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The Multilevel Fast Physical Optics Method for Calculating High
Frequency Scattered Fields

Zhi Yang Xue1, Yu Mao Wu1, *, Weng Cho Chew2, Ya Qiu Jin1, and Amir Boag3

Abstract—The multilevel fast physical optics (MLFPO) is proposed to accelerate the computation of
the fields scattered from electrically large coated scatterers. This method is based on the quadratic
patch subdivision and the multilevel technology. First, the quadratic patches are employed rather
than the planar patches to discretize the considered scatterer. Hence, the number of the contributing
patches is cut dramatically, thus making the workload of the MLFPO method much lower than that
of the traditional Gordon’s method. Next, the multilevel technology is introduced in this work to
avoid calculating the physical optics scattered fields from the considered scatterer directly, so that the
proposed algorithm can significantly reduce the computational complexity. Finally, numerical results
have demonstrated the accuracy and efficiency of the MLFPO method based on the quadratic patches.

1. INTRODUCTION

Recently, the electromagnetic (EM) simulation of electrically large coated scatterers attracts more
and more attentions [1–5]. In the low- and medium-frequency regimes, several numerical methods,
such as the method of moments (MoM) [6–8], the finite element method (FEM) [9], and the finite
differences time domain (FDTD) method [10] have been proposed to calculate the EM scattering from
the electrically large coated scatterers. However, when a high frequency and electrically large scatterer
are considered [11], these methods become unattractive due to their high computational complexity.
Fortunately, at such frequencies, the asymptotic techniques, such as the ray based method [12] and
the PO-based methods [13–18], become applicable for the scatterers that are large and smooth on the
wavelength scale. The ray tracing methods provide a phenomenological solution, cast in terms of the
reflected and diffracted ray contributions, but suffer from high sensitivity to geometrical details and
occasional failures [19]. Thus, the PO-based approximation is often a preferred high frequency method
providing uniform wave solutions, while avoiding the computationally heavy numerically rigorous
techniques. The PO approximation is a high frequency method which can get reasonable accuracy
when the size of the considered scatterer is much larger than the wavelength. The induced electric
and magnetic currents depend on the geometry of the scatterers and the incident wave. One of the
assumptions of PO method is that the induced electric and magnetic currents exist only in the lit region
of the scatterer. Then, the scattered field produced by the induced surface electric and the magnetic
currents can be expressed as surface integrals [20–26], leading to efficient calculation of the PO scattered
field.

Gordon [27, 28], and Ludwig [29] made use of the analytical expression to calculate the PO scattered
fields through flat patches. This method separates the integration domain into several subdomains on
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the order of the 0.1 wavelength. Hence, a simple linear form will be obtained. However, the workload
will obviously increase with increasing frequency.

In [30–32], the PO currents can be represented as current mode which can be characterized by the
amplitude and the quadratic phase functions that vary slowly over large integration domain. Then, the
PO scattered field can be computed from the surface PO currents. This method also can be used to
analyze the multiple interaction problems based on the surface current mode.

The numerical efficiency of the computational techniques can be evaluated based on their
asymptotic computational complexity [33]. We assume that L is the diameter of the smallest sphere
circumscribing the scatterer and kmax is the wavenumber at the highest frequency within the excitation
bandwidth. Then, the number of angular sampling points and the frequency sampling points are
proportional to the electrical size N of the scatterer, where N = kmaxL. Accordingly, the number of
the far-field points varies from O(N2) (two-dimensional pattern) to O(N3) (three-dimensional pattern).
After combining the computational complexity of calculating the PO integral, the calculation of the PO
scattering data has computational complexities varying from O(N4) to O(N5). The workload of this
task is very high if N is a large parameter.

When electrically large scatterers are considered, the computation time is often dominated by the
PO integration process. The multilevel domain decomposition algorithm proposed in [34, 35], utilizing
the domain decomposition and interpolation, aims at achieving a high computational efficiency, i.e.,
has reduced the complexity from O(N4) to O(N2logN) for two-dimensional pattern computation (from
O(N5) to O(N3) for the three-dimensional case). This MLPO algorithm calculates the backscattered
field over a range of aspect angles and frequencies accurately and quickly, and can be extended to coated
scatterers [33–37]. The method is based on the property that the scattering pattern is a bandlimited
function of the angles and frequencies for the finite size scatterers. Hence, the number of the frequency
sampling points or angular sampling points at the bottom level is much less than the final one. However,
the number of the planar patches modeling the surfaces of the scatterers will increase vastly with the
increasing frequency. Therefore, the workload of calculating the PO integrals at the bottom level would
increase since the multilevel technology does not reduce the computational complexity for a single
observation point.

In order to solve this problem, in this work, we propose the MLFPO method using quadratic patches
at the bottom level. Specifically, we use the quadratic (rather than planar) patches to discretize the
surfaces of the electrically large coated scatterer. Hence, the number of the quadratic patches is much
less than that of planar patches. Next, the PO integrals from each quadratic patch are represented as
closed-form formulas with complementary error function method. Therefore, this method can speed up
the calculation with necessary accuracy.

The manuscript is organized as follows. The PO scattered fields of coated scatterers are
introduced in Section 2. Section 3 gives the generalized reflection coefficients of a multi-layered
medium. In Section 4, the quadratic surface subdivision technology and the closed-form formulas
with complementary error function are proposed. The multilevel technology is presented in Section 5.
In Section 6, the performance of the algorithm in terms of accuracy and efficiency is demonstrated via
numerical examples. Section 7 provides the application of the numerical algorithm.

2. THE PO SCATTERED FIELDS OF COATED SCATTERERS

The EM fields scattered from electrically large coated objects can be represented by radiation of the
equivalent electric currents J and magnetic currents M placed on the exterior surfaces as

Es(r) ≈ −ikeikr
4πr

∫
Sl

r× (M − ηr × J)e−ikr̂·r
′
dS(r′) (1)

where

J = n̂× H, M = −n̂× E (2)
E = Einc + Es, H = Hinc + Hs (3)

Here, E and H represent the total electric and magnetic fields, respectively; Einc and Hinc represent
the incident electric and magnetic fields, while Es and Hs represent the scattered electric and magnetic
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Figure 1. The local coordinate system on the surface of the scatterer.

fields, respectively. Also, n̂ is the outward normal unit vector of the exterior surface, and r and r̂ are
the distance and the unit vector between the observation point and the scatterer, respectively. Sl is the
lit region of the considered scatterer, and η is the free space intrinsic impedance.

The PO currents on the lit region of the scatterer are obtained using the tangent plane
approximation, hence, the local coordinate system is illustrated in Fig. 1. In Fig. 1, k̂inc is the direction
of the incident wave propagation and θinc is the angle between the incident wave propagation direction
and the outward unit normal vector of the exterior surface. k̂r is the direction of the reflected wave
propagation which follows the Fresnel’s law. Here, êinc‖ and êr‖ are the parallel polarizations of the
incident and reflected electric fields, while êinc⊥ and êr⊥ are the perpendicular polarizations of the incident
and reflected electric fields, respectively. From Fig. 1, the relationship between the propagation direction
and the polarization direction can be expressed as

êinc‖ = êinc⊥ × k̂inc, êr‖ = êr⊥ × k̂r, ê⊥ =
k̂inc × n̂

‖k̂inc × n̂‖
Therefore, the PO currents on the lit region of the exterior surface of the scatterer can be formulated
as

M = eik̂
inc·r′(−(1 +R⊥)E⊥(n̂ × ê⊥) + (1 −R‖)E‖ cos θinc ê⊥) (4)

J =
1
η
eik̂

inc·r′((1 −R⊥)E⊥ cos θinc ê⊥ + (1 +R‖)E‖(n̂ × ê⊥)) (5)

where E⊥ and E‖ are the components of electric fields along the perpendicular and parallel polarization
directions; R⊥ and R‖ are the generalized reflected coefficients of the multilayered medium which will
be described in the next section.

In order to simplify the scattered field formulations, the PO scattered fields are rewritten as follows

Es(r) ≈
∫
Sl

s(r, r′)e−ikv(r,r
′)dS(r′) (6)

where

s(r, r′) =
−ikeikr

4πr
r̂ ×

{
− (1 +R⊥)E⊥(n̂ × ê⊥) + (1 −R‖)E‖ cos θinc êinc⊥

−r̂× [
(1 −R⊥)E⊥ cos θinc ê⊥ + (1 +R‖)E‖(n̂ × ê⊥)

]}
(7)

v(r, r′) = (r̂ − k̂inc) · r′ (8)

3. THE GENERALIZED REFLECTION COEFFICIENTS

For the coated scatterers, the planar layered medium is depicted in Fig. 2. When the perpendicularly
polarized wave is discussed here, the generalized reflection coefficients can be written as [1]:

R̃12 = R12 +
T12R23T21 e

2ik2z(d2−d1)

1 −R21R23 e2ik2z(d2−d1)
(9)
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Figure 2. Reflection from a three-layer coated scatterers.

Note that

kiz =
√
k2
i − k2

x, k2
i = ω2μiεi (10)

Rij =
μjkiz − μikjz
μjkiz + μikjz

, Tij =
2μjkiz

μjkiz + μikjz
(11)

Here, R̃12 is the generalized reflection coefficient for the one layer of coating between air half space and
PEC scatterer that relates the amplitude of the upgoing wave to the amplitude of the downgoing wave
in the air layer. It includes the effect of subsurface reflections as well as the reflections from the first
interface. Also, εi and μi are the relative permittivity and permeability of the i-th medium, respectively.
For the case of the parallel polarized wave incident on the medium, the generalized reflection coefficients
can be written in a similar form.

4. THE QUADRATIC SURFACE SUBDIVISION TECHNOLOGY AND
CLOSED-FORM FORMULATIONS FOR THE PO SCATTERED FIELDS

4.1. The Quadratic Surface Subdivision Technology

In contrast to the traditional planar surface meshing, the quadratic surface subdivision is adopted in
this work. The effect of the surface subdivision proposed in this work is demonstrated in Fig. 3 [38, 39].

(a) (b)

Figure 3. The discretization of the spherical scatterer. (a) With planar patches; (b) with quadratic
patches.
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We find that compared to planar patches, fewer quadratic patches can model the sphere with a high
accuracy. Next, we can take advantage of the z-buffer technique to find the lit region of the considered
scatterers. Hence, the PO scattered fields can be formulated as

Es(r) ≈
N∑
n=1

∫
�n

s(r, r′)e−ikv(r,r
′)dS(r′) (12)

whereN is the number of the quadratic quadrilateral patches, and �n is the n-th quadratic quadrilateral
patch.

Figure 4. Transformation of the quadratic quadrilateral patch into a square patch in the parameter
coordinate system.

In order to calculate the PO scattered fields accurately, the quadratic quadrilateral patches can be
transformed into a square patch in the parametric coordinate system as shown in Fig. 4. The point
on the surface can be represented by the polynomials with ξ and η as two parameters. The quadratic
quadrilateral space r and the parameter coordinates (ξ, η) are related as

r(ξ, η) = (x, y, z) =
8∑
i=1

Ni(ξ, η)r′i (13)

where (ξ, η) and (x, y, z) are the parametric coordinates and spatial coordinates corresponding to any
point on the quadratic quadrilateral patches, respectively. Also r′i (i = 1, . . . , 8) represents the spatial
location of the curved quadrilateral node. The shape function Ni(ξ, η) can be expressed as

Ni(ξ, η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4
(1 + ξiξ)(1 + ηiη)(ξiξ + ηiη − 1), i = 1, 2, 3, 4

1
2
(1 − ξ2)(1 + ηiη), i = 5, 6

1
2
(1 − η2)(1 + ξiξ), i = 7, 8

(14)

where (ξi, ηi) are the parametric coordinates of the i-th interpolation point in Fig. 4.
After the coordinate system transformation, the PO scattered field can be expressed as

Es(r) ≈
N∑
n=1

∫ 1

−1

∫ 1

−1
s(ξ, η)e−ikv(ξ,η)dξdη (15)

In order to calculate the PO surface integral over each quadratic quadrilateral patch efficiently,
the Lagrange second order interpolation approximation polynomial was adopted. Since the governing
equation of the quadratic quadrilateral patches is nonlinear, the second order vector polynomial
amplitude function Pn(ξ, η) and the phase function Qn(ξ, η) can be chosen to approximate the original
amplitude and phase functions, respectively. In each square patch, the five points r1, r5, r2, r8, r3 are
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chosen in the parametric coordinate system, so the closed-form formulas can be obtained by using the
affine transformation. Then, the PO integral in the parameter domain can be written as

Es(r) ≈
N∑
n=1

∫ 1

−1

∫ 1

−1
Pn(ξ, η)e−ikQn(ξ,η)dξdη (16)

where
Pn(ξ, η) = Γn,1 + Γn,2ξ + Γn,3η + Γn,4ξ2 + Γn,5η2

Qn(ξ, η) = βn,1 + βn,2ξ + βn,3η + βn,4ξ
2 + βn,5η

2
(17)

4.2. The Closed-Form Formulas for the PO Integral

In the parametric coordinate system, the PO integral can be written as

Es(r) ≈
N∑
n=1

∫ 1

−1

∫ 1

−1
Pn(ξ, η)e−ikQn(ξ,η)dξdη (18)

In order to calculate the PO surface integral, the phase function Qn(ξ, η) can be transformed into the
canonical form as (±ξ′2 ± η

′2) after the affine transformation

Qn(ξ, η) = ξ
′2 + η

′2 + φ (19)

The integration domain dξdη in the parameter coordinate system can also be transformed as

dξ′dη′ = ψdξdη

Since φ and ψ are constants, we can include them in an amplitude function Pn(ξ′, η′). In this way,
the PO integral can be transformed as

Es(r) ≈
N∑
n=1

∫ Ln,2

Ln,1

∫ Ln,4

Ln,3

P′
n(ξ

′, η′)e−ik(±ξ
′2±η′2)dξ′dη′ =

N∑
n=1

In (20)

Here, the integration limit is changed to

Ln,1 = −
√

|βn,4| + βn,3

2
√|βn,4|

Ln,2 =
√

|βn,4| + βn,2

2
√|βn,4|

Ln,3 = −
√

|βn,5| + βn,3

2
√|βn,5|

Ln,4 =
√

|βn,5| + βn,3

2
√|βn,5|

The integral In is calculated by means of the closed-form formulas. We deal with the general form PO
integral as follows

I =
∫ L2

L1

∫ L4

L3

P (ξ′, η′)e−ik(±ξ
′2±η′2)dξ′dη′ (21)

where
P(ξ′, η′) = α1 + α2ξ

′ + α3η
′ + α4ξ

′2 + α5η
′2 (22)

With regard to this integral, we have∫ b

a
e−ikx

2
= −1

2

√
π

ik

(
erfc(

√
ikb) − erfc(

√
ika)

)
∫ b

a
eikx

2
= −1

2

√
π

−ik
(
erfc(

√−ikb) − erfc(
√
ika)

)
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∫ b

a
xe−ikx

2
= − 1

2ik

(
e−ikb

2 − e−ika
2
)

∫ b

a
xeikx

2
=

1
2ik

(
eikb

2 − eika
2
)

∫ b

a
x2e

−ikx2

= − 1
2ik

(
be−ikb

2 − ae−ika
2 −

∫ b

a
e−ikx

2
dx

)
∫ b

a
x2e

ikx2

=
1

2ik

(
beikb

2 − aeika
2 −

∫ b

a
eikx

2
dx

)
Supposing that the symbols of ξ′ and η′ are positive, the closed-form formula can be expressed as

I = (α1I1(L1, L2) + α2I3(L1, L2) + α4I2(L1, L2)) · I1(L3, L4)
+α3I1(L1, L2)I3(L3, L4) + α5I1(L1, L2)I2(L3, L4) (23)

where

I1(a, b) = −1
2

√
π

ik

(
erfc(

√
ikb) − erfc(

√
ika)

)
I2(a, b) = − 1

2ik

(
be−ikb

2 − ae−ika
2 − I1(a, b)

)
I3(a, b) = − 1

2ik

(
e−ikb

2 − e−ika
2
)

and
erfc(z) =

2√
π

∫ ∞

z
e−t

2
dt

Here, erfc(·) is the complementary error function. Thus, the PO scattered fields in Eq. (21) can be
calculated by using the closed-form formulas.

5. THE MULTILEVEL TECHNOLOGY

5.1. An Introduction to the Multilevel Approach

In this section, the multilevel technology is employed for the fast computation of the scattered
electromagnetic (EM) field. The algorithm is based on the band limited nature of the contribution
to the fields by subdomain S. This means that the partial EM scattered field due to a subdomain S,
circumscribed by a smallest sphere with radius R, is a bandlimited function and can be sampled over
a coarse grid with a sampling rate proportional to kR [34]. This property implies that the calculation
aggregating the contributions by small subdomains requires fewer operations than the direct calculations
of the EM scattered field of the total scatterer. The multilevel technology determines the number of
scattered field samples to be calculated based on the electrical size of the scatterer [40]. The scattered
field value at any point can be obtained by the sample interpolation. Hence, in order to reduce the
electrical size of each target, a large-scale target structure is decomposed into a multilevel hierarchy of
sub-regions that are closely connected with each other. In this manuscript, the octree decomposition of
the entire scatterer is adopted. First, we use a cube to surround the scatterer. Then, the pre-set cubes
are split into eight small ones through octree decomposition. In order to make full use of the multi-
layer segmentation, we continue the above decomposition operation until the radius of the smallest
sphere circumscribing the sub-domain is on the order of one wavelength. According to the domain
decomposition in Fig. 5, the number of scattering patterns is decreased progressively from level 0 to
level M . The size of the subdomain on the child level is about half of that on the parent’s level. At the
M -th level, the scatterer is decomposed into O(N2) sub-regions with an average size of 1λ at the highest
frequency of interest. Next, we need to calculate the electromagnetic scattered field of each sub-domain
separately. To obtain the total field from the partial contributions, the phase compensation, aggregation,
and interpolation must be performed, from the coarse grids associated with the small subdomains to the



8 Xue et al.

    

Aggregation

Aggregation

Planar Patch

Quadratic Patch

Level 0

Level 1

Level M

...... ......

Figure 5. Schematic overview of the multilevel technology.

dense grid capturing the field of the entire scatterer gradually. The multilevel technology divides the
target along O(logN) levels with O(N2) sub-regions at the last level. Apparently, the computational
complexity can be effectively decreased to O(N2logN).

5.2. Domain Decomposition

As a preprocessing step of the multilevel computational sequence, we perform the domain decomposition
process. Assuming that the surface of considered scatterer is S, let SLn denote the n-th (n = 1, 2, · · · , NL)
subdomain of level L (L = 0, 1, · · · ,M), where (M + 1) is the total number of levels and NL is the
number of subdomains on level L. Obviously, NL = 8L because the octree decomposition is adopted
in this work. Only one subdomain is considered on the 0-th level, i.e., S0

1 = S, which represents the
entire scatterer. Generally, a parent subdomain at each level can be decomposed into several children
subdomains, i.e.,

S
L−1
m =

⋃
n :PL(n)=m

S
L
n (24)

where PL(n) = m means that the nth subdomain on level L is the sub-domain of the mth domain on
the parent level (L− 1).

Let RLn and rLn be the radius and the center of the smallest sphere circumscribing the subdomain
S
L
n , respectively. By adopting the octree subdivision, we expect that the diagonal length of the cube

containing the child sundomain is half of that of the parent cube. Then, the radius of the domain on
the parent level is twice as large as that on the child level, i.e.,

RL−1
m = 2RLn , PL(n) = m (25)
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5.3. Phase Compensation and Interpolation

The PO integral can be expressed as follows

Es(r) =
∫
S
A(θ, ϕ, r′)e−ik(k̂

s−k̂i)·r′dr′ (26)

When the high-frequency scattering characteristics are considered, that is, the wavenumber k is a large
value, the amplitude term of the PO integral formula is a slowly varying function, while the phase term
varies dramatically with the wavenumber k. The PO integrals from domain n on level M are highly
oscillatory functions of frequency and aspect angles. If we consider the PO integration directly in the
global coordinate system, it will introduce great difficulties to subsequent interpolation operation. In
order to eliminate this difficulty, we can move from the global coordinate system to the local one which
is centered on the subdomain as shown in Fig. 5. In the coordinate system centered at rMn , the PO
radiation integral can be expressed as:

Es
M,n(r) = e−ik(k̂s−k̂inc)·rMn

∫
S
M
n

A(θ, ϕ, r′)e−ik(k̂s−k̂inc)·(r′−rMn )dr′ (27)

We assume that the size of the domain on the bottom level is about λ = 2π
kmax

, then, the integral in
Eq. (27) is slowly varying versus frequencies and aspect angles since kmax‖r′ − rMn ‖ ≤ 2π. The oscillatory
factor is removed by multiplying eik(k̂

s−k̂inc)·rM
n , and the PO integral yields smooth results

Ẽs
M,n =

∫
S

M
n

A(θ, ϕ, r′)e−ik(k̂
s−k̂inc)·(r′−rM

n )dr′ (28)

The phase factor e−ik(k̂s−k̂inc)·rM
n in Eq. (27) can be interpreted as a shift of the origin of the coordinate

system to the center of the sphere circumscribing the subdomain, r̄Mn , this shift is important because it
cancels the highly oscillationary phase variation as a function of frequency. Hence, the shift makes the
radiation pattern amenable to the sampling and interpolation. Subsequently, we can compute the full
radiation pattern by aggregating all the partial ones together.

Next, we need to consider the phase compensation and aggregation, the interpolation results for
the dense grids should be multiplied by the factor of e−ik(k̂s−k̂inc)·rM

n . For the 0-th level, the scattering
pattern can be obtained by aggregating the scattered fields of all the subdomains, i.e.,

E(θ, ϕ, r′) =
NL∑
n=1

e−ik(k̂
s−k̂i)·rM

n · Ẽs
n(θ, ϕ, r

′) (29)

The above equation includes the phase recovery term e−ik(k̂s−k̂i)·rM
n applied to the phase compensated

field. The scattered field Es
M,n(θ, ϕ, r

′) of each subdomain at the bottom L = M level can be obtained
through Eq. (27). Instead, based on the relationship between the parent level and the child level, the
scattered fields for the dense grids from each domain on level L could be aggregated to obtain the results
on level (L− 1), i.e.,

Ẽs
L−1,n(θ, ϕ, r

′) =
∑

n :PL(n)=m

eik(k̂
s−k̂i)·(rL−1

m −rL
n)Ẽs

L,n(θ, ϕ, r
′) (30)

The scattering patterns on level 0 can be obtained by repeating the phase compensation and
aggregation steps. The calculation of the unknown cannot be reduced if Eq. (30) is directly calculated
by the Gaussian quadrature rule. Next, the interpolation operation is introduced.

Because of the slowly varying nature of the amplitude function of the PO scattered field, the PO
integral can be considered as the aggregation of the exponential terms e−ik(k̂s−k̂i)·r′ . If we want to
obtain the scattered fields at all frequencies using those at a small number of frequencies through the
interpolation in the frequency domain, then according to the Nyquist sampling theorem, the frequency
sampling interval Δf should satisfy the following condition

Δf ≤ c

4R
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where c is the speed of light in the free space. Therefore, the number of the frequency sampling points
could be given by

Nf =
Ωf4R(fmax − fmin)

c
(31)

where Ωf > 1 is the oversampling ratio. The PO integral is essentially a band-limited function with
respect to angles θ and ϕ. Thus, in order to meet the preset accuracy and ensure that the scattered
field under the fine grid [αmin, αmax] (α = θ or ϕ) obtained through sparse sampling interpolation, the
number of angle samples could be calculated as follows

Nα =
Ωα4R(αmax − αmin)fmax

c
, α = θ, ϕ (32)

where Ωα is the control parameter of sampling points on the angle domain and Ωα > 1.
Following Eqs. (31) and (32), the frequency and angular samples are determined by the parameter

R which is the radius of the sphere that circumscribe the scatterer. Based on the relationship between
adjacent levels via Eq. (25), we double the grid density for frequencies and angles upon transition
between the child level and the parent level respectively, i.e.,

NL−1
χ = 2NL

χ , L ≤M, χ = f, θ, ϕ (33)

Once the sampling points are determined, the sparse coordinate system of each level can be expressed
as (fLm, θLi , ϕ

L
j ), m = 1, . . . , NL

f , i = 1, . . . , NL
i , j = 1, . . . , NL

j . The scattered fields values at bottom
level can be obtained on the coarsest grid coordinate system via (27), i.e.,

Es
M,n =

∫
S̄M

n

A
(
θMi , ϕ

M
j , r

′) e−ik(k̂s,M
ij −k̂i)·(r′−rM

n )dr′ (34)

for n = 1, . . . , NM , where k̂s,Mij = k̂s(θMi , ϕ
M
j ). The radiation characteristic of subdomain m on level

(L− 1) can be obtained by the interpolation process of its sub-levels through Eq. (30)

Es
L−1,m

(
θL−1
i , ϕL−1

j , r′
)

=
∑

n:PL(n)=m

eik(k̂
s−k̂i)·(rL−1

m −rL
n)Ẽs

L,n

(
θL−1
i , ϕL−1

j , r′
)

(35)

where
Ẽs
L,n

(
θL−1
i , ϕL−1

j , r′
)

=
∑

i′:θL
i′∈ψL

p (θL−1
i )

ALii′Ẽ
s
L,n

(
θLi′ , ϕ

L−1
j , r′

)
(36)

and
Ẽs
L,n

(
θLi′ , ϕ

L−1
j , r′

)
=

∑
j′:ϕL

j′∈ψL
p (ϕL−1

j )

BL
jj′Ẽ

s
L,n

(
θLi′ , ϕ

L
j′ , r

′) (37)

Here, Eqs. (36) and (37) represent the interpolation operation on the θ domain and ϕ domain,
respectively. Also, ALii′ and BL

jj′ are their respective interpolation coefficients. ψLp (·) represents the child
level interpolation sampling points used in calculating the scattered electric field at a sampling point
on the parent level. At the bottom level, for each sampling point, different from the planar subdivision
technique in [35], the quadratic surface subdivision technology in Fig. 5 was taken to calculate the
partial EM field contribution of the subdomains in the M -th level, as described in Section 4.

6. NUMERICAL EXPERIMENTS

The results of the experiments are briefly summarized to illustrate the accuracy and efficiency of the
proposed algorithm. We compare the radar cross section (RCS) computed by using the multilevel fast
PO algorithm (MLFPO) and the traditional Gordon’s method. The processor of the HW platform we
used in this work is Intel(R) Core(TM) i7 − 4790 CPU @3.60 GHz, and the memory is 8.00 GB.
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6.1. Bistatic Case for the Coated Sphere Discretized by Using the Quadratic
Quadrilateral Patches

First, to validate the accuracy of the MLFPO method, a PEC hemisphere shell with 0.05 m thick
coating shown in Fig. 6 is considered. The radius of the hemisphere is 5 m, the relative permittivity of
the coating material, ε, is 2.6, and the relative permeability, μ, is 1. The incident wave travels along
the −ẑ direction with the electric field x̂ polarized. The operation frequency is 1GHz. By using the
Gordon’s method [27, 28], 110, 652 planar patches should be used to achieve high accuracy. However,
only 2, 131 quadratic patches are needed to achieve the same accuracy. Fig. 7 demonstrates the accuracy
of the MLFPO algorithm showing the agreement of the results produced by the MLFPO, the Gordon’s,
the FPO, and the MLPO methods. The CPU time of the MLFPO method is 503.3 s, while the CPU
time of the Gordon’s method is about 14.2 h. One can see that the calculation time is greatly reduced,
roughly 102 fold, by using the MLFPO method. Furthermore, the results are error-controllable. So,
the MLFPO can be applied to RCS analysis.

Figure 6. The coated hemispherical shell.
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Figure 7. Compararison of the RCS of the coated
hemispherical shell at φ = 0◦ computed by using
the MLFPO, Gordon’s, MLPO, and FPO method.

6.2. The Efficiency Comparison of the MLFPO and the Gordon’s Methods

The accuracy of the MLFPO method has been proven in the above example. The RCS results of the
MLFPO method agree well with those of the Gordon’s method. Next, numerical experiments have been
done to illustrate the computational efficiency of the MLFPO method. We consider the multi-frequencies
cases for the coated sphere. Other information about the incident plane wave and the parameters of
the coated sphere are the same as in the first example. The range of the frequencies is from 30 GHz
to 90 GHz, for every single frequency, the range of the aspect angle θ is from 0 to π along the φ = 0
cut. The number of the angular sampling points is 3601. The CPU time of every operating frequency
is shown in Table 1. Fig. 8 shows the variation of the three algorithms’ CPU time with the operating
frequency. Apparently, the computation CPU time of the MLFPO method practically does not change
with the increase of the operating frequency. On the other hand, the CPU time of the Gordon’s
method is dependent on the operating frequency heavily. When the high frequency is considered, the
computational time of Gordon’s method is much larger than that of the MLFPO proposed in this work.
It is evident that the efficiency of the MLFPO proposed in this work is much better than that of the
traditional Gordon’s method.
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Table 1. The CPU time for calculating the coated sphere by the MLFPO and the Gordon’s methods
for various frequencies.

Frequency (GHz) MLFPO (min) MLPO (min) Gordon (min)

30 7.8 16.2 284.1

40 6.1 15.9 491.5

50 6.1 13.4 793.4

60 6.0 29.8 1149.1

70 6.0 63.5 1538.5

80 4.9 89.6 2050.1

90 4.8 47.5 2618.2
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Figure 8. Comparison of the CPU time of the coated sphere by using the MLFPO algorithm, MLPO
method and the Gordon’s method.

6.3. Multi-Frequency and Multi-Angle Cases for the Coated Sphere

In order to demonstrate that the multilevel technology can reduce the complexity of calculating the
scattered fields of multi-frequency and multi-angle cases effectively, we consider such computation
scenarios for the coated sphere. The parameters of the coated sphere and the incident wave are the same
as in the first example. The range of the frequencies is from 29 GHz to 30 GHz, and the range of the θ
angles is from 170◦ to 190◦. The number of the frequency sampling points is 48, and the number of aspect
angle points is 1801. When the multilevel technology is used, the number of the frequency sampling and
the aspect angle points are 28 and 144, respectively. The bistatic RCS results for the coated sphere are
shown in Fig. 9. The results of the MLFPO method agree well with those from the Gordon’s method.
Hence, the accuracy of the MLFPO method proposed in this work can be guaranteed when the multi-
frequency and multi-angle cases are considered. The CPU time of the MLFPO method is 808.6 s, but
the CPU time of the Gordon’s method is about 187.3 h, note that the CPU time of the MLFPO method
is much smaller than that of the Gordon’s method, which demonstrates that multilevel technology can
reduce the computational complexity and improve the computational efficiency exceedingly well.
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(a) (b)

Figure 9. The multi-frequency and multi-angle bistatic RCS for coated sphere computed by using. (a)
The MLFPO method, (b) the Gordon’s method.

7. CONCLUSION

In this work, the MLFPO method is proposed for the simulation of multi-frequency and multi-angle
electromagnetic scattering from electrically large coated scatterers. The quadratic discretization and
the FPO method are adopted to decrease the computational complexity and, thus, speed up the
computations. The multilevel technology is applied to reduce the computational complexity. The
multilevel technology essentially reduces to the aggregation of the scattering patterns of increasingly
larger subdomains, starting with the direct evaluation of the scattering characteristics of small surface
subdomians and ending with the entire scatterer. Accurate and numerically efficient local interpolation
schemes are the key to the efficient implementations of the multilevel domain decomposition approach.
Numerical examples demonstrate that the proposed MLFPO method can reduce the computational
workload significantly as compared to the traditional Gordon’s method. Meanwhile, the accuracy can
be gained. Hence, the method can be adopted to efficiently calculate the high frequency scattered fields
of electrically large complex coated scatterers. Also, this algorithm can be applied in the RCS analysis.
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