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Abstract: There is no argument to the fact that insect herbivores cause significant losses to plant
productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants
have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses,
and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely
distributed in flowering plants—are the major group of such biologically active secondary metabolites.
Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep
into extraction and quantification of plant-based natural products with insecticidal/insect deterrent
activity, a potential sustainable pest management strategy. However, we currently lack an updated
review of their multifunctional roles in insect-plant interactions, especially focusing on their insect
deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect
interactions and plant defenses including their structure, induction, regulation, and their anti-feeding
and toxicity effects. Details on mechanisms underlying these interactions and localization of these
compounds are discussed in the context of insect-plant interactions, current findings, and potential
avenues for future research in this area.

Keywords: secondary metabolites; polyphenols; phenylpropanoid pathway; phenolic acid; flavonoids;
lignans; insect herbivores; chemical defenses

1. Introduction

The millions of years of dynamic co-existence and relentless competition for sur-
vival has led plants to evolve complex strategies to survive against the onslaught of
damaging insect herbivores [1–3], primarily mediated through tolerance and resistance
mechanisms [4,5]. While resistance traits assist plants to prevent the attack of insects,
tolerance allows them to combat herbivory or offset fitness consequences by increasing
the photosynthetic activity at the damaged site, and utilization of stored resources for
compensatory growth [4]. Resistance mechanisms also include mechanical defenses to
deter the insects from feeding- using morphological adaptations including, but not limited
to waxy cuticle, trichomes, thorns, and spines [6,7]. Being the first line of defense, herbi-
vores have to face these challenges pronto as they come in contact with plants, although
these defenses can also act in tandem to successfully ward off herbivory [4]. However,
selection pressure for survival in this never ending co-evolutionary arms race has also led
to the development of complex, biochemically based, and tightly regulated second line
of defenses. These include the production of toxins that deter herbivores from feeding,
reduce the palatability/digestibility of plant tissue, and compounds that can negatively
affect herbivore growth and development [8,9]. These defenses also include the release of
constitutive and herbivore induced plant volatiles that attract predators and parasitoids,
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and in many cases, selectively repel herbivores [10,11]. Collectively, these compounds are
defined as plant secondary metabolites.

Plant cells produce two types of compounds; primary metabolites and secondary
metabolites (plant secondary metabolites; PSM) [12,13]. Primary metabolites include com-
pounds vital for plant growth, development, and fitness. These include carbohydrates,
lipids, nucleic acids, and proteins inevitable for cell structure, and physiological and bio-
chemical functioning in plants; whereas PSM, although not directly involved in growth
and metabolism, are essential for interactions with the environment. They are synthesized
and can also be induced during biotic and abiotic stresses- protecting the plant from in-
sects, mammalian herbivores, micro-organisms, UV radiation, high temperature, shading,
mechanical injury, wounding, and heavy metal toxicity to name a few [14–17]. As an anti-
herbivore defense, they also improve host plant survival and fitness [12,18,19] by negatively
affecting the survivability, vigor, host location and fitness of the herbivores [8,20–23]. Fur-
thermore, the production of these compounds is tightly regulated and decreases once they
regain normal state post induction, since they require huge investment of resources; making
it expensive to continuously produce them, leading to growth-fitness trade-offs [4,24,25].

2. Classification

Plant secondary metabolites are generally divided into three broad classes: ter-
penoids, phenolics and alkaloids, with phenolics (polyphenols) being the largest, diverse
and most widely distributed class among them. Several thousand polyphenolic com-
pounds are found in plants, synthesized via the shikimic acid-derived phenylpropanoid
and/or polyketide pathways [26]. They have a basic structure consisting of benzene ring
with a hydroxyl group attached, without any nitrogen-based functional group [27–29].
L-phenylalanine is the primary compound in this pathway to be synthesized and form
the basis for downstream synthesis of other polyphenols (Figure 1). Major groups of
polyphenols include flavonoids (C6-C3-C6), phenolic acids (C6-C1), stilbenes (C6-C2-C6)
and lignans (C6-C3). Polyphenols not only contribute to the flavor, color, odor, astringency,
oxidative stability and bitterness [30,31] of different plant parts, but also play a critical role
as plant chemical defenses [30].

Figure 1. Basic classification and synthesis outline of major polyphenol classes in plants.

The idea of plant-insect interactions either positively or negatively affected by polyphe-
nols was first proposed by Fraenkel in 1959 [32]. Following that, numerous studies
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investigated the defensive as well as stimulatory roles of such metabolites on insect
herbivores. For instance, grain aphid (Sitobion avenae F.) infestation in winter triticale
(Triticosecale Wittm) seedlings induces bioactive compounds such as phenolic acids that
provide resistance against them [33]. Kariyat et al. (2019) showed that 3-deoxyanthocynadin
(flavonoids) present in wild type sorghum (Sorghum bicolor (L.) Moench Family: Grami-
naceae) caused significantly higher mortality and reduced population growth in corn leaf
aphid (Rhopalosiphum maidis Fitch), when compared to null mutants devoid of them [23].
More recently, we also showed that polyphenol-rich pericarp extract of purple corn
(Zea mays) negatively affected growth, development and adult fitness traits in tobacco
hornworm (Manduca sexta L.), a specialist herbivore on Solanaceae [8,22]. Consistent
with these observations, it has been well documented that different groups of polyphe-
nols collectively protect most plant species against wide range of attackers. For example,
chlorogenic acids in chrysanthemum (Dendranthema grandiflora (Ramat.) effectively defend
against thrips [34], pisatin (flavonoid) deters pea-aphid (Acyrthosiphon pisum Harris) in
pea [35] (Table 1), and ferulic acid in rice impart resistance against brown planthopper
(Nilaparvata lugens Stål) [36] to name a few. Increase in phenolic acids and flavonoids, espe-
cially quercetin has also been observed in white cabbage (Brassica oleraceae L. var. capitata
f. alba; Family: Brassicaceae) upon infestation by cabbage butterflies (Pieris brassicae L.)
and flea beetles (Phyllotreta nemorum L.) [37]. A detailed version of similar examples and
effects of polyphenols are described in Table 1. Taken together, it is clear that polyphenols
(the primary group of PSM’s) can not only protect plants against broad spectrum of insect
herbivores but can also be specific and highly regulated based on particular host-herbivore
system and genotype X environment interactions- clearly warranting further in-depth look
at synthesis, distribution and role in plant-herbivore interactions, the focus of this review.

Table 1. Major polyphenolic compounds present in plants mediating insect-plant interactions. These compounds are widely
distributed in different plant parts, defending plants from insect herbivores and in some cases, increasing the survival of
insect herbivores through multiple modes of action.

a. Polyphenols Mediated Defense Interactions with Insect Herbivores

Compound Plant Insect Herbivore Mode of Action Reference

Anthocyanin and tannins
(flavonoids)

Purple corn (Z. mays)
Fall armyworm (Spodoptera

frugiperda)
Feeding deterrent [9]

Genistein and rutin
(flavonoids)

Soybean (Glycine max)
Stink bug (Piezodorus

guildinni)
Antibiosis [38]

Anthocyanin and tannins
(flavonoids)

Purple corn (Z. mays)
Tobacco hornworm

(M. sexta)
Ovipositional and
feeding deterrent

[8,22]

Chlorogenic acid
(phenolic acids)

Chrysanthemum
(Dendranthema grandiflora)

Thrips Pro-oxidant effect [34]

p-Coumaric acid
(phenolic acids)

Yellow maize (Zea mays)
Pink stalk borer (Sesamia

nanogriodes)
Antibiosis [39]

Chlorogenic acid
(phenolic acids)

Yellow maize (Z. mays)
European corn borer

(Ostrinia nubilalis)
Anti-feedant [40]

Chlorogenic acid
(phenolic acids)

Honeysuckle (Lonicera
maackii)

Beet armyworm
(Spodoptera exigua)

Feeding deterrent [41]

Phenolic acids
European filbert

(Corylus L.).
Hazel aphid (Myzocallis

coryl)i
Anti-feedant [42]

Isoflavonoids (flavonoids) Lupinus (Lupin spp.)

Grass grub (Costelytra
zealandica) and African

black beetle (Heteronychus
arator)

Feeding deterrent [43]
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Table 1. Cont.

Piceid, isorhapontin,
astringin.

Sakhalin spruce (Picea
glehnii)

Japanese termite
(Reticulitermes speratus)

Feeding deterrent [44]

Syringic, coumaric, vanillic
acid (phenolic acids)

Castor bean (Ricinus
communis L.)

Castor semi-looper (Achaea
janata L.)

Anti-feedant [45]

Secoisolariciresinol,
secoisolariciresinol

diglucoside and (lignans)

Linseed (Linum
usitatissimum)

Green peach aphid (Myzus
persicae)

Toxic causing mortality [46]

3-Deoxyanthocyanidin
(flavonoid)

Sorgum (Sorghum bicolor)
Corn leaf aphid

(Rhopalosiphum maidis)
Toxic causing mortality [23]

Pisatin (flavonoid) Pea (Pisum sativum)
Peaaphid (Acyrthosiphon

pisum)
Feeding-deterrent [35]

Quercetin dehydrate and
rutin hydrate (flavonoid)

Apple (Malus domestica)
Wooly apple aphid
(Eriosoma lanigerum)

Aphicidal [47]

Vitisin B (stilbene) Grape vine (Vitis vinifera)
African cotton leafworm

(Spodoptera littoralis)
Chronic toxicity,

anti-feedant.
[48]

Vanillic acid, syringic acid,
cinnamic acid, and

p-coumaric acids (phenolic
acid)

Rice (Oryza sativa)

Yellow stem borer
(Scirpophaga incertulas), leaf

roller (Cnaphalocrosis
medinalis), and brown plant
hopper (Nilaparvata lugens)

Toxin [18]

Ferulic acid Rice (O. sativa)
Resistance against brown
planthopper (Nilaparvata

lugens)
[36]

Burchellin,
podophyllotoxin,

pinoresinol, sesamin,
licarin A, or

nordihydroguaiaretic acid
(lignans)

Sesame (Sesamum indicum),
Aniba burchelli, chinaberry

(Melia azedarach), Chaparral
(Larrea divaricate) and

Mayapple (Podophyllum
peltatum)

Triatomid bug (Rhodnius
prolixus)

Anti-molting [49]

Pinoresinol +
podophyllotoxin

derivatives (lignans)
Chinaberry (M. azedarach)

Milkweed bug (Oncopeltus
fasciatus)

Anti-molting [50]

Combretastatin A-4,
4,4′-dihydroxystilbene,

resveratrol and
3,3′,5,5′-tetrahydroxy-4-

methoxystilbene

Zote (Yucca persicola)
Fall armyworm (S.

frugiperda)
Toxin [51]

Caffeic acid and
chlorogenic acid

Cotton (Gossypium
hirsutum)

Corn earworm (Helicoverpa
zea)

Arrest the larval
growth and

development
[52]

Vitisin A and vitisin B
(stilbene)

Grapes (Vitis vinifera)
Colorado potato beetle

(Leptinotarsa decemlineata)

Inhibit larval growth,
chronic toxicity and

anti-feedant
[53]

b. Polyphenols Mediated Interactions with Insect Herbivores that Enhance Herbivore Traits

Phenolic glucosides and
tannins

Almond willow (Salix
triandra L.)

Shrank leaf beetle
(Gonioctena linnaeana)

Feeding stimulant [54]

Phenolic glucoside
(tremulacin 1.5%)

Willow (Salix rosmarinifolia)
Shoot gallow sawfly

(Euura lasiolepis)
Oviposition stimulant [55]
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Table 1. Cont.

Isoquercitrin, quercetin
and quercetin-3-methyl

ether
Chickpea (Cajanus cajan)

Cotton bollworm
(Helicoverpa armigera)

Feeding stimulant [56]

Flavonoids
Milkweed (Ascelpias

curassavica L.)
Monarch butterfly (Danaus

plexippus)
Oviposition stimulant [57]

Flavonoid glycoside, rutin
(pentahydroxyflavone-3-

rutinoside
Lettuce (Lactuca sativa)

American grasshopper
(Schistocerca americana)

Feeding stimulant [58]

Quercitrin, iso- quercitrin
and rutin (flavonoid)

Cotton (G. hirsutum)
Corn earworm (Heliothis

zea)
Feeding stimulant [59]

Flavanol glycosides and
quercetin

Narrow leaf wedge (Vicia
angustfolia L.)

Bean aphid (Megoura
crassicauda)

Stimulate probing [60]

Flavonoids (aglycones,
quercetin and myricetin

Crown vetch (Coronilla
varia) and Alfalfa (Medicago

sativa)

Blue butterfly
(Polyommatus icarus)

Sequestration in wings
(mate recognition)

[61]

Flavonoids Mulberry (Morus alba) Silk moth (Bombyx mori) Sequestration in pupae [62]

Flavone C-glycosides
Crown vetch (Coronilla

varia)

Larvae of lycaenid
butterfly (Polyommatus

bellargus)
Sequestration in wings [63]

Flavone glycoside, luteolin
glycoside

Carrot (Daucas carota)
Black swallowtail butterfly

(Papilio polyxenes)
Oviposition stimulant [64]

Quercetin and rutin
Milkweeds (Asclepias

curassavica)
Female monarch butterfly

(Danaus plexippus)
Oviposition stimulant [65]

Flavonoid glycosides
St John’s Wort (Hypericum

spp.)
Saw fly (Tenthredo zonula)

Sequester compounds
in larval body.

[66]

Flavonoids
Kale (Brassica oleracea var.

acephala)
Cabbage butterfly (Pieris

brassica)
Sequestration [67]

trans-Chlorogenic acid
Wild parsnip, (Pastinaca

sativa),
Black swallowtail butterfly(P.

polyxenes)
Oviposition stimulant [68]

3. Biosynthesis of Polyphenols

In plants, polyphenols are synthesized through the phenylpropanoid pathway [69].
The first compound in this pathway is L-phenylalanine, synthesized by the phenyl-
propanoid shikimate pathway [70]. The first step towards formation of phenolic acids
is cinnamic acid synthesis by the action of phenylalanine ammonia-lyase (PAL) on L-
phenylalanine [71]. Further, cinnamic acid 4-hydroxylase catalyzes cinnamic acid to form
p-coumaric acid. Cinnamic acid also leads to the formation of o-Coumaric acid, which
then give rise to salicylic acid → genitisic acid → o-Pyrocatechuic acid. p-Coumaric acid
further leads to the formation of caffeic acid and p-hydroxybenzoic acid as well, which is a
derivative of hydroxybenzoic acid [72]. Ferulic acid is formed by methylation of caffeic
acid. Further methylation of ferulic acid give rise to sinapic acid (Figure 1). However,
the formation of benzoic acid derivatives is more complex. Either they are produced
from derivatives of cinnamic acid or directly from the intermediary compounds formed
in the shikimate pathway [73]. Vanillic acid can be formed from ferulic acid, syringic
acid from sinapic acid, protocatechuic acid from caffeic acid or p-hydroxybenzoic acid.
Gallic acid, protocatechuic acid, vanillic acid and syringic acid can be also synthesized
from hydroxybenzoic acid [74]. These phenolic acids are commonly found in the families
Apiaceae, Asteraceae, Fabaceae, Moraceae, Rosaceae, Rubiaceae and Solanaceae which
play significant roles as an anti-herbivore defense [29] (Table 2).
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Biosynthesis of flavonoids are initiated with one p-Coumaroyl-CoA and three malonyl-
CoA molecules, where p-Coumaroyl-CoA is synthesized from phenolic acids in the path-
way. Further, involvement of different enzymes at different levels alter the structure of the
compounds formed at different levels of the pathway. The very first enzyme involved in
the formation of basic flavonoid skeleton is the C-15 compound, chalcone synthase (CHS).
The other various enzymes involved in pathway are chalcone isomerase (CHI), flavonoid
3-hydroxylase (F3H), flavanol synthase (FLS), dihydroflavonol reductase (DFR), antho-
cyanin synthase (ANS)/glucose transferase (UGTS) leading to the formation of naringenin,
dihydroflavonols, flavanols, leucoanthocyanidins and anthocyanins, respectively [75–77]
(Figure 2). Flavonoids are commonly found in angiosperms, gymnosperms and pterido-
phytes [75,76].

′

′

Figure 2. Schematic of phenylpropanoid pathway leading to synthesis of different polyphenols i.e., phenolic acids,
flavonoids, stilbenes and lignans by the action of various enzymes.

Stilbenes are also synthesized by the phenylpropanoid biosynthetic pathway. Stilbene
synthase is the main enzyme required for stilbene biosynthesis and stilbene synthase gene
(STS gene) is responsible for synthesis of these enzymes [78]. Generally, one p-Coumaroyl-
CoA and three malonyl-CoA molecules lead to the synthesis of stilbenes by action of STS
enzyme [79] (Figure 2). Stilbenes are most commonly found in Vitaceae [80], Fabaceae,
Pinaceae [81,82], Gnetaceae [83], Polygonaceae [84], Ericaceae [85], and in different plant
parts including leaves, roots, fruits, bark, and stem (Table 2).

Finally, lignans are also synthesized through the phenylpropanoid pathway. Coniferyl
alcohol, sinapyl alcohol and 4-hydroxycinnamyl alcohol are the precursors for lignan
synthesis. P-Coumaryl acid, ferulic acid and sinapic acid synthesized in the phenolic acid
pathway lead to the formation of 4-hydroxycinnamyl alcohol, coniferyl alcohol and sinapyl
alcohol, respectively. Formation of p-Coumaryl acid 4-hydroxycinnamyl alcohol, ferulic
acid coniferyl alcohol, sinapic acid sinapyl alcohol are catalyzed by 4-hydroxycinnamate
CoA and cinnamoyl CoA reductase. Coniferyl alcohol gives rise to the lignans with 9(9′)
oxygens such as furofuran (pinoresinol, lariciresinol, secoisolariciresinol), dibenzylbutane,
dibenzylbutyrolactone, aryltetralin, arylnaphthalene. On the other side, p-coumaric acid
leads to the formation of the lignans without 9(9′) oxygen such as furan, dibenzocycloocta-
diene, and dibenzylbutane [86] (Figure 2). Lignans are widely distributed in Gramineae,
including cereals like wheat bran, rye bran, oats (Avena sativa L. Family: Poaceae), barley
(Hordeum vulgare L. Family: Poaceae), triticale, and corn to name a few) [87]. Pumpkin (Cu-
curbita pepo L. Family: Cucurbitaceae), flax (Linum usitatissimum L. Family: Linaceae; richest
source), sunflower (Helianthus annus L. Family: Asteraceae), poppy (Papaver somniferum L.
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Family: Papaveraceae), sesame (Sesamum indicum L. Family; Pedaliaceae) and oilseed crops
are also observed to have high lignin content- mostly concentrated in the seeds [88].

Table 2. Main classes of polyphenols and their localization in different plant parts.

Plant Plant Part Types of Compounds Reference

Rice (Oryza sativa) Rice straw
Phenolic acids

(p-hydroxybenzoic, vanillic,
coumaric, syringic, ferulic acid)

[89]

Soybean (Glycine max) Seed
Phenolic acids (syringic, ferulic

and vanillic acids)
[90]

Cotton (Gossypium hirsutum)
L.

Leaves
Phenolic acid (gallic acid,
catechin and caffeic acid)

[91]

Sunflower (Helianthus annus) Seed
Phenolic acid

(chlorogenic acid)
[92]

Citrus fruits, apple, berries,
peaches, fruits, nuts, berries,

tea, red wine
Fruit Flavonoids (flavanols) [93,94]

Red rose (Rosa indica), China
rose (Hibiscus rosachinensis),

Flowers Flavonoids (anthocyanins) [95]

Rice bran Flowers Flavonoids (flavone) [96]

Soybean, alfalfa, red clover,
chickpeas, peanut

Seeds and
vegetables

Flavonoids (isoflavones) [97]

Tea leaves (black tea and
oolong tea)

Leaves Flavonoids (catechins) [98]

Sesame (Sesamum indicum) Seed Lignan (furofuran lignan) [88]

Tea (Thea sp.) Leaves
Lignans (matairesinol and

secoisolariciresinol)
[99]

Conifers
Roots, bark and

needles
Stilbene (trans-astringin and

trans-isorhapontin)
[81]

4. Plant Defense Induction Mediated by Polyphenols

Herbivores attack plants by scratching, mining, chewing, biting, sucking, galling,
wounding, parasitizing, and even evading the leaf surface using their secretions [4,100,101].
This attack in turn initiates a suite of defenses in form of physical (spines, trichomes and
sclerophylly) and chemical defenses in plants [102–104] through signaling molecules [105],
phytohormone pathways [106], and the initiation and synthesis of physical defense struc-
tures and/or formation of defensive chemical compounds such as alkaloids, [4] or activat-
ing the compounds already present in inactive form such as cyanogenic glycosides [107,108]
and benzoxazinoids [109,110] to name a few (Figure 3). For example., two major weeds in
the Solanaceae—Solanum carolinense L. and Solanum elaeagnifolium Cav.—possess a diverse
suite of constitutive defenses including non-glandular stellate trichomes that negatively
affect herbivore feeding [6], internode spines that deter herbivores [7]. More interestingly,
these defense traits are also highly inducible post herbivory leading to a well-coordinated
induced defense phenotype [111]. Induced defenses are also thought to be induced by
elicitors produced by herbivores in their oral secretions. For example, the regurgitant of
caterpillars or salivary secretions contain polyphenol oxidase, peroxidase and reductase
which activate plant responses and signaling pathways ultimately leading to the produc-
tion of polyphenolic compounds which are either toxic or repellent to herbivory [112,113]
(Figure 3). These include oral secretions isolated from lepidopteran species (e.g., glucose
oxidase from saliva of H. zea and β-glucosidase from P. brassicae), oviposition fluid contains
elicitors in the form of long chain diols known as bruchins and the fatty-acid-amino-
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acid conjugates (FACs) found in the regurgitant of larvae of Sphingidae (Hawk moths),
Noctuidae (cut worms) and Geometridae (inch worms) [114].

After recognizing these compounds, possibly through surface receptors [115], plants
activate phytohormones such as jasmonic acid (JA), salicylic acid (SA) and ethylene which
act as signaling molecules that spread throughout the plant apart from the wound site
(local) to other plant parts (systemic) to induce various transcriptional factors and con-
sequently, differential defense gene expression [112,114] (Figure 3). In their classic work,
Farmer and Ryan showed that wound signaling speeds up JA production through octade-
canoid pathway, which in turn activates the plant defense genes [116]. These compounds
in general, are part of the octadecanoid defense pathway, primarily mediated by JA and
methyl jasmonate [117,118] to produce herbivory induced secondary metabolites [119,120].
In tomato, expression level of polyphenol oxidase (PPO), proteinase inhibitor (PIs), and
lipoxygenase (LOX) gene expression levels have been found to increase at local and sys-
temic levels, regulated via octadecanoid pathway in response to wounding [121]. More
specifically, the phytohormones produced through the octadecanoid pathway increases
the expression of phenylalanine ammonia lyase (PAL; the chief enzyme necessary for
regulation and operation of phenylpropanoid shikimate pathway), which in turn diverts
amino acids from primary metabolism towards secondary metabolite production [122].
However, induction of signaling pathways is herbivore specific (e.g., feeding guild) and
usually crosstalk is observed between different signaling molecules in the presence of
multiple herbivory attack. This crosstalk can be either antagonistic or synergistic to utilize
minimum resources to sustain plant growth and development, and to mount most effective
defense strategy depending on the type of herbivores in action [123].

Most of these interactions between the hormones have been well understood at the
molecular level [2,124]. For example, SA pathway induced by sucking pest and biotrophs
through the regulatory protein NPR1 that also reduces the activity of JA. For instance, in
tobacco (Nicotiana tabacum L.) SA induces defense response against Tobacco mosaic virus
and JA against chewing herbivores [125] when plants are under multiple herbivores. JA
is primarily induced by lipoxygenase (LOX) genes when plants are attacked by chewing
herbivores [126]. Furthermore, it has also been observed that plants respond much faster
to herbivory attack in comparison to mechanical damage, owing to the fact that some of
the polyphenols produced after prior herbivory are stored in tonoplasts, and fast tracked
for a rapid defense response (Figure 3).
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Figure 3. Schematic representation of signaling cascade after insect herbivory at the cellular level
inside a plant cell. The regurgitant of caterpillar that includes contents from salivary gland and
gut consists of fatty acid conjugates, β-glucose oxidase, peroxidase that acts as elicitors. Elicitors
binds with the receptors on cell membrane and cause biochemical changes in the cell culminating
in gene expression and the activation of octa-decanoid pathway [117] which upregulates defense-
related genes followed by down-regulation of photosynthesis genes. The upregulation of defense
genes that encodes proteins can be broadly classified into three categories- defense genes which
produce anti-nutritional proteins and the enzymes involved in shikimate-phenylpropanoid pathway
producing secondary metabolites, proteinase inhibitors which are involved in cross-linking and
polymerization of cell walls and the third includes phytohormone signaling pathway genes for i.e.,
jasmonic acid, salicylic acid and ethylene. Jasmonic acid moves to plastid/chloroplast to activate the
chief enzyme of shikimate pathway i.e., phenylalanine ammonia lyase (PAL). Most of the polyphenol
biosynthesis takes place in plastids, however flavonoid production occurs either in the cytoplasm
or the cytoplasmic surface of endoplasmic reticulum [127]. PAL in the stomata diverts amino acids
from primary metabolism toward the formation of secondary metabolites including a diverse set of
polyphenols via activation of a suite of defense genes [128]. Some polyphenols are shuttled outside
the cell to act as anti-feedant or anti-deterrent to ward-off the herbivory, while others are stored
inside the tonoplast of cells for quick-future action. These polyphenols are compartmentalized by
converting them into inert and reduced state called phenyloplast, protected inside the tonoplast.
During the successive herbivore attack, the regurgitant of herbivores that activates reactive oxygen
species generates oxidative stress in the cell, leading to dissolution of compartments and release of
polyphenol oxidase. Polyphenol oxidase can form quinones which act as anti-nutritional proteins
interfering with digestibility and nutrient uptake of insects or produce proteinase-inhibitors leading
to cross-linking and polymerization of cells leading to herbivore defense. Illustration by Annette
Diaz, conceptualized by Ishveen Kaur and Japneet Kaur.



Int. J. Mol. Sci. 2021, 22, 1442 10 of 20

5. Mode of Action of Polyphenol Mediated Defenses

Polyphenols affect herbivore growth by antibiosis, antixenosis or antisymbiosis modes
of action. Antibiosis, in this context refers to the production of antibiotic compounds by
the host plant inhibiting the growth, survival, development and reproduction, of insect
herbivores [129] (Figure 3). As discussed earlier, insect herbivore regurgitants produced
during feeding can alter defense gene expression, leading to the production of key defense
compounds, including defense proteins and phytohormones. As a general mechanism,
once an herbivore initiates feeding on plant tissue, amino acid polypeptides such as
systemin can enhance the production of lipase enzyme in the receptor cell membrane
leading to release of linolenic acid. Linolenic acid then acts as precursor of jasmonic acid
signaling pathway, which ultimately produce peroxidase (PO), polyphenol oxidase (PPO)
and proteinase inhibitors. They oxidize phenols to form reactive oxygen species and
quinones [130–132]. Quinones act as anti-nutritional proteins interfering with digestibility
and nutrient uptake of insects [133] (Figures 3 and 4), causing significant reduction in
herbivore fitness. These proteinase inhibitors also cause starvation in insects as they bind
with the digestive enzymes inside insect midgut, reducing digestibility and release of
nutrients and minerals required to perform essential metabolic functions for survival [12].

Polyphenols can also be toxic to insect herbivores by causing oxidative damage in the
midgut through the following mechanisms. They readily bind with thiols, thereby reduc-
ing non-protein thiols and ascorbic acid both in plants as well as in the midgut epithelial
tissue of midgut of herbivore when they consume polyphenols while feeding on plant, as
examined during foliar feeding on soybean by H. zea [134]. The effect of binding of the
polyphenols with the digestive enzymes of insects is reflected by the delay in the devel-
opment, molting and consequently, reduction in fitness of insect herbivore. Rehman et al.
(2013) reported the delay in development of mites due to the binding of phenolics to the
digestive enzymes when fed on plant cultivars with high catechol content [135]. Flavonoids
(apigenin, chrysin, luteolin and quercetin) have been also found to inhibit the EcR (ecdysone
receptor) dependent gene expression in insects which affect their molting [136]. Stilbenes
can inhibit the crocin and diphenyl picrylhydrazyl (DPPH)- insect growth regulatory en-
zymes’ activity in S. frugiperda J. E. Smith [51]. Flavonoids and phenolic acids (ferulic
acid, vanillic acid and 4-hydroxybenzoic acid) have been also found to inhibit acetyl-
cholinesterase (an enzyme involved in molting) in rice weevil (Sitophilus oryzae L.) [137].
Tannins are also reported to bind with the proteins and digestive enzymes in the gut of
insect larvae causing similar effects. Similarly, binding of quinione to the dietary proteins
has been found to be cause anti-nutritive in M. sexta [138], and quinones also undergo
addition reaction with thiols and amino groups in digestive system of herbivores, which
drastically reduces the availability of dietary protein [139]. Flavonoids such as taxifolin
have been found to inhibit the activity of glutathione S-transferases enzyme (which detoxify
insecticides) thereby, enhancing insecticidal properties [140,141]. Flavonoids have also
been found to affect gustatory sensilla and their neuronal responses affecting food choice
and consequently reducing consumption [142–144]. For example, rutin and quercetin 3-
glucosylgalactoside present in soybean (Glycine max L.) leaves reduce the food consumption
of cabbage looper (Trichoplusia ni Hubner) after detection [142,143]. And finally, in addition
to inhibitory effects on digestion, stilbenes have been also reported to have anti-molting
activity by acting as ecdysteroid receptor antagonist leading to premature induction of
molting or even failure in molting [145–147].
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Figure 4. Schematic illustrating the wide gamut of herbivory related functions performed by polyphe-
nols in plants. Plants produce polyphenols at the advent of adverse conditions such as biotic and
abiotic stresses. Herbivory causes abrasions, wounds, and tissue loss which act as signal for the
production of polyphenols. Moreover, the saliva or regurgitant from herbivores contain peroxidases
which act as elicitors for the activation of different signaling pathways [112]. These secretions ac-
tivate different plant hormones and signaling pathways such as jasmonic acid, salicylic acid and
octadecanoid pathway [128] which generate and transmit signals to all the parts of plants which is
depicted by bi-directional arrows running throughout the plant leading to generation of Systemic
Induced Resistance (SIR) in the plants [148]. The production of polyphenols also leads to synthesis of
sesquiterpenes for defense priming of the neighboring plants. Both positive and negative impacts
are being illustrated on the plant with left and right sides of the schematic respectively. Polyphenols
generally have anti-feedent and anti-deterrent effect on most of the insects. Flavonoids (class of
polyphenols) and tannins have cascading effects on the feeding and oviposition activity of tobacco
hornworm caterpillar [Manduca sexta L.; [8,22], also protects plants against the damaging herbivores
by releasing herbivore-induced plant volatiles (HIPV) attracting their predators and parasitoids [149].
Activation of defense mechanisms also leads to the production of reactive oxygen species (ROS) which
ultimately lead to the formation of polyphenol oxidase and subsequent synthesis of compounds such
as proteinase inhibitors preventing the digestibility of tissues by cross-linking and polymerizing the
cells walls with alkylated amino acids. Polymerization of cinnamyl alcohol into lignin by polyphenol
oxidase (formed due to activation and synthesis of polyphenols) deposits lignin in leaves and fruits
which also confers resistance to the plants [150]. These chemical toxins are also observed to have
negative impacts on activity and functionality of microbes, thus indirectly affecting their symbiotic
insects as well [151]. Polyphenols are also observed to affect the herbivores positively; thus, playing
dual role in plant-insect relationship dynamics. Flavanone glycosides present in carrot (Daucus carota

L.; Apiaceae) acts as oviposition stimulant for black swallowtail butterfly (Papilio polyxenes Fabricius)
by releasing volatiles which attract the insects to lay eggs [145], and sequestration of flavone gluco-
sides in the wings of lycaenid butterfly (Polyommatus bellargus Rottemburg) aiding them in visual
communication and mate recognition. Illustration by Annette Diaz, conceptualized by Ishveen Kaur
and Japneet Kaur.
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Antixenosis or non-preference is the reduced preference for a host plant by herbi-
vores, primarily due to the defense responses in plants that can affect their growth and
development. For example, proteinase inhibitors produced after herbivory makes plants
unpalatable and hence are not preferred by herbivores. Green and Ryan were the first to
report the induction of proteinase inhibitors upon herbivory in promoting resistance in
plants [152]. Dreyer and Jones demonstrated that flavonoids such as dihydrochalcones
and polar phenolic compounds in wheat has strong anti-deterrent activity for green peach
aphid (Myzus persicae Sulzer) and wheat aphid (Shizaphis graminum Rondani) [153]. Re-
sistance to herbivory by antixenosis is also achieved by the morphological adaptations
such as, hairiness, wax on leaves, color and by emitting foul-smelling volatile organic com-
pounds such as terpenes [23,154,155]. Collectively, this reduces host location, oviposition
activity, colonization, or have adverse post ingestive effects on insects [156]. Additionally,
peroxidase (PO) enzyme regulates the defense signaling in plants leading to hypersen-
sitive response, which also increases the lignification of cell wall, thereby reducing the
digestibility of plant tissue. For example, peroxidase enzyme can modify the structure
of polyphenols; peroxidase enzyme converts chlorogenic acid into chloroquinone, which
binds to amino acids significantly reducing their availability [157], similar to quinones that
attach to proteins and reduce their availability. Taken together, insect feeding on plants
enhance the production of PO and PPO activity, which ultimately oxidize polyphenols
and they act as either physical or chemical barriers or as signaling molecules providing
resistance to plants against insect pests [132].

Antisymbiosis, on the other hand, is an example of the plant defense mechanism
that indirectly affects growth of insect herbivores by affecting the growth and develop-
ment of beneficial microbes associated with insects. Polyphenols have been shown to
have antimicrobial activity on microbial symbionts of insect herbivores, thereby indirectly
impacting herbivores. For example, condensed tannins were reported to repel leaf cutter
ants (Atta spp.) by affecting the activity of wood rotting basidiomycete fungi in symbiosis
with leaf cutter ants [151]. Tannins from Eurasian watermilfoil (Mtriophyllum spicatum L.
Family: Haloragaceae) have been found to have allelochemical effect on the gut symbiont
of water veneer (Acentria ephemerella Denis and Schiffermüller), thereby affecting their
larval growth [158]. Although these examples provide an insight into the highly diverse
and tightly regulated species-specific effects of polyphenols, investigating how different
polyphenolic molecules act inside the insect body, their targets, and consequently their
cellular and ecological effects is still a black box and needs further investigation.

6. Buffer-Storage of Polyphenols for Future Responses

Plants have also been found to sequester phenolic compounds in the cell vacuole, to
swiftly combat any future attack [159–161]. These compounds are not only toxic to herbi-
vores but are also found to be toxic to plants as well. Consequently, plants tend to store
them in special compartments known as phenyloplasts; the cells of thylakoid membrane
which are produced via redifferentiation of primary cells. In order to store polyphenols in
these cells, they are first detoxified by conjugating it with glycosides to form phenylgly-
coside, making them hydrophilic to remove their toxicity [162]. These phenyloplasts are
progressively filled with phenylglycosides until they become mature enough to be released
outside the chloroplast [162]. Once filled with polyphenolic compounds, these molecules
move inside the vacuoles. At the onset of herbivory, signaling molecules such as reactive
oxygen species (ROS) are produced by insect oral secretions [105] leading to oxidative
stress inside a cell, forcing phenyloplasts to break their outer protective layer, thus releasing
various polyphenolic compounds. [162]. These compounds released from the vacuole,
cross-link and/or polymerize cell wall, which imparts mechanical strength and rigidity
to the plants, posing a harder barrier for herbivores to continue feeding by chewing and
biting. PPO also oxides the secondary metabolites to form polymerized quinones [114] that
act as proteinase inhibitors which bind with several essential enzymes inside the insect
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body, obstructing several essential physiological processes, digestive ability and nutritional
uptake [114].

7. Defence Fitness Trade-Offs in Response to Insect Herbivory

Under continuous herbivory, plants reprogram their cellular machinery to allocate
their energy resources among defense, growth and reproduction, in line with the predic-
tions of resource allocation theory [163]. The theory predicts when plants possess limited
resources to carry diverse functions, they reallocate their resources in a way that optimizes
their overall performance, efficiency, vigor, and fitness [14,163,164]. As expected, polyphe-
nolic secondary metabolites also mediate such trade-offs. For example, herbivory by T. ni
on wild parsnip (Pastinaca sativa L.; Apiaceae) plants, makes them divert their resources to-
wards the production of furanocoumarin (polyphenols), thus causing scarcity of resources
required for growth and development, observed as a drastic reduction in seed mass, and
consequently fitness [165]. In another example., Psychotria horizontalis (Rubiaceae) plants
exposed to pyralid and ctenuchid caterpillars induce the production of tannins leading to
herbivore defenses at the cost of reduced growth of plants [166]. Post-herbivory, plants tend
to overcome losses incurred during herbivory by enhancing metabolism and photosynthe-
sis at the damaged site to invest in regrowth with possible fitness effects [167]. However,
this leads to the diversion of resources towards defenses effectively reducing available
resources-leading to shorter lifecycle and differences in root/shoot ratio. Even with all the
recent developments in molecular genetics and metabolomics, we are still in our infancy
on understanding the mechanisms underlying transgenerational effects (e.g., epigenetics)
of herbivory, and how the intensity of herbivory influence the production and allocation of
resources in their offspring. Being primarily mediated through polyphenols, studies on
such trade-offs in resource reallocation between growth and defense examining single and
groups of phenolic compounds can be used to explore more in this area, with an eye for
potential application for crop improvement programs and pest management.

8. Recent Developments in Secondary Metabolite Research

It is clear that recent emphasis in this field is to elucidate the underlying molecular
mechanisms involved in polyphenol biosynthesis. More recently, microRNA’s (non-coding,
21–24 nucleotides long RNA strands regulating gene expression) have been reported to
be involved in the biosynthesis of PSM [168]. For instance, 4-coumarate-CoA ligase gene
involved in flavonoid biosynthesis have been targeted by miR172i and caffeoyl-CoA O-
methyl transferase involved in lignin biosynthesis targeted by miR1438 [169]. Also, by
modifying the expression of such genes involved in biosynthetic pathway, methods to
enhance their synthesis can be identified. Although exploration at a molecular level to
alter the pathways to regulate the synthesis of polyphenolic compounds is still a work in
progress, most of such research has been carried out to extract specific PSM for pharmaceu-
tical and food industry with less focus on plant-insect interactions. More advancement is
required in this area which will potentially assist in breeding plants that are naturally and
sustainably resistant to various biotic and abiotic stresses.

Re-focusing to extract such compounds by developing inexpensive, simple, environ-
mental and farmer friendly methods to combat the losses incurred due to biotic stressors.
Recently, polyphenol rich pericarp extract, a byproduct of corn processing industry, ex-
tracted by inexpensive techniques has been found to negatively affect the growth and
development of specialist insect herbivore M. sexta [8,23] (Table 1) as well as against gener-
alist herbivore fall armyworm (S. frugiperda) [9] (Table 1). Such waste byproducts of food
industry and other waste plant sources should be further explored under different systems
and herbivores with different feeding behavior. Such developments do have the potential
to become an alternative to the over reliance on synthetic pesticides in pest management.
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9. Future Directions

Plant insect interactions and chemical ecology have benefitted greatly from under-
standing and quantifying secondary metabolites and examining their role in insect traits.
Recent advances in molecular biology and metabolomics has taken this to the next level
by allowing scientists to tease apart individual metabolites, genes and enzymes to target
these specifically. Large number of enzymes and genes have been identified, which are
mostly linked to different polyphenol pathways induced during plant defense responses
to herbivory. While polyphenols have gained a lot of attention in parts- their use in food
chemistry, they have also been an area of interest for studies in insect plant interactions.
However, in this review we show how interspecific variation has an immense effect on
the distribution and mode of action of different polyphenol compounds. Also, it is quite
clear that a defensive compound in one plant system can be beneficial in another, rein-
forcing their species specificity. Theories of resource allocation and trade-offs in plants
are still debated and requires better understanding to answer questions; when plants
invest either in defense or in growth, when they start back investing in growth after threat
from herbivory is over, and how various class of metabolites play a role in these tradeoffs’
decisions. The lack of studies in developing the methodologies of economically extracting
these compounds to test them as potential biopesticide and to replace synthetic pesticides
for sustainable crop production also warrants further investigation. Research in these areas
will provide plant ecologists to further explore into defense mechanisms of plants and give
insights to plant breeders for crop breeding. We urge our fellow scientists to move beyond
model organisms and explore wild and native plant species and their interacting insects to
understand, quantify, and extract PSM’s and examine in detail their role in mediating these
interactions both in vivo and in vitro.
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