metabolism in cellular homeostasis and disease

Here we discuss the multifaceted contributions of mitochondria to cell metabolism as 

bioenergetic powerhouses, biosynthetic centres, balancers of reducing equivalents and waste 

management hubs. Although mitochondrial pathways are well defined, the mechanisms by 

which metabolites are compartmentalized remain elusive. Identifying the transporters that 

coordinate metabolic flux for key pathways such as amino acid and glutathione import will 

be important directions for future research156. Given that mitochondrial metabolism is 

critical to many diseases, transporters that enable metabolic compartmentalization may be 

promising therapeutic targets5,65,157–159. It will also be key to consider mitochondrial 

metabolite concentrations, which differ from whole cell concentrations160, to better inform 

the kinetics of mitochondrial enzymes under different cellular stress conditions and in 

disease. Mitochondrial concentrations are critical when studying bi-directional enzymes 

such as transaminases and enzymes in 1C metabolism.

It will be important for future studies to probe the physiological contributions of 

mitochondria to cell biology. Metabolism is not always comparable when studying in vitro 

and in vivo models. These differences may dictate the efficacy of therapies, such as the 

glutaminase inhibitor in cancer.40 The extent to which a physiological niche alters 

mitochondrial contributions to metabolism and cell/tissue function has not been well 

explored. For example, metabolic by-products accumulate in the TME, increasing the 

necessity for cancer cells to engage waste management pathways13,93,125. Disparities 

between model systems may be avoided by performing in vitro studies in media with 

physiological metabolite concentrations, using model systems that represent the 3-

dimensional architecture of the tissue being studied, and performing experiments in 

vivo161–163.Future studies in this exciting and growing field will continue to reveal the roles 

of mitochondrial metabolism in cellular homeostasis and disease.
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Figure 1: Mitochondria are the powerhouse of the cell.
Mitochondria integrate fuel metabolism to generate energy in the form of ATP. Mitochondria 

oxidize pyruvate (derived from glucose or lactate), fatty acids, and amino acids to harness 

electrons onto the carriers NADH and FADH2. NADH and FADH2 transport these electrons 

to the electron transport chain, in which an electrochemical gradient is formed to facilitate 

ATP production through oxidative phosphorylation. Enzymes have the following 

abbreviations: LDH: lactate dehydrogenase, VDAC: Voltage-dependent anion channel, 

MPC: mitochondrial pyruvate carrier, PDC: pyruvate dehydrogenase complex, PC: pyruvate 
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carboxylase, CS: citrate synthase, IDH2: isocitrate dehydrogenase 2, OGDH: α-

ketoglutarate dehydrogenase, SDH: succinate dehydrogenase, MDH2: malate 

dehydrogenase 2, GLS: glutaminase, GDH: glutamate dehydrogenase, BCAT2: branched 

chain amino transferase 2, BCKDH: branched chain ketoacid dehydrogenase, PHD3: prolyl 

hydroxylase 3, AMPK: adenosine monophosphate kinase, ACC: Acetyl CoA Carboxylase, , 

ACS: acyl CoA synthetase, CPT1/2: carnitine palmitoyltransferase 1/2. Electrons and 

reducing equivalents are shown in yellow.
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Figure 2. Mitochondria are biosynthetic hubs.
The mitochondria are a critical source of building blocks for biosynthetic pathways 

including nucleotide synthesis, fatty acid and cholesterol synthesis, amino acid synthesis, 

and glucose and heme synthesis. Compartmentalization is a key feature of biosynthetic 

pathways. While many of the enzymes listed are bi-directional, arrows are drawn to 

highlight the biosynthetic functions. Enzymes are circled in grey and brown with the 

following abbreviations: Nucleotide Synthesis: MTHFD1/2: methylenetetrahydrofolate 

dehydrogenase, SHMT1/2: serine hydroxymethyltransferase, DHODH: dihydroorotate 
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dehydrogenase, FTDH: formate dehydrogenase. Fatty Acid and Cholesterol Synthesis: GLS: 

glutaminase, GDH: glutamate dehydrogenase, TA: transaminase, ACLY: ATP citrate lyase, 

ACC2: acetyl CoA carboxylase, PHD3: prolyl hydroxylase 3, MPC: mitochondrial pyruvate 

carrier. Amino Acid Synthesis: GDH: glutamate dehydrogenase, GS: glutamine synthetase, 

P5CS: Pyrroline-5-carboxylate synthase, PYCR1: Pyrroline-5-carboxylate reductase 1, OAT: 

ornithine aminotransferase, GOT2: glutamate oxaloacetate transaminase 2, GPT2: glutamate 

pyruvate transaminase 2, GC: glutamate carrier, AGC: aspartate-glutamate carrier, ORNT1: 

ornithine translocator. Glucose and Heme Synthesis: PCK1/2: phosphoenolpyruvate 

carboxykinase, MDH1/2: malate dehydrogenase, PC: pyruvate carboxylase, ALAS: 

aminolevulinate synthase, FECH: ferrochetolase, ABCB6: ATP binding cassette subfamily 

B member 6, FLVCR: feline leukemia virus subgroup C receptor 1.
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Figure 3. Mitochondria balance redox equivalents.
In the absence of a direct mode for NAD transport, cells rely on compartmentalized flux of 

metabolites to support balance of reducing equivalents NAD/NADH, and NADP/NADPH. 

Generally, redox shuttles favor cytosolic NAD+ synthesis and mitochondrial NADH 

synthesis. Enzymes and transporters have with the following abbreviations: Malate-aspartate 

shuttle. GOT1/2: Glutamate oxaloacetate transaminase, MDH1/2: malate dehydrogenase, 

ME1: malic enzyme 1, Glu-Asp antiporter: glutamate-aspartate antiporter, Malate-α-KG 

Antiporter: malate-α-ketoglutarate antiporter. Malate-citrate shuttle. ACLY: ATP citrate 

lyase, MDH1/2: malate dehydrogenase, CS: citrate synthase. α-glycerophosphate shuttle. 

(m/c)GPDH: mitochondrial/cytosolic glycerol-3-phosphate dehydrogenase. Folate Shuttle 

(1C Metabolism): MTHFD1/2: methylenetetrahydrofolate dehydrogenase, SHMT1/2: serine 

hydroxymethyltransferase.
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Figure 4. Mitochondria orchestrate waste management.
(A). Tumor cells increase nutrient consumption and metabolic fitness relative to healthy 

tissue, leading to accumulation of waste products in the tumor microenvironment. To 

manage metabolic waste, cancer cells engage recycling pathways for these metabolic by-

products. (B). Ammonia. Production of and metabolic clearance of ammonia (NH3) in cell 

metabolism. NH3 is generated by amino acid and nucleotide catabolism. NH3 is assimilated 

in the mitochondria through GS (glutamine synthetase), GDH (glutamate dehydrogenase), 

and CPS1 (carbamoyl phosphate synthase 1). CPS1 initiates the urea cycle for production of 
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the metabolic waste product urea. Urea can be re-catabolized by urease positive bacteria in 

the microbiome to regenerate NH3. AGC: aspartate-glutamate carrier, ORNT1: ornithine 

translocator (C). Hydrogen Sulfide. Production of and metabolic clearance of hydrogen 

sulfide (H2S) in cell metabolism. H2S is generated by the mammalian enzymes CBS 

(cystathionine β synthase), CSE (cystathionine γ lyase), 3-MST (3-mercaptopyruvate 

sulfurtransferase) and from the metabolic reactions in the microbiome. H2S is cleared by 

iterative oxidation catalyzed by sulfide quinone reductase (SQR), thiosulfate reductase (TR), 

and sulfite oxidase (SO). TR utilizes oxidized glutathione (GS−) as a sink for electrons. 

Oxidations catalyzed by SQR and SO are linked to mitochondrial ETC and oxidative 

phosphorylation. (D). Reactive Oxygen Species. Reactions that generate and sequester ROS 

(reactive oxygen species). ROS are generated in the mitochondria through the ETC and 

NOX4 (NADPH oxidase). SOD2 (superoxide dismutase 2) converts superoxide into a the 

less reactive molecule hydrogen peroxide (H2O2). In the mitochondria, H2O2 is turned over 

by combined functions of periodxins (Prx) and thioredoxins (Trx). H2O2 also reacts with Fe
+2 (the Fenton Reaction) to generated OH. in the mitochondria. ROS inflict oxidative 

damage to proteins in the mitochondria and cytosol, and also function as potent mitogen 

signaling agents.
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