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In multilevel modeling (MLM), group-level (L2) characteristics are often measured by aggregat-
ing individual-level (L1) characteristics within each group so as to assess contextual effects (e.g.,
group-average effects of socioeconomic status, achievement, climate). Most previous applications
have used a multilevel manifest covariate (MMC) approach, in which the observed (manifest)
group mean is assumed to be perfectly reliable. This article demonstrates mathematically and with
simulation results that this MMC approach can result in substantially biased estimates of contex-
tual effects and can substantially underestimate the associated standard errors, depending on the
number of L1 individuals per group, the number of groups, the intraclass correlation, the sampling
ratio (the percentage of cases within each group sampled), and the nature of the data. To address
this pervasive problem, the authors introduce a new multilevel latent covariate (MLC) approach
that corrects for unreliability at L2 and results in unbiased estimates of L2 constructs under
appropriate conditions. However, under some circumstances when the sampling ratio approaches
100%, the MMC approach provides more accurate estimates. Based on 3 simulations and 2
real-data applications, the authors evaluate the MMC and MLC approaches and suggest when
researchers should most appropriately use one, the other, or a combination of both approaches.
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researchers in the social sciences. A major advantage of
MLMs over single-level regression analysis lies in the pos-
sibility of exploring relationships among variables located
at different levels simultaneously (Goldstein, 2003; Rau-
denbush & Bryk, 2002; Snijders & Bosker, 1999). In the
typical application of MLM, outcome variables are related
to several predictor variables at the individual level (L1;
e.g., students, employees) and at the group level (L2; e.g.,
schools, work groups, neighborhoods).

Different types of group-level variables can be distin-
guished. The first type can be measured directly (e.g., class
size, school budget, neighborhood population). These vari-
ables that cannot be broken down to the individual level are
often referred to as “global” or “integral” variables
(Blakely & Woodward, 2000). The second type is generated
by aggregating variables from a lower level. For example,
ratings of school climate by individual students may be
aggregated at the school level, and the resulting mean can be
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used as an indicator of the school’s collective climate.
Variables that are obtained through the aggregation of
scores at the lower level are known as contextual or ana-
Iytical variables. For instance, Anderman (2002), using a
large data set with students nested within schools, examined
the relations between school belonging and psychological
outcomes (e.g., depression, optimism). School belonging
was included in the multilevel regression model as both an
individual (L1) characteristic and a school (L2) character-
istic. School-level belonging was based on the within-
school aggregation of individual perceptions of school be-
longing. In a similar vein, Ryan, Gheen, and Midgley
(1998) related student reports of avoidance of help-seeking
to student and classroom goals (for other applications, see
Harker & Tymms, 2004; Kenny & La Voie, 1985; Liidtke,
Koller, Marsh, & Trautwein, 2005; Miller & Murdock,
2007; Papaioannou, Marsh, & Theodorakis, 2004).

Croon and van Veldhoven (2007) have emphasized the
applicability of these issues to many subdisciplines of psy-
chology, including educational, organizational, cross-cul-
tural, personality, and social psychology. Iverson (1991)
provided a brief summary of the extensive application of
contextual analyses in sociology, dating as far back as
Durkheim’s study of suicide and including topics as diverse
as the racial composition of neighborhoods, village use of
contraceptives, local crime statistics, political behavior in
election districts, families in the study of socioeconomic
status (SES) and schooling, volunteer organizations,
churches, workplaces, and social networks. In fact, the
issues are central to any area of research in which individ-
uals interact with other individuals in a group setting, lead-
ing Iverson to conclude: “This range of areas illustrates how
broadly contextual analysis has been used in the study of
human behavior” (p. 11).

In the MLM literature, models that include the same
variable at both the individual level and the aggregated
group level are called contextual analysis models (Boyd &
Iverson, 1979; Firebaugh, 1978; Raudenbush & Bryk, 2002)
or sometimes compositional models (e.g., Harker &
Tymms, 2004). The central question in contextual analysis
is whether the aggregated group characteristic has an effect
on the outcome variable after controlling for interindividual
differences at the individual level. The effects of the L1
characteristic may or may not be of central importance,
depending on the nature of the study and the L1 construct
(e.g., Papaioannou et al., 2004).

One problematic aspect of the contextual analysis model is
that the observed group average obtained by aggregating indi-
vidual observations may not be a very reliable measure of the
unobserved group average if only a small number of L1
individuals is sampled from each L2 group (O’Brien, 1990;
Raudenbush, Rowan, & Kang, 1991). For instance, in educa-
tional research, where only a small proportion of students
might be sampled from each participating school, the observed

group average is only an approximation of the unobserved
“true” group mean—a latent variable. When MLMs are used to
estimate the contextual analysis model, it is typically assumed
that the observed L2 variables based on aggregated L1 vari-
ables are measured without error. However, when only a small
number of L1 units are sampled from each L2 group, the L2
aggregate measure may be unreliable and result in a biased
estimate of the contextual effect.

In the present study we introduce a latent variable ap-
proach, implemented in the latent variable modeling soft-
ware Mplus (Asparouhov & Muthén, 2006; B. O. Muthén,
2002; L. K. Muthén & Muthén, 2007; but see also B. O.
Muthén, 1989; Schmidt, 1969), which takes the unreliability
of the group mean into account when estimating the con-
textual effect. Because the group average is treated as a
latent variable, we call this approach the multilevel latent
covariate (MLC) model. In contrast, we label the “tradi-
tional” approach, which relies solely on the (manifest) ob-
served group mean, the multilevel manifest covariate
(MMC) model. The term manifest indicates that this ap-
proach treats the observed group means as manifest and
does not infer from them to an unobserved latent construct
that controls for L2 unreliability.

Our article is organized as follows. We start by distin-
guishing between reflective and formative L2 constructs.
We then give a brief description of how the MMC is usually
specified in MLMs, outlining the factors that affect the
reliability of the group mean and deriving mathematically
the bias that results from using the MMC approach to
estimate the contextual effect. After introducing the MLC
model as it is implemented in Mplus, we summarize the
results of simulation studies comparing the statistical prop-
erties of the latent and manifest approaches. In addition, we
present analyses comparing the Croon and van Veldhoven
(2007) two-step approach to our (one-step) MLC approach.
We then present two empirical examples using both the
latent and the manifest approaches. Finally, on the basis of
all of these results, we offer suggestions for the applied
researcher and propose directions for further research.

Reflective and Formative L2 Constructs

We argue that the appropriateness of the MLC approach
depends in part on the nature of the construct under study. For
the present purposes, we propose a distinction between forma-
tive and reflective aggregations of L1 constructs (for more
general discussion of formative and reflective measurement,
see Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; Kline,
2005; also see Howell, Breivik, & Wilcox, 2007). Although
our choice of terms is based on a factor analytic rationale, a
related distinction is made in the organizational psychology
literature (e.g., Bliese, 2000; Bliese, Chan, & Ployhart, 2007;
also see Kozlowski & Klein, 2000) between compilation (or
configural) models and composition models.
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Formative (compilation or configural) aggregations of L1
constructs are considered to be an index of L1 measures
within each L2 group (i.e., arrows in the underlying struc-
tural equation model go from the L1 indicators to the L2
construct; e.g., Kline, 2005). Formative constructs have the
following characteristics: The focus of L1 measures is on an
L1 construct, L1 individuals within the same L2 group are
likely to have different L1 true scores, and scores for
different individuals within the same L2 group are not
interchangeable. There is no expectation that the individual
level and aggregated variables reflect the same construct;
thus, corresponding L1 and L2 measures are not assumed to
be isomorphic. For formative aggregated L2 constructs,
variation among individuals can be thought of as a substan-
tively important group characteristic (i.e., groups are rela-
tively heterogeneous or homogeneous in relation to a spe-
cific L1 characteristic). Particularly when the sampling ratio
(the percentage of L1 individuals considered within each L2
group) approaches 100%), it is inappropriate to use variation
within each L2 group (intraclass correlation [ICC]) to esti-
mate L2 unreliability due to sampling error. Whereas the
focus of our research has been on the mean as an aggregate
summary used to construct a group (L2) construct, Kozlow-
ski and Klein (2000) emphasize that various indexes of L1
constructs within a group could be used as the L2 aggre-
gated (formative) measure (e.g., minimum, maximum, vari-
ation, profile similarity, system dynamics, etc.). For exam-
ple, let us assume that a researcher wants to evaluate the
gender composition of students in each of a large number of
different classes and has information for all students within
each class. An appropriate L2 aggregate variable (e.g.,
percentage of girls) can be measured with essentially no
measurement or sampling error at either L1 or L2. Students
within each class are clearly not interchangeable in relation
to gender, and even if a particular class—by chance or
design— happens to have a disproportionate number of boys
or girls, this feature of the class reflects a true characteristic
of that class rather than unreliability due to sampling error.
Hence, as emphasized by Kozlowski and Klein (2000), it
might be appropriate to consider measures of within-group
heterogeneity (diversity) as a potentially useful L2 aggre-
gated (formative) construct. Examples of formative L2 ag-
gregated constructs might include L2 aggregations of L1
characteristics such as race, age, gender, achievement lev-
els, SES, or other background/demographic characteristics
of individuals within a group. Making a similar point, Bliese
(2000) noted that for pure compilation-based aggregate
measures (similar to our formative L2 variables), there is no
assumption of within-group agreement and that measures of
reliability based on within-group agreement tend to be ir-
relevant in establishing the construct validity of the L2
measures.

Reflective (or compositional) aggregations of L1 con-
structs have the following characteristics: The purpose of

L1 measures is to provide reflective indicators of an L2
construct, all L1 indicators (typically different individuals
within the same group) within each L2 group are designed
to measure the same L2 construct, and scores associated
with different individuals within the same L2 group are
interchangeable. The L2 construct is assumed to “cause” the
L1 indicators (i.e., arrows in the underlying structural model
go from the latent L2 construct to the L1 indicators). Thus,
reflective aggregations are analogous to the typical latent
variable approach based on classical measurement theory
and the domain sampling model (Kline, 2005; Nunnally &
Bernstein, 1994), in which multiple indicators (in this case,
multiple persons within each group rather than the multiple
items for each construct) are used to infer a latent construct
that is corrected for unreliability (based on the number of
indicators and the extent of agreement among the multiple
indicators) that would otherwise result in biased estimates.
Hence, the concept of reflective measurement is consistent
with the notion of a generic group-level construct that is
measured by individual responses (Cronbach, 1976; Croon
& van Veldhoven, 2007). Under these conditions, it is
reasonable to use variation within each L2 group (ICC) to
estimate L2 sampling error that includes error due to finite
sampling and error due to a selection of indicators (i.e., a
specific constellation of individuals used to measure a
group-level construct). Within-group variation represents
lack of agreement among individuals within the same group
in relation to an L2 construct rather than a substantively
important characteristic of the group. Examples of reflective
L2 constructs might include individual ratings of classroom,
group, or team climate; individual ratings of the effective-
ness of a teacher, coach, or group leader; individual marker
ratings of the quality of written compositions, perfor-
mances, artwork, grant proposals, or journal article submis-
sions. Within the organizational psychology literature, the
term referent shift measures (Chan, 1998; Chen, Bliese, &
Mathieu, 2005) is used to denote the case in which the
referent for a measure shifts from that of the individual (e.g.,
individual self-efficacy) to that of the group (the efficacy of
the group as a whole). Particularly when the referent of the
measures is the group as a whole, the resulting aggregated
measures might be considered a reflective (or composi-
tional) construct.

The distinction between formative and reflective variables
is particularly important in climate research (for further
discussion, see Papaioannou et al., 2004). For example, if all
individual students within each of a large number of differ-
ent classes are asked to rate the competitive orientation of
their class as a whole, the aggregated L2 construct might be
most appropriately represented as an L2 reflective construct.
The observed measure is designed to reflect the L2 construct
directly and is not intended to reflect a characteristic of the
individual student. However, if each individual student is
asked to rate his or her own competitive orientation, the
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aggregated L2 construct might be more appropriately con-
sidered as a formative L2 construct. The observed L1 mea-
sure is designed to reflect an L1 construct rather than to be
a direct measure of an L2 construct, even if the L2 aggre-
gation of the L1 measures is used to infer an L2 construct.
We would expect agreement among different ratings by
students within the same class (ICC) to be substantially
higher for the L2 reflective construct than for the corre-
sponding L2 formative construct. Whereas lack of agree-
ment among students within the same class on the L2
reflective variable can be used to infer L2 unreliability, lack
of agreement on the L2 formative construct reflects within-
class heterogeneity in relation to an L1 construct.

Bliese (2000) argued that pure compositional models (like
our L2 reflective aggregation measures) require complete
isomorphism in which every group member provides ex-
actly the same score so that there is no variation within
groups on the relevant L1 construct. Noting that cases of
pure isomorphism between L1 and L2 constructs are ex-
tremely rare (except, perhaps, in highly artificial situations),
he described a “‘fuzzy’” composition construct involving
both compositional and compilation processes. Similarly,
we contend that L2 constructs based on an aggregation of
L1 constructs vary along a continuum in which pure reflec-
tive and pure formative constructs represent the endpoints.
Although we focus on the endpoints of the continuum, we
note that most L2 aggregated constructs fall somewhere
between the reflective and formative endpoints of this con-
tinuum. We also note that we chose the terms formative
versus reflective because these terms have better established
meanings in the psychometric literature in relation to the
underlying structural equation model used to define them. In
contrast, there is less consistency in the use of the compi-
lation (or configural) versus composition models in the
organizational psychology literature (Bliese, 2000; Kozlow-
ski & Klein, 2000). Indeed, aggregated variables resulting
from a formative aggregation process such as SES or stock
market indexes are commonly referred to as composite
measures, which is the exact opposite of the implicit mean-
ing of compositional models in the organizational psychol-
ogy literature. Nevertheless, our use of a formative-reflec-
tive continuum of L2 aggregated constructs is essentially
the same as the pure compositional to pure compilational
continuum used by Bliese (2000) in his discussion of fuzzy
compositional .2 aggregated variables.

Contextual Analysis

The Contextual Analysis Model in Multilevel
Modeling

In this section, we provide a short description of the
contextual analysis model in the traditional multilevel
framework. We assume that we have a two-level structure

with persons nested within groups and an individual-level
variable X (e.g., socioeconomic status) predicting the de-
pendent variable Y (e.g., reading achievement). Applying
the MLM notation as it is used by Raudenbush and Bryk
(2002), we have the following relation at the first level:

Level 1: Y= B+ B(X;—X.) +1; (D

where the variable Y;; is the outcome for person i in group
J predicted by the intercept 3, of group j and the regression
slope By, in group j. The predictor variable X;; is centered at
the respective group mean X.;. This group-mean centering of
the individual-level predictor yields an intercept equal to an
expected value of ¥;; for an individual whose value on X;; is
equal to his or her group’s mean. At Level 2, the L1
intercepts B, and slopes 3,; are dependent variables:

Level 2: By, = Yoo + Vo1 Xo; + to;

Blj = Yios 2)

where vy, and vy, are the L1 intercepts and v, is the slope
relating )_(.j to the intercepts from the L1 equation. As can be
seen, only the L1 intercepts have an L2 residual u,;. MLMs
that allow only the intercepts to deviate from their predicted
value are also called random-intercept models (e.g., Rau-
denbush & Bryk, 2002). In these models, group effects are
allowed to modify only the mean level of the outcome for
the group; the distribution of effects among persons within
groups (e.g., slopes ) is left unchanged. Now inserting the
L2 equations into the L1 equation we have

Yi= Yoot W’lo(Xij - )_(-j) + 701)_(-,' +ouy t+ ry 3)

This notation is referred to as the linear mixed-effect nota-
tion (McCulloch & Searle, 2001) and is used, for example,
by the mixed module in SPSS and similar procedures in
other statistical packages. Equation 3 reveals that the main
difference between a single-level regression analysis and an
MLM lies in the more complex error structure of the mul-
tilevel specification. Furthermore, it is now easy to see that
Y10 is the within-group regression coefficient describing the
relationship between Y and X within groups and that v, is
the between-groups regression coefficient that indicates the
relationship between group means 17.]« and )_(.j (Cronbach,
1976). A contextual effect is present if vy, is higher than
Y10» Mmeaning that the relationship at the aggregated level is
stronger than the relationship at the individual level.
Grand-mean centering. Another approach to test for a
contextual effect (which is mathematically equivalent under
certain conditions; see Raudenbush & Bryk, 2002) is to use
a different centering option for the individual-level predic-
tor. Instead of using group-mean centering of the predictor
variables—where the group mean of the L1 predictor is
subtracted from each case—researchers often center the
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predictor at its grand mean. In grand-mean centering, the
grand mean of the L1 predictor is subtracted from each L1
case. Substituting the group-mean )_(.j in Equation 3 by the
grand-mean X.. gives the following model:

Yy =Yoo + vio(Xy = Xo) + YoXy +ug + 1y (4)

In contrast to the group-mean centered model, where the
predictor variables are orthogonal, the predictors (X
— X..) and X,; in this grand-mean centered model are not
independent. Thus, v,, is the specific effect of the group
mean after controlling for interindividual differences on X.
Note that, in the grand-mean centered model, the individual
deviations from the grand mean, (X; — X..), also include
the person’s group deviation from the grand mean. Conse-
quently, a contextual effect is present if v,, is statistically
significantly different from zero. However, it can be shown
that, in the case of the random-intercept model, the group-
mean model and the grand-mean centered model are math-
ematically equivalent (see Kreft, de Leeuw, & Aiken,
1995). For the fixed effects, the following relation holds for
the L2 between-groups regression coefficient: y, & men
=y 0PI — oy BT The within-group regression
coefficient at Level 1 will be the same in both models:
yyoFimdmean = jeroupmean - Hence the results for the fixed
part of the grand-mean centered model can be obtained from
the group-mean centered model by a simple subtraction.’
Because our analysis is limited to random-intercept models,
centering of predictor variables will not be a critical issue in
our article. In the remainder of the article, our investigation
of the analysis of group effects in MLM focuses on the
group-mean centered case.

The reliability of the group mean for reflective aggrega-
tions of LI constructs. One problematic aspect of the
contextual analysis model, as described earlier, is that the
observed group average )_(._, might be a highly unreliable
measure of the unobserved true group average because only
a small number of L1 individuals are sampled from each L2
group (O’Brien, 1990). For reflective aggregations of L1
constructs, the reliability of the aggregated L2 construct as
a measure of the “true” group mean depends on at least two
aspects: the proportion of variance that is located between
groups—measured by the ICC—and the number of individ-
uals in the group (Bliese, 2000; Snijders & Bosker, 1999).

In the multilevel literature, the ICC is used to determine
the proportion of the total variance that is based upon
differences between groups (Raudenbush & Bryk, 2002).
The ICC is based on a one-way analysis of variance
(ANOVA) with random effects, where the outcome on L1 is
the dependent variable and the grouping variable is the
independent variable. The ICC is defined as follows:

2

ICC = )

7+ 0%

where 72 is the variance between groups and o is the
variance within groups. Thus, the ICC indicates the propor-
tion of total variance that can be attributed to between-
groups differences.

For reflective aggregations of L1 constructs, the reliabil-
ity of the aggregated data )_(.j is estimated by applying the
Spearman—Brown formula to the ICC, with n being the
number of persons per group (Bliese, 2000; Snijders &
Bosker, 1999):

n-ICC

L2 Reliability (X.,) = T+ (n=1)-1CC

(6)

As can be seen, the reliability of )_(.j (Equation 6) for reflec-
tive aggregations of L1 constructs depends on two factors: the
proportion of variance that is located between groups (ICC)
and the group size (n). In most cases, the mean group size can
be entered for n if not all groups are of the same size (see
Searle, Casella, & McCulloch, 1992, on how to deal with
pronounced differences in group size). For example, assuming
that students in 50 classes rate their mathematics instruction,
the ICC indicates the reliability of an individual student’s
rating—sometimes referred to as the single-rater reliability
(Jayasinghe, Marsh, & Bond, 2003; Marsh & Ball, 1981). The
reliability of the class-mean rating can be estimated by the
Spearman—Brown formula, with n being the number of stu-
dents per class. As is apparent from Equation 6, the reliability
of the class-mean rating increases with the number of students
(n). In other words, the more students in a class provide ratings,
the more reliably the class-mean rating will reflect the true
value of the construct being measured. It is worth noting that
Equation 6, which determines the reliability of the observed
group mean, says nothing about the reliability of the L1 mea-
sure. In general, measurement error at Level 1 results in lower
reliability of the group means (Raudenbush et al., 1991). How-
ever, Equation 6 does not differentiate between L1 variance
that is due to measurement error and L1 variance that is due to
true differences between L1 individuals. For reflective aggre-
gations of L1 constructs, the assessment of L.2 unreliability due
to sampling error is—as noted above—analogous in many
ways to traditional approaches to reliability based on multiple,
interchangeable indicators of each latent construct (i.e., with
multiple persons as interchangeable indicators of each latent
group mean).

Bias of the between-groups regression coefficient for
reflective aggregations of LI constructs. Let us now as-
sume that a contextual model holds in the population and
that the within-group and between-groups relationships are
described by the within-group regression coefficient Binin

" A little more algebra is needed for the conversion of the
variance components (see Kreft et al., 1995). Note that the models
are no longer equivalent in either the fixed part or the random part
when random slopes or nonlinear components are allowed.
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Figure 1. Relationship between the expected bias of the between-groups regression coefficient, the
number of Level 1 units within each Level 2 unit (n), and the intraclass correlation coefficient (ICC)
of the predictor for three different values of B inin — Bbetween:

and the between-groups regression coefficient By.qyeen (S€€
Snijders & Bosker, 1999, p. 29). We want to estimate these
coefficients by sampling a finite sample of L2 groups from
the population. In the next stage, a finite sample of L1
individuals is obtained for each sampled L2 group. Bearing
in mind the previous formula for the reliability of the group
mean, results from the literature on regression analysis
suggest that the regression coefficient for the L2 average
will be biased. Applying standard results from theory on
linear models (Seber, 1977), the expected bias of the within-
and between-groups regression coefficients in a contextual
analysis model can be determined depending on the reli-
ability of the group mean. Because it is assumed that the
individual-level variable is measured without error for re-
flective aggregations of L1 constructs, the within-group
coefficient is an unbiased estimator. In contrast, it can be
shown that the between-groups coefficient ¥, is a biased
estimator of the between-groups coefficient Byepyeen (for the
derivation, see the Appendix):

1
E(‘?Ol - Bbetween) = (Bwilhin - Bbetween) .;

(1 — ICC)
ICC + (1 — ICC)/n’

)

The relationship between the expected bias and the ICC as
well as the group size is depicted in Figure 1 for Bymin —
Bpetween Values of .2, .5, and .8. In all three panels, the bias
become smaller with larger group sizes n. In other words,
when the group mean is more reliable due to a higher n,
Bpetween €an be more precisely approximated by the mani-
fest group mean predictor. The bias also decreases as the
ICC increases. As shown in Equation 6, the reliability of the
group mean is a direct function of the group size n and the
ICC. Indeed, for sufficiently large cluster sizes, the differ-

ence between the manifest and latent approaches will be
trivially small, even for reflective factors. The bias in the
between-groups coefficient has direct consequences for the
estimation of the “true” contextual effect for reflective ag-
gregations of L1 constructs. In the group-mean centered
model, the contextual effect is calculated as the difference,
Yo1 — Y10 between the between-groups regression coeffi-
cient vy, and the within-group coefficient vy,,. Assuming
perfect measurement of the group mean, this would corre-
spond to a “true” difference of By.rween — Bwithin- 1t fOllOws
that the bias of the estimated contextual effect can be
expressed by:

E(’?Ol - ’?10) - (Bbetween - Bwithin)
- 1 (1-1co)
- (Bwilhin Bbelween) ; ICC + (1 _ ICC)/}’!

®)

This relationship indicates that the contextual effect in the
population will be underestimated by the contextual analy-
sis model if Byimin < Poetweenr HOWEVEr, if Blihin =
Brewweenr the contextual effect will be positively biased.”
Thus, a low ICC together with small samples of L1 indi-
viduals from each L2 group will affect the bias of contextual
effect considerably.

In the approach to contextual analysis for reflective ag-
gregations of L1 constructs outlined above, the group-level

2 This constellation is present in research on the so-called frog-
pond effect (Davis, 1966). The most prominent example is the big-
fish-little-pond effect: the observation that individual student achieve-
ment has a substantially positive effect on academic self-concept,
whereas the effect of school- or class-average achievement is consis-
tently negative (Marsh & Hau, 2003). As is apparent from Equation
8, the big-fish-little-pond effect is probably underestimated in abso-
lute terms when the manifest covariate approach is applied.
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predictor was formed by aggregating all of the observed
measurements in each group (MMC approach). In the next
section, we introduce an alternative approach to contextual
analysis that infers the latent unobserved group mean from
the observed data and that takes into account the unreliabil-
ity of the group mean (L2 sampling error) when estimating
the contextual effect (MLC approach). Historically, nearly
all contextual effect studies have used an MMC approach,
due in part to technical limitations in most statistical pack-
ages that made a latent covariate approach difficult to for-
mulate. With the enhanced flexibility of MLM programs
such as Mplus, however, it is now possible to introduce and
evaluate an MLC approach (but see Croon & van Veld-
hoven, 2007, for an alternative implementation). Hence, the
purpose of this article is to demonstrate the MLC approach,
to evaluate statistical properties with simulated data, to
illustrate its application with two actual (real-data) exam-
ples, and to critically evaluate its appropriateness from a
theoretical and philosophical perspective.

A Multilevel Latent Covariate (MLC) Model

The concept of latent variables was originally introduced
in the social and behavioral sciences to represent entities
that may be regarded as existing but cannot be measured
directly (e.g., Lord & Novick, 1968). For instance, in psy-
chometric research, intelligence is considered a latent vari-
able that cannot be directly observed but can only be in-
ferred from the participants’ observed behavior in tests. In
these traditional psychometric applications, the values of a
latent variable represent participants’ scores on a trait or
ability. Recently, several methodologists have proposed that
the conceptualization of latent variables be broadened to
include other circumstances in which unobserved individual
values might profitably be included in the model (B. O.
Muthén, 2002; Raykov, 2007; Skrondal & Rabe-Hesketh,
2004). In this latent variable framework, latent class mem-
bership and missing data are just two examples of latent
variables.

The flexibility of this modeling framework is expressed in
the definition provided by Skrondal and Rabe-Hesketh (2004,
p- 1): “We simply define a latent variable as a random variable
whose realizations are hidden from us.” As a consequence of
this generality, the latent variable framework is able to inte-
grate MLM and structural equation modeling (SEM; see
Raykov, 2007, for an application to longitudinal analysis) and
is currently implemented, for example, in the Mplus (L. K.
Muthén & Muthén, 2007) and GLLAMM (Skrondal & Rabe-
Hesketh, 2004) software. In the present study, we used the
MLC approach to consider the group effect as an unobserved
latent variable that has to be inferred from the observed data.
More specifically, the unobserved group mean is regarded as a
latent variable that is measured with a certain amount of
precision by the group mean of the observed data (Asparouhov

& Muthén, 2006). As is typical within SEM, the estimate of the
group-level coefficient is then corrected for the unreliable
measurement of the latent group mean by the observed group
mean. In the present study, our MLC approach was imple-
mented using a maximum likelihood procedure in Mplus,
which provides estimates that are consistent and asymptoti-
cally efficient within a very flexible approach to estimating
latent variable models.’

The basis for the latent covariate approach is that each
variable is decomposed into unobserved components, which
are considered latent variables (Asparouhov & Muthén,
2006; B. O. Muthén, 1989; Schmidt, 1969; Snijders &
Bosker, 1999; see also Rabe-Hesketh, Skrondal, & Pickles,
2004). The dependent variable Y and the independent vari-
able X can be decomposed as follows:

X;j=p, T Uy + Ry
Yij = My + U,w' + Ryij’ (9)

where ., is the total mean of X, U,; are group-specific
deviations, and R,; are individual deviations. The same
decomposition holds for Y. Note that X;; and Y;; are observed
variables, whereas Uy Uy, Ry, and R,; are unobserved. We
are interested in estimating the relationship between these

unobserved variables at the individual and the group level:
Ryij = Bwithininj + €ij
U)j = Bbetweenij + Sj‘ (10)

The two equations can be combined into one by substituting
Equation 10 into Equation 9. The dependent variable Y is
then predicted by the individual and group-specific devia-
tions:

Yij = p“y + U)j + Ryij = p“y + Bbelweenij
+ BuiminRy; T 8; + &5 (11)

It is now easy to see that Equation 11 is approximated by the
group-mean centered model expressed by Equation 3,

3 The version of Mplus (Version 4.2) used in the present investi-
gation is based on an accelerated EM algorithm for analysis of
maximum likelihood estimation of a two-level structural equation
model with missing data (Asparouhov & Muthén, 2003). This model
incorporates random coefficients and integrates the modeling frame-
works of hierarchical linear models and two-level structural equation
models. It provides robust estimates of the asymptotic covariance of
the maximum likelihood estimates and the chi-square test. Note that
the models considered here can be fitted with the approach described
by Lee and Poon (1998) that handles only random-intercept models
but that Mplus takes a more general approach with random slopes (see
also supplemental materials available online for a more detailed
description).
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which is based on observed variables. The latent unobserved
group deviation U,; corresponds to the observed group
means X,; and the individual deviation R ; to (X; — X)).

It is worth noting that the latent covariate approach to
contextual analysis can also be implemented in traditional
multilevel programs such as HLM or MLwiN by using a
stepwise procedure (Goldstein, 1987; Hox, 2002). In the
first step, a within- and between-groups covariance matrix is
estimated using a multivariate MLM. Hox (2002) demon-
strated how a multivariate model can be estimated using
MLM software designed to estimate univariate models (for
a recent application of a multivariate MLM, see Bauer,
Preacher, & Gil, 2006). In the second step, the within- and
between-groups coefficients are estimated based on these
covariance matrices.* Of course, the multivariate approach
is much more limited than the implementation of the latent
covariate approach in Mplus in that it can only be applied
easily to random-intercept models.

Recently, Croon and van Veldhoven (2007) proposed a
two-stage latent variable approach. The unobserved
group mean for each L2 unit is calculated using weights
obtained from applying basic ANOVA formulas. These
adjusted group means form the basis for an ordinary least
squares (OLS) regression analysis at the group level.
Croon and van Veldhoven showed analytically and by
means of simulation studies that an OLS regression anal-
ysis based on the observed group means results in biased
estimates, whereas the results based on the adjusted
group means are unbiased. However, in contrast to our
full information maximum likelihood (FIML) MLC ap-
proach, their two-stage procedure is only a limited infor-
mation approach. The model parameters of the two-stage
procedure are thus likely to be less efficient than those of
the FIML SEM approach (Wooldridge, 2002). As part of
the present investigation, we conducted a simulation
study to evaluate the differences between these two im-
plementations of the MLC approach.

To summarize, researchers using aggregated individual
data to assess the effects of group characteristics are often
confronted with the problem that the observed group aver-
age score is a rather unreliable measure of the unobserved
group mean. For reflective aggregations of L1 constructs,
the unreliability of the group mean can lead to biased
estimation of contextual effects, particularly when the num-
ber of observations per group is small and when the ICC of
the corresponding individual observations is low. Our new
MLC approach regards the unobserved group mean as a
latent variable, consistent with the reflective aggregation of
L1 constructs. In the following section, we present a simu-
lation study comparing the statistical properties of the new
MLC approach with the traditional MMC approach that
assumes the observed group mean to be perfectly reliable.

Study 1: Simulation Study Comparing the Multilevel
Latent Covariate (MLC) and Multilevel Manifest
Covariate (MMC) Approaches

The simulation study was designed to generate data that
resemble the data structures typically found for reflective
aggregations of L1 constructs in psychological and educa-
tional research. The purpose of the simulation was to ex-
plore the statistical behavior of the MMC and MLC ap-
proaches under a variety of conditions approximating those
encountered in actual practice.

Conditions

The population model used to generate the data was a
random-intercept model with one explanatory variable at
the individual level and one explanatory variable at the
group level as specified in Equation 3. Each generated data
set was analyzed using the MMC and the MLC approach.
The conditions manipulated were the number of L2 groups
(50, 100, 200, and 500), the number of observations per L2
group (5, 10, 15, and 30), and the ICC of the predictor
variable (.05, .10, .20, and .30). In the following, we explain
why these particular levels were selected.

Number of L2 groups. The numbers of L2 groups were
set to K = 50, 100, 200, or 500. A sample of 50 groups is
common in educational and organizational research (e.g.,
Maas & Hox, 2005), although many MLM studies are
conducted with fewer than 50 L2 groups. At the same time,
a growing number of large-scale assessment studies, includ-
ing educational assessments, such as the Early Childhood
Longitudinal Study (ECLS) and the National Education
Longitudinal Study (NELS), have sampled up to 1,000
schools. Hence, we included conditions with 200 and 500
groups. Covering a broad range of L2 groups enables us to
study asymptotic behavior in the latent variable approach.
More specifically, we anticipate that the variability of the
estimator is likely to be sensitive to the number of
L2 groups.

Number of observations per L2 group. We then manip-
ulated the number of observations per L2 group to n = 5,
10, 15, and 30. A group size of 5 is normal in small group
research, where contextual models are also applied (see
Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). Group sizes
of 20 and 30 reflect the numbers that typically occur in

*We ran a small simulation study to compare the results of a
contextual analysis model using the latent covariate approach in
Mplus with the two-step approach based on the output of tradi-
tional MLM software. The results were the same.
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educational research assessing class or school characteris-
tics.’

ICC of predictor variable. The ICC of the predictor
variable (i.e., the amount of variance located between
groups) was set at ICC = .05, .10, .20, or .30. Intraclass
correlations rarely show values greater than .30 in educa-
tional and organizational research (Bliese, 2000; James,
1982).°

For each of 4 X 4 X 4 = 64 conditions, 1,500 simulated
data sets were generated. The regression coefficients are
specified as follows: O for the intercept, .2 for B,;min, and .7
for Byeween- Because the contextual effect B, ex €quals
Boetween — Pwithins these values imply a contextual effect of
.5. The ICC for the dependent variable is .2. Because the
amount of variance explained at Level 2 depends on the ICC
of the predictor variable, the following R” values at Level 2
were obtained for the different simulation conditions: .12
for ICC = .05, .25 for ICC = .10, .49 for ICC = .20, and
.74 for ICC = .30. The corresponding R” values at Level 1
ranged from .04 for ICC = .05 to .05 for ICC = .30.” For
every cell, the 1,500 repetitions were simulated and ana-
lyzed with Mplus using FIML (L. K. Muthén & Mu-
thén, 2007).

In our simulation study, we focused on three aspects of
the estimator for the contextual effect in reflective aggrega-
tions of L1 constructs: the bias of the parameter estimate,
the variability of the estimator, and the accuracy of the
standard error. The relative bias indicates the accuracy of
the estimator for the contextual effect. Let B be the
estimator of the population parameter [3 then the

relative percentage bias is given by 100 X [(éwmm -
Beontext) Beontext]- TO assess the variability of the estimator,
we computed the root-mean-square error (RMSE) by taking
the square root of the mean square difference of the estimate
and the true parameter. The accuracy of the standard error of
the contextual effect is analyzed by determining the ob-
served coverage of the 95% confidence interval (CI). Cov-
erage was given a value of 0 if the true value was included
in the confidence interval and a value of 1 if the true value
was outside the confidence interval.

To determine which of the study’s conditions contributed
to the relative bias, the RMSE, the coverage, and the em-
pirical standard deviation of the contextual effect, we con-
ducted ANOVAs using the relative bias, RMSE, coverage,
and empirical standard deviation of the estimator as the
dependent variables and each manipulated condition
(method, number of L2 groups, number of L1 individuals
within each L2 group, ICC of predictor variable) as a factor.
The ANOVAs were conducted at the cell level, with each
cell average being treated as one observation (so that the
four-way interaction could not be separated from the error).
To describe the practical significance of the conditions, we

context?

calculated the m? effect size for all main effects and for the
two- and three-way interactions.

Results and Discussion

No problems were encountered in estimating the coeffi-
cients of the MLC and the MMC model; the estimation
procedure converged in all 96,000 simulation data sets.

Relative percentage bias. Table 1A shows the relative
bias in the parameter estimates for all four conditions. To
determine the relative bias, the cell mean for each of the
1,500 repetitions was calculated, subtracted from the pop-
ulation values, and then divided by the population value.
For the MLC approach, the relative percentage bias ranged
in magnitude from —14.4 to 19.6 (M = 0.6, SD = 4.7). As
expected from the mathematical derivation in Equation 8§,
the relative bias for the MMC approach was larger, with
values ranging from —79.3 to —7.0 (M = —36.9, SD =
20.8). In contrast to the MLC approach, the MMC approach
underestimated the contextual effect, especially for condi-
tions with low ICCs. Consequently, the differences between
the MLC approach and the MMC approach were particu-
larly pronounced for low ICCs and small numbers of L1
individuals within each L2 group.

The source of the relative bias was further investigated by
conducting a four-way factorial ANOVA with relative bias
as the dependent variable (see Table 2). The largest effect
was the main effect of method (n? = .61). Almost two-
thirds of the variance in the relative bias across the condi-
tions was explained by the difference between the MLC and
the MMC approach. The number of L1 individuals within

5 To evaluate the robustness of the MLC approach in the case of
unbalanced group sizes, we conducted an additional, restricted
simulation for a subset of the balanced group conditions (n = 15;
K = 50, 100, and 200; ICC = .05, .10, .20, and .30). In the
unbalanced condition, the group sizes were uniformly distributed
between n = 10 and n = 20 (cf. a constant n = 15 in the balanced
condition). Four-way ANOVAs (ICC; number of L2 units, unbal-
anced vs. balanced design; MLC vs. MMC approach) were con-
ducted. The variance explained by balanced versus unbalanced
design and its interactions with other independent variables was, as
expected, less than 0.1% for bias, RMSE, and coverage.

¢ We also tried to include a condition with a very low ICC (.01)
in our simulation study. However, Mplus showed serious conver-
gence problems under this condition.

7 Additional simulation studies, which will not be reported here,
showed that the magnitude of the R? value at Level 1 only
marginally affects the results of the simulation for the contextual
effect. Typically, larger R* values lead to smaller standard errors of
the parameter estimates, which are reflected in less variable esti-
mates of the regression coefficients. However, the sample sizes at
Level 1 of the conditions of our multilevel simulation study are
large and the corresponding standard error of the L1 regression
coefficient is therefore of small magnitude.
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Table 1
Study 1: Fitting the Multilevel Manifest Covariate Model and the Multilevel Latent Covariate Model as a Function of the ICC of the
Predictor Variable, the Number of Level 1 Units Within Each Level 2 Unit, and the Number of Level 2 Units

No. (n) of Level 1 units within each Level 2 unit

n=>5 n =10 n =15 n = 30
No. (K) of Level 2 units Latent Manifest Latent Manifest Latent Manifest Latent Manifest
A: Relative percentage bias of contextual effect
K =50
ICC = .05 —14.4 —79.3 17.7 —64.2 19.6 —54.9 4.9 —38.6
ICC = .10 0.4 —64.9 6.5 —48.6 0.6 —39.7 4.8 —20.9
ICC = .20 =50 —46.5 2.8 —28.6 2.7 —20.6 -1.0 —133
ICC = .30 —6.0 =317 0.7 —19.0 -1.0 —14.8 0.2 —7.4
K =100
ICC = .05 -2.1 —78.4 10.3 —64.7 8.2 —549 23 —384
ICC = .10 -1.0 —64.5 -04 —48.3 -1.8 —395 1.1 —22.8
ICC = .20 -0.3 —44.3 23 —27.9 1.9 —20.0 0.5 —11.7
ICC = .30 -33 —32.2 0.1 —19.3 1.8 —124 -0.7 —8.1
K = 200
ICC = .05 0.2 —78.9 —-22 —67.0 3.7 —559 -0.3 —39.5
ICC = .10 -19 —64.3 0.6 —47.8 2.0 —36.9 1.6 —22.1
ICC = .20 -2.2 —453 -1.2 —29.4 —0.1 -213 —0.5 —123
ICC = .30 —4.1 —324 0.2 —18.9 0.2 —135 0.2 -7.2
K = 500
ICC = .05 —6.2 =79.2 0.5 —65.3 0.9 —55.6 0.0 —39.1
ICC = .10 -33 —64.6 0.6 —47.2 0.5 —373 0.8 —22.5
ICC = .20 —0.6 —44 .4 —-0.4 —28.8 0.3 —20.9 0.5 —114
ICC = .30 -23 -31.7 0.0 —18.9 -04 —-13.9 0.3 =7.0
B: Root-mean-square error of contextual effect
K =50
ICC = .05 1.18 0.44 0.81 0.38 0.70 0.34 0.46 0.31
ICC = .10 0.64 0.36 0.43 0.29 0.31 0.26 0.24 0.21
ICC = 20 0.29 0.27 0.20 0.19 0.18 0.17 0.13 0.13
ICC = .30 0.19 0.21 0.13 0.14 0.11 0.12 0.09 0.09
K =100
ICC = .05 0.74 0.41 0.51 0.35 0.41 0.31 0.27 0.25
ICC = .10 0.42 0.34 0.25 0.27 0.22 0.23 0.15 0.16
ICC = .20 0.19 0.24 0.13 0.17 0.11 0.13 0.09 0.10
ICC = .30 0.13 0.18 0.09 0.12 0.08 0.09 0.06 0.07
K = 200
ICC = .05 0.54 0.40 0.29 0.35 0.29 0.30 0.19 0.23
ICC = .10 0.22 0.33 0.17 0.25 0.14 0.20 0.12 0.14
ICC = .20 0.14 0.24 0.09 0.16 0.08 0.12 0.07 0.09
ICC = .30 0.09 0.17 0.06 0.11 0.06 0.08 0.04 0.05
K = 500
ICC = .05 0.34 0.40 0.19 0.33 0.15 0.28 0.12 0.21
ICC = .10 0.14 0.33 0.11 0.24 0.09 0.19 0.07 0.12
ICC = .20 0.08 0.23 0.06 0.15 0.05 0.11 0.04 0.07
ICC = .30 0.06 0.16 0.04 0.10 0.03 0.07 0.03 0.04
C: Percentage coverage rate for contextual effect
K =50
ICC = .05 93.5 40.1 92.6 61.6 94.1 72.7 934 83.9
ICC = .10 94.8 48.9 92.8 68.5 90.5 76.1 92.5 88.1
ICC = 20 94.1 62.4 92.6 78.7 90.4 83.3 91.6 88.7

ICC = .30 94.2 74.8 93.7 83.0 93.7 85.6 93.1 91.7
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Table 1 (continued)

No. (n) of Level 1 units within each Level 2 unit

n=>5 n =10 n =15 n = 30
No. (K) of Level 2 units Latent Manifest Latent Manifest Latent Manifest Latent Manifest
C: Percentage coverage rate for contextual effect (continued)
K = 100
ICC = .05 95.3 13.4 96.1 333 93.1 51.2 94.1 76.0
ICC = .10 94.7 23.0 92.6 453 92.0 59.9 94.1 83.8
ICC = .20 95.2 38.9 93.4 66.4 92.9 75.5 95.6 88.3
ICC = .30 94.1 54.4 92.3 71.6 93.8 83.8 94.9 89.5
K = 200
ICC = .05 95.2 0.9 96.4 6.6 94.6 24.6 92.5 59.2
ICC = .10 95.5 1.2 94.6 18.6 94.0 37.5 93.4 73.0
ICC = .20 94.0 10.2 94.6 35.1 94.0 55.9 91.9 78.4
ICC = .30 93.7 24.9 97.0 52.6 94.6 67.3 95.8 84.7
K = 500
ICC = .05 93.0 0.0 94.9 0.1 95.5 0.9 94.1 21.5
ICC = .10 94.7 0.0 93.5 0.5 94.1 5.0 94 .4 43.0
ICC = .20 95.0 0.3 94.4 4.7 95.2 20.6 94.7 64.7
ICC = .30 94.1 3.1 94.3 159 94.4 324 95.1 69.5

Note. ICC = intraclass correlation of predictor variable; latent = multilevel latent covariate model; manifest = multilevel manifest covariate model.

each L2 group (n* = .09) and the ICC (n* = .09) had
smaller but still substantial effects on the relative bias.
When the ICC and the number of L1 individuals within each
L2 group were high, the average magnitude of relative bias

Table 2

Study 1: Eta-Squared Values for Analysis of Variance Effects of
the Simulation Conditions on Bias, RMSE, Coverage, and
Variability

Variable Bias RMSE Coverage Variability

Main effects

Method 0.61 0.00 0.53 0.14

K 0.00 0.14 0.11 0.18

n 0.09 0.15 0.08 0.05

1CC 0.09 0.44 0.03 0.24
2-way interactions

Method X K 0.00 0.06 0.12 0.04

Method X n 0.06 0.00 0.08 0.05

Method X ICC 0.13 0.04 0.03 0.13

K X n 0.00 0.01 0.01 0.01

K X ICC 0.00 0.05 0.00 0.06

n X ICC 0.00 0.03 0.00 0.02
3-way interactions

Method X K X n 0.00 0.01 0.01 0.01

Method X K X

ICC 0.00 0.04 0.00 0.03
Method X n X
1CC 0.01 0.02 0.00 0.03

K X n X 1CC 0.00 0.00 0.01 0.00
Error 0.00 0.01 0.01 0.01
Note. RMSE = root-mean-square error; method = multilevel latent

covariate model versus multilevel manifest covariate model; K = number
of Level 2 units; n = number of Level 1 units within each Level 2 unit;
ICC = intraclass correlation of predictor variable.

was low. The number of L2 groups had no effect on the
magnitude of the relative bias. Furthermore, two two-way
interactions were found to have an effect on the relative
bias. First, the number of L1 individuals within each L2
group had a stronger effect on the magnitude of the relative
bias for the MMC approach than for the MLC approach.
Second, the effect of the ICC on the relative bias was more
pronounced in the MMC approach than in the MLC ap-
proach.

RMSE. Next we assessed the variability of the MLC
and the MMC estimator (see Table 1B). The root-mean-
square error (RMSE) was computed for every cell by taking
the square root of the mean square difference of the estimate
and the true parameter. It is interesting that in many condi-
tions, the RMSE was higher for the MLC approach than for
the MMC approach. The RMSE ranged in magnitude from
0.03to 1.18 (M = 0.22, SD = 0.22) for the MLC approach,
and from 0.04 to 0.44 (M = 0.21, SD = 0.10) for the MMC
approach. The difference in the RMSE was particularly
pronounced in the conditions with low ICCs and small
numbers of L2 groups. For instance, in the condition with
ICC = .05, n = 5, and K = 50, the RMSE was 1.18 for the
MLC approach and 0.44 for the MMC approach. As the
number of L2 units (K) increased, however, the MLC ap-
proach began to outperform the MMC approach; the RMSE
for the MLC model approached zero, whereas that for the
MLC model approached the value of the bias estimate given
in Equation 8. ANOVAs with RMSE as the dependent
variable revealed that the largest effect was found for the
ICC. More than one-third of the variance in the RMSE was
explained by the main effect of ICC. In addition, the sample
sizes at Level 1 (n) and Level 2 (K) had a substantial impact
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on the RMSE. Despite the large differences in certain con-
ditions, there was no main effect for method. However,
inspection of the two-way interactions revealed that the
MLC approach performed better than the MMC approach in
terms of RMSE when the number of L2 units was large
(m* = .06) and the ICC was high (n* = .04). Moreover, a
significant three-way interaction was found between
method, number of L2 units, and ICC (n? = .04). This
interaction indicates that the ICC had a higher influence on
the difference between the two methods when the number of
L2 units was low.

The RMSE assesses variability of the estimates as well as
bias in relation to the known population value. To separate
these two aspects, we calculated the empirical standard
deviation across the 1,500 replications within each cell. As
expected given the results for the RMSE, the estimates of
the MLC approach were more variable than those of the
MMC approach. The empirical standard deviation ranged in
magnitude from 0.03 to 1.18 (M = 0.22, SD = 0.22) for the
MLC approach and from 0.02 to 0.24 (M = 0.09, SD =
0.05) for the MMC approach. ANOV As with the empirical
standard deviation as the dependent variable showed that a
substantial amount of variance was explained by the factor
method (m? = .14). Similarly, the difference between the
MLC and MMC approach was more pronounced when the
ICC was low (n? = .13). In other respects, the results were
nearly identical to those reported for the RMSE. From a
statistical perspective, the smaller variability in the esti-
mates of the MMC approach might be expected, because the
group mean of the covariate is treated as observed. In
contrast, the group mean is unobserved in the MLC ap-
proach, which naturally results in greater variability of the
estimates.

Coverage. The accuracy of the standard errors for the
MLC approach was evaluated in terms of the coverage rate,
which was assessed using the 95% Cls (see Table 1C).
Coverage rates for the MLC approach were better than for
the MMC approach, reflecting the established finding that
standard errors are underestimated if a predictor contains
unreliability (e.g., Carroll, Ruppert, & Stefanski, 1995). The
coverage rate ranged from 93.4 to 97.0 (M = 94.0, SD =
1.3) for the MLC approach, near the nominal coverage rate
of 95%. In contrast, the coverage rate for the MMC ap-
proach ranged from O to 91.7 (M = 47.7, SD = 31.1).
ANOVAs indicated that more than half of the variance in
coverage was due to method (manifest vs. latent ap-
proaches). Evaluation of the two-way interactions (see Ta-
ble 2) revealed that differences between the latent and
manifest approaches were more pronounced when the num-
ber of L1 individuals within each L2 group was low (1> =
.08) and the number of L2 groups was large (1> = .12). The
negative effect of the number of L2 groups on the coverage
rate for the MMC approach was due to the smaller CIs in
conditions where the number of L2 groups was high. Be-

cause the bias was generally independent of the number L2
groups, the narrower CIs in conditions with high numbers of
L2 groups for the biased MMC approach increased the
probability that the CIs would not cover the true value. In
addition, the coverage rates were affected by the main
effects of the number of L1 individuals within each L2
group (n? = .08), the ICC of the predictor variable (> =
.03), and the number of L2 groups (n* = .11).

Summary

Overall, the results from the simulation study confirmed
the findings from the mathematical derivation showing that
the MMC approach is biased for reflective aggregations of
L1 constructs, whereas the bias for the MLC approach is
negligible. Furthermore, the MLC approach performed well
in terms of the coverage rate, which was near the nominal
rate of .95. However, results for the RMSE showed that in
certain data constellations (e.g., small numbers of L2
groups, small ICCs, and small group sizes) the MMC ap-
proach was less variable than the MLC approach. The
differences between the two approaches in terms of vari-
ability were most pronounced with small group sizes (n <
10), small ICCs (ICC < .10), and only a modest number of
L2 groups (K = 50, 100). When the number of L2 units
increased, the RMSE for the MLC approach converged to
zero, in contrast to that for the MMC approach, which
remained positive. From asymptotic theory, it follows that
the FIML latent variable estimation approach yields consis-
tent estimates of the contextual effect. However, the results
of the simulation study suggest that large numbers of L2
groups (e.g., K = 500) are sometimes needed for these
asymptotic properties to hold. Furthermore, when interpret-
ing the findings of the simulation study, it is important to
keep in mind that the MLC as opposed to the MMC ap-
proach directly corresponded to the model used to generate
data in our simulation study. Hence, from a purely statistical
point of view, the increased variability of the MLC ap-
proach in certain data constellations (e.g., small numbers of
L2 groups, small ICCs, and small sample sizes) seems to be
a limitation to the applicability of that approach. However,
as will be argued in a later section, the choice between the
approaches also depends strongly on the nature of the group
construct under investigation and on the underlying aggre-
gation process.

Study 2: A Two-Stage Implementation of a
Multilevel Latent Covariate (MLC) Approach

As mentioned above, Croon and van Veldhoven (2007)
recently proposed a two-stage latent variable approach. The
unobserved group means for the covariate are calculated
using weights obtained from applying basic ANOVA for-
mulas. These adjusted group means form the basis for an
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OLS regression analysis at the group level. Because their
two-stage procedure is only a limited information approach,
Croon and van Veldhoven suggested that it may be less
efficient than a full information latent variable approach
such as that implemented in Mplus:

The stepwise estimation method proposed in this article is a
limited information approach that does not directly maximize
the complete likelihood function for the data under the model
considered. Although the full information maximum likelihood
approach would lead to the asymptotically most efficient esti-
mates of the model parameters, the limited information ap-
proach is probably not much less efficient. A more systematic
comparison of both approaches is needed here. [...] A disad-
vantage of the maximum likelihood approach is that it requires
rather complex optimization procedures that are not yet incor-
porated into any readily available software package. (p. 55)

In response to this suggestion, we conducted an additional
simulation study to compare the full information MLC
approach (using the readily available Mplus package) to the
two-stage approach proposed by Croon and van Veld-
hoven.® The model used to generate the data was the same
as in Study 1. However, because we aimed to demon-
strate— consistent with suggestions by Croon and van Veld-
hoven—that an FIML approach such as the MLC approach
would outperform their two-stage approach, we conducted
only a partial replication of the full simulation design.
Hence, we see the present simulation as an empirical dem-
onstration that the full information MLC should be pre-
ferred. The conditions manipulated were the number of L2
groups (50, 200), the number of observations per L2 group
(10, 30), and the ICC of the predictor variable (.1, .2, .3).
Again, the magnitude of the contextual effect was set to 0.5.
In our analysis of this simulation study, we focus on the bias
and the RMSE of the estimator for the contextual effect.

Results and Discussion

Bias. Table 3A shows the relative percentage bias in the
parameter estimates for all four conditions. Overall, similar
to the MLC approach, the stepwise approach was almost
unbiased. The relative percentage bias for the two-stage
approach ranged in magnitude from —0.9 to 12.6 (M =
1.98, SD = 3.7), whereas that for the MLC approach ranged
from —0.8 to 6.1 (M = 1.30, SD = 2.1). As anticipated by
Croon and van Veldhoven (2007), the two-stage approach
showed a larger bias than our one-step FIML approach in
the condition where the ICC is low and the sample sizes at
Level 1 and Level 2 are small.

RMSE. As shown in Table 3B, the results for the RMSE
were almost identical. A substantial difference between the
two implementations of the MLC approach was present in
one condition only (number of L2 units = 50, number of L1
units within each L2 unit = 10, ICC = .1), where the RMSE
was .57 for the two-stage approach and .41 for the FIML ap-
proach.

Table 3

Study 2: Fitting Two Alternative Implementations of a Multilevel
Latent Covariate Approach as a Function of the ICC of the
Predictor Variable, the Number of Level 1 Units Within Each
Level 2 Unit, and the Number of Level 2 Units

No. (n) of Level 1 units within each
Level 2 unit

n =10

Two-stage

n =30

Two-stage

No. (K) of
Level 2 units

FIML

A: Relative percentage bias of contextual effect

K =50
ICC = .10 12.6 6.1 —-0.9 —0.8
ICC = .20 4.8 49 0.5 0.6
ICC = .30 2.5 1.7 0.0 0.1
K = 200
ICC = .10 1.9 1.0 1.3 1.2
ICC = .20 0.7 0.4 —-0.2 —-0.2
ICC = .30 0.2 0.1 0.5 0.5

B: Root-mean-square error of contextual effect
K =50

ICC = .10 0.57 0.41 0.24 0.24

ICC = .20 0.19 0.19 0.14 0.14

IcC = .30 0.13 0.12 0.09 0.09
K =200

ICC = .10 0.17 0.17 0.11 0.11

ICC = .20 0.09 0.09 0.07 0.07

ICC = .30 0.07 0.07 0.04 0.04
Note. Two-stage = two-stage multilevel latent covariate approach;

FIML = full information maximum likelihood multilevel latent covariate
approach; ICC = intraclass correlation of predictor variable.

Summary

To summarize, comparison of two alternative implemen-
tations of the MLC approach showed that the two ap-
proaches yielded very similar results, except under the con-
dition with a small sample size at both levels and a low ICC.
In this condition, the MLC approach outperformed the two-
stage approach in terms of both bias and RMSE. This is not
surprising, given that the MLC approach is based on FIML,
which uses all information inherent in the raw data. In
contrast, the two-stage approach is a limited information
approach that relies on a stepwise procedure. Hence, it can
be concluded that the problems of the MLC approach with
small sample sizes at L2, as outlined in the previous simu-
lation study, are even more serious for the two-stage ap-

8 The present investigation does not address the case in which a
dependent variable is directly measured at Level 2 (see Croon &
van Veldhoven, 2007). However, it is possible to include a directly
observed L2 dependent variable in the Mplus program. In Example
9.4 of the Mplus manual (L. K. Muthén & Muthén, 2007, p. 236),
the variable z indicates a mediator that is directly measured at L2.
On the basis of this variable, the example can be modified to run
the model used in Croon and van Veldhoven (2007).
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proach. In conclusion, given appropriate statistical software,
there appears to be no reason to choose the two-stage
approach proposed by Croon and van Veldhoven (2007)
over the one-step FIML MLC approach presented here,
although the two approaches will yield nearly identical
results for many situations.

Study 3: The Role of the Sampling Ratio in the
Multilevel Latent Covariate (MLC) Approach

Sampling ratio is a critical issue that has not received
sufficient attention in the development of the MLC ap-
proach (but see Goldstein, 2003), which implicitly assumes
that L1 cases are sampled from an infinite sample of L1
cases within each L2 group. This is a reasonable assumption
for a reflective aggregation process in which a generic
group-level construct is assumed to be measured by the
corresponding constructs at the individual level. Croon and
van Veldhoven (2007, p. 55) thus regarded the group mean
of the L2 construct as a latent variable and treated the
corresponding individual scores at Level 1 as “reflective
indicators for that variable.” However, this reflective mea-
surement assumption is not appropriate for formative L2
constructs. For example, in the earlier discussion of gender
composition, the percentage of girls in a class can be mea-
sured with essentially no measurement error at Level 1 or
sampling error at Level 2—consistent with the assumption
underlying the MMC approach. In this example, the MLC
approach would not be appropriate. In general, the MMC
approach seems better suited than the MLC approach when-
ever the sampling ratio approaches 1.0 for a formative L2
construct.

What happens in a formative aggregation process in
which the sampling ratio does not approach 1.0? The true
value of the L2 aggregated variable is unknown because the
entire cluster has not been sampled. For example, let us
assume that researchers want to assess school-average SES
by sampling 5 students from a school of 1,000 students, a
sampling ratio of .005. Using the MMC approach, the
average SES of this sample would not provide an error-free
estimate of the school-average SES. In scenarios with such
a low sampling ratio, the MLC approach might be used to
correct the estimator of the contextual effect for L2 unreli-
ability due to sampling error.

To address these concerns, we conducted a simulation
study to further investigate the suitability of the MLC ap-
proach for a formative aggregation process in which the true
L2 group average is not known. In contrast to the previous
simulations, we assumed that the number of L1 units within
each L2 group was some finite number (e.g., 100). Although
the number of L1 units was fixed, the L2 units were ran-
domly sampled from a population. Hence, we utilized a
two-step procedure to generate populations with finite L1
sample sizes and a fixed number of randomly drawn L2

units. More specifically, in the first step, a certain number of
clusters were drawn (e.g., K = 500 L2 units with n = 100
L1 units within each L2 unit) to establish a population
model with finite sample size within each L2 unit. In the
next step, a sample was drawn from this finite population
according to a particular sampling ratio (e.g., 20%). This
two-step procedure was replicated 1,000 times for each
condition, and we analyzed the resulting data sets using both
the MLC and the MMC approaches. The following condi-
tions were manipulated: the number of L2 groups (K = 100,
500), the number of L1 observations per L2 group in the
finite population (n = 25, 100, 500), the ICC of the predic-
tor variable (ICC = .10, .30), and the sampling ratio (SR;
the percentage of L1 observations considered within each
L2 group: SR = 20%, 50%, 80%, 100%). Thus, for exam-
ple, L2 group averages were based on 5 cases per class
when the number of students within the class (n) was 25 and
the sampling ratio was 20%.

Results and Discussion

Bias. Table 4A shows the relative percentage bias in the
parameter estimates for all four conditions. Overall, there
was a tendency for the MLC approach to be positively
biased—to overestimate the true contextual effect (M = 9.8,
SD = 10.2, range = 0.2 to 39.1)—and for the MMC
approach to be negatively biased (M = —7.8, SD = 12.0,
range = —52.0 to 0.2). The difference between the MLC
approach and the MMC approach was particularly marked
when the finite sample size (i.e., number of L1 units within
each L2 unit) and the ICC were small. This finding was
confirmed by two significant interactions between method
and L1 sample size (v*> = .23) and method and ICC (v? =
.09) in a five-way ANOVA.

In the worst combinations (ICC = .10 and SR = .2 in
Table 4A), the bias was extremely positive (33.0% and
29.8%) in the MLC approach and extremely negative
(—=51.4% and —52.0%) in the MMC approach. Whenever
the MLC approach led to a substantial positive bias, the
MMC approach led to a substantial negative bias. However,
the pattern of differences was not symmetrical. In particular,
the size of the negative bias in the MMC approach declined
sharply as the sampling ratio increased (and disappeared for
SR = 1.0), whereas the positive bias for the MLC approach
did not vary systematically with SR.

It is not surprising that the MMC approach is unbiased
when the sampling ratio is 1.0, given that all cases are
sampled from the finite population. However, the MLC
approach is most positively biased under these conditions,
because it assumes that the samples were drawn from an
infinite population. When the sampling ratio is low (.2), the
negative bias of the MMC approach is larger than the
positive bias of the MLC approach. In these conditions, the
MMC approach is negatively biased because it does not
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correct for the unreliability of the aggregated L2 variable,
whereas the MLC approach is positively biased because it
overcorrects the contextual effect based on biased estimates
of unreliability of the aggregated L2 variable. With increas-
ing magnitude of the number of L1 units in the finite
population, the bias of both the latent and the manifest
approach is reduced. However, except for the lowest sam-
pling ratio, the absolute value of bias based on the MMC
approach was systematically smaller than that of the MLC
approach.

To further study the bias of both approaches, a condition
with a very low sampling ratio (SR = .05) was included for
n = 500. As expected, the MLC approach was unbiased for
a low ICC (K = 100: 2.4%; K = 500: 2.2%) as well as for
a high ICC (K = 100: 0.0%; K = 500: 0.6%). In contrast,
the MMC approach was seriously biased for such a low
sampling fraction, with the bias being more pronounced for
alow ICC (K = 100: —25.7%; K = 500: —25.7%) than for
a high ICC (K = 100: —8.4%; K = 500: —8.3%).

RMSE. As shown in Table 4B, the RMSE for both
methods was of a similar magnitude. The RMSE for the
MLC approach ranged in magnitude from 0.03 to 0.46 (M =
0.11, SD = 0.09). For the MMC approach, the RMSE
ranged from 0.03 to 0.29 (M = 0.10, SD = 0.06). In general,
the RMSE was high when the number of L1 units within
each L2 unit, the number of L2 units, and the ICC were low.
The MLC approach showed a higher RMSE than the MMC
approach in some conditions (e.g., when the number of L2
units was 100, the ICC was .10, and the number of L1 units
within each L2 unit was 25). Furthermore, in line with the
results from the previous simulation studies, the RMSE for
the MLC approach was affected by the number of L2 units.

In the additional condition that we ran with a very low
sampling ratio (SR = .05), when n was substantial (n =
500), only slight differences were found between the two
approaches. As expected, the RMSE for the MLC approach
was larger for a modest number of L2 units (ICC = .1: 0.18;
ICC = .3: 0.08) than for a larger number of L2 units (ICC =
.10: 0.08; ICC = .30: 0.04). The RMSE for the MMC
approach was almost identical for a modest number of L2
units (ICC = .10: 0.18; ICC = .30: 0.08) but slightly higher
for a large number of groups (ICC = .10: 0.14; ICC = .30:
0.06).

Coverage. As in Study 1, the accuracy of the standard
errors was evaluated in terms of the coverage rate, which
was assessed using the 95% CIs. As shown in Table 4C, the
coverage rates were generally better for the MLC approach
than for the MMC approach, ranging from 32.8 to 96.0
(M = 817.8, SD = 13.1) for the MLC approach and from 0.2
to 95.6 (M = 83.5, SD = 21.6) for the MMC approach.

In addition, we looked at the coverage for a condition
with a very low sampling ratio (SR = .05) and n = 500. As
expected, the MLC approach showed coverage rates near
the nominal coverage rate of 95% for a modest number of

L2 units (ICC = .10: 94.3%; ICC = .30: 94.5%) and for a
large number of L2 units (ICC = .10: 94.0%; ICC = .30:
94.3%). In contrast, the CIs of the MMC approach were not
accurate. The probability that the CIs do not cover the true
value was higher for the conditions with a high number of
L2 units (ICC = .10: 39.0%; ICC = .30: 73.5%) than for the
conditions with a modest number of L2 units (ICC = .10:
81.0%; ICC = .30: 88.6%).

Summary

Overall, this simulation study showed that, given a for-
mative aggregation process, the results for the manifest and
latent approach depend on the size of the finite population
that is assumed to generate the observed data. When the
sample size and sampling ratio are both small, both ap-
proaches perform poorly—albeit in counterbalancing direc-
tions. Particularly when the sample size is low (n = 25)
and/or the sampling ratio is high, the MLC approach suffers
from the fact that it assumes an infinite population for each
L2 unit, whereas estimates based on the MMC approach
show little or no bias.” However, when the sampling ratio is
low and the sample size is high, the MLC approach appears
to behave more favorably than the MMC approach. For
instance, in the conditions with a large number of L2 units
(K = 500), a low sampling ratio (20%), and a large number
of L1 units (n = 100), the MLC approach outperformed the
MMC approach in terms of bias as well as RMSE. When the
number of L1 units is further increased (e.g., n = 500) and
the sampling ratio is low (e.g., SR = .05), the finite popu-
lation sampling model is almost equivalent to the infinite
population sampling model. Hence, the results would be
nearly identical to the findings reported in the simulation
study above, in which an infinite population was assumed
(see Tables 1 and 2).

Studies 4 and 5: Two Applications of Manifest and
Latent Variable Approaches With Actual Data

We next present two examples illustrating the difference
between the latent and the manifest approaches to contex-

° Additional, unreported simulations showed that the bias for the
MLC approach becomes even more extreme when the sampling
ratio approaches 1.0 and the number of cases is very small. In the
most extreme situation, with n = 10, ICC = .10, K = 100, and
SR = 1.0, the bias for the MLC approach was very positive
(91.6%), whereas the MMC approach was almost unbiased
(—0.8%). The RMSE was also considerably higher for the MLC
approach (0.53) than for the MMC approach (0.12). When the
number of L2 units was increased to K = 500 and the ICC was set
to 0.30, the MLC approach performed better (bias: 23.3%; RMSE:
0.13), but it was still outperformed by the manifest approach (bias:
—0.3%; RMSE: 0.04).
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Table 4
Study 3: Fitting the Multilevel Manifest Covariate Model and the Multilevel Latent Covariate Model as a Function of the ICC of the
Predictor Variable, the Number of Level 1 Units Within Each Level 2 Unit, the Number of Level 2 Units, and the Sampling Ratio

No. (n) of Level 1 units within each Level 2 unit

n =25 n =100 n = 500
No. (K) of Level 2 units Latent Manifest Latent Manifest Latent Manifest
A: Relative percentage bias of contextual effect
K =100
ICC = .10
SR =2 33.0 —514 11.8 —24.2 0.8 —83
SR=1.5 39.1 —223 9.9 =77 2.0 —25
SR=.8 37.3 —-6.9 8.9 -29 1.5 —-13
SR=1 37.4 —0.6 8.0 —-1.7 1.5 —-1.0
ICC = .30
SR=2 9.3 —25.8 2.4 —8.7 0.2 -23
SR=15 9.8 —8.4 2.5 —2.3 1.0 —0.1
SR =.8 9.2 —2.6 2.9 —0.2 0.8 -0.2
SR=1 9.9 0.2 2.6 0.1 0.5 -0.2
K =500
ICC = .10
SR=2 29.8 —52.0 9.3 —254 1.7 —8.2
SR =. 35.5 —232 8.9 —9.2 1.3 —4.2
SR=.8 36.0 =73 9.3 -3.8 1.6 —2.6
SR=1 36.5 —-1.1 9.4 —1.3 14 -2.1
ICC = .30
SR =. 9.3 —254 2.5 -85 0.6 —2.2
SR=.5 9.4 —8.8 24 —2.6 0.6 -0.8
SR = .8 9.5 -23 2.5 —0.7 0.2 -0.9
SR = 9.4 -0.3 2.5 -0.3 0.4 —0.8
B: Root-mean-square error of contextual effect
K =100
ICC = .10
SR =. 0.46 0.29 0.21 0.18 0.15 0.14
SR=.5 0.31 0.17 0.16 0.14 0.14 0.14
SR=.8 0.27 0.13 0.15 0.13 0.14 0.14
SR =1 0.26 0.13 0.15 0.14 0.13 0.14
ICC = .30
SR=2 0.16 0.16 0.09 0.09 0.07 0.07
SR=1.5 0.11 0.09 0.07 0.07 0.07 0.07
SR=.8 0.10 0.08 0.07 0.07 0.07 0.07
SR=1 0.09 0.08 0.07 0.07 0.07 0.07
K =500
ICC = .10
SR=2 0.21 0.27 0.10 0.14 0.07 0.08
SR =. 0.20 0.13 0.08 0.08 0.06 0.08
SR =. 0.20 0.08 0.08 0.08 0.06 0.08
SR = 0.20 0.07 0.08 0.07 0.06 0.08
ICC = .30
SR =. 0.08 0.13 0.04 0.06 0.03 0.04
SR=.5 0.06 0.06 0.03 0.04 0.03 0.04
SR =.8 0.06 0.04 0.03 0.03 0.03 0.03
SR =1 0.06 0.04 0.03 0.03 0.03 0.04

(Table continues)
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Table 4 (continued)

No. (n) of Level 1 units within each Level 2 unit

n =725 n = 100 n = 500
No. (K) of Level 2 units Latent Manifest Latent Manifest Latent Manifest
C: Percentage coverage rate for contextual effect
K =100

ICC = .10
SR =2 92.8 36.0 92.1 80.2 92.9 90.3
SR=15 84.7 82.3 92.8 91.9 94.1 93.7
SR =.8 81.3 91.6 93.5 93.8 93.6 92.8
SR=1 78.6 92.7 92.7 93.1 94.4 93.3

ICC = .30
SR =. 93.7 61.1 93.5 87.3 93.5 92.8
SR=15 91.2 87.6 93.9 92.6 92.8 92.3
SR = .8 89.6 91.1 92.8 93.0 93.3 92.8
SR=1 89.1 92.5 94.3 94.0 93.4 92.9

K =500

ICC = .10
SR =. 86.5 0.2 90.3 38.7 94.7 88.5
SR=15 54.5 429 89.0 86.1 94.0 92.0
SR = .8 39.1 88.7 88.3 92.3 95.4 93.2
SR = 32.8 92.5 88.5 92.7 95.1 93.8

ICC = .30
SR=.2 88.5 11.5 93.2 73.9 94.9 93.8
SR =. 80.3 74.3 93.1 92.8 94.8 94.9
SR = .8 74.8 92.3 92.6 94.0 96.0 95.6
SR =1 74.1 93.1 93.1 94.6 94.1 93.7

Note. Latent = multilevel latent covariate model; manifest = multilevel manifest covariate model; ICC = intraclass correlation of predictor variable;

SR = sampling ratio.

tual analysis. The first example utilizes students’ ratings of
their teachers’ behavior, a reflective aggregation of L1 con-
structs in which the referent is an L2 construct. The central
question is whether the individual and shared perceptions of
a specific teaching behavior are related to students’ achieve-
ment outcomes. Because the contextual variable is based on
different students’ perceptions of a specific teacher behav-
ior—an L2 referent—it seems reasonable to assume that
students within each class are interchangeable in relation to
this L2 reflective construct.

The second example is a classic illustration of contextual
analysis, namely the question of whether the school com-
position in terms of SES affects students’ reading literacy
(Raudenbush & Bryk, 2002). Again, L1 scores (individual
student SES) are used to assess the L2 construct (school-
average SES). In this case, however, the aggregation of L1
constructs is formative; the referent is the (L1) individual
student and the aggregated L2 construct is an index of L1
measures that may be very heterogeneous. Because SES can
be measured with a reasonably high level of reliability at L1
and the number of students within each L2 group is sub-
stantial, the reliability of the L2 aggregate (school-average
SES) may be sufficient. Furthermore, within-school vari-
ability in SES is a potentially interesting characteristic of
the school (i.e., heterogeneity of SES).

We selected these two examples to illustrate that, from a
theoretical perspective, the appropriateness and the reasons
for applying the MLC approach may depend on the nature
of the specific construct under study.

Study 4: Teacher Behavior—Contextual Analysis of
a Reflective L2 Construct

In educational research, it is widely posited that individ-
ual students’ learning outcomes are affected by teacher
behaviors. Empirical studies draw on different data sources
to elucidate aspects of the learning environment. One simple
and efficient research strategy is to ask students to rate
several specific teacher behaviors. In this approach, each
student is regarded as an independent observer of the
teacher, the referent is the teacher, and responses are aggre-
gated across all students within a class to provide an indi-
cator of teacher behavior. At the individual level, student
ratings represent the individual student’s perception of the
teacher behavior. Scores aggregated to the classroom level
reflect shared perceptions of teacher behavior in which
idiosyncrasies associated with the responses of individual
students tend to cancel each other out (Liidtke, Trautwein,
Kunter, & Baumert, 2006; Miller & Murdock, 2007; Papa-
ioannou et al., 2004). Several studies—many using MLM—
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have provided empirical support for the predictive validity
of these individual and shared perceptions of features of the
learning environment with respect to student outcomes
(Kunter, Baumert, & Koller, 2007; Liidtke et al., 2005;
Urdan, Midgley, & Anderman, 1998).

Background to the Application

In this first example, we examine students’ perceptions of
a specific teaching behavior. Students were asked to rate
how easily distracted their mathematics teacher was
(teacher distractibility) on three items (sample item: “Our
mathematics teacher is easily distracted if something at-
tracts his/her attention”). The scale was developed on the
basis of Kounin (1970) and covers teacher behavior that
leads to the disruption or discontinuation of learning activ-
ities in class. Such behavior makes lessons less efficient and
is negatively related to students’ learning gains (Gruehn,
2000). Consistent with the rationale for the reflective ag-
gregation of L1 constructs to form an L2 construct that is
the primary focus of study, all student ratings are supposed
to measure the same construct (i.e., the teacher behavior
under study), and the referent is the teacher. L1 student
responses are thus used to construct an L2 reflective con-
struct that reflects a specific teacher characteristic, namely,
distractible teaching style (Cronbach, 1976; Miller & Mur-
dock, 2007).

We used the German sample of lower secondary students
who participated in the Third International Mathematics and
Science Study (TIMSS; Baumert et al., 1997; Beaton et al.,
1996). The data set contains 2,133 students nested within
108 classes (average cluster size = 19.75). The ICC for the
student ratings was .08, indicating that a moderate propor-
tion of the total variance was located at the class level. The
amount of variance located at the student level indicates that
there is a considerable lack of agreement among students
about the distractibility of their mathematics teacher. On the
basis of Equation 8, the MMC approach might be expected

Table 5
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to underestimate the strength of the relationship between
perceived distractible teaching style and mathematics
achievement at the class level.

Both the MLC and the MMC approaches were specified
in Mplus 4.2 (for Mplus codes, see the supplemental mate-
rial available online). Students’ perceptions of their teach-
ers’ distractibility and mathematics achievement scores
were standardized across the entire sample (z-score with
M = 0, SD = 1) at the individual level. For the MMC
approach, the standardized distractibility was aggregated
but not restandardized at the class level (thus, class-level
effects are measured in terms of student-level standard
deviations).

Results and Discussion

The parameter estimates for both approaches were nearly
identical except for the L2 (between-groups) regression
coefficient ¥,, and the L2 residual variance (see Table 5).
As expected on the basis of both the mathematical deriva-
tion of the bias and the simulation study, the regression
coefficient for teacher distractibility at the class level was
larger in the MLC approach than in the MMC approach, but
it also exhibited a larger standard error. Classes with teach-
ers who were perceived as showing a high level of distract-
ibility in lessons had lower levels of achievement than did
classes with teachers who were perceived to be less dis-
tractible. At the student level, there was no effect of the
individual students’ perception of their teachers’ teaching
style on individual achievement. Given that variables were
standardized at the individual level, the large regression
coefficient obtained at the class level seems unusual. The
reason for these large values at the group level is that the
standard deviation of the aggregated group-level predictor is
often smaller than 1. When the regression coefficient for the
MLC approach is interpreted in relation to the class-level
standard deviation of teacher distractibility, it decreases to
.45. However, there are currently no agreed-upon standards

Study 4: Empirical Analysis Results of the Effects of Students’ Perception of Their Teachers’ Distractibility

on Mathematics Achievement

Variable Latent Manifest
Variance Variance
Coefficient SE component Coefficient SE component

Fixed effect

Yoo intercept —0.06 0.07 —0.06 0.07

o1 distractible teaching (average) —1.23 0.31 —0.83 0.19

Y10 distractible teaching (student) —0.03 0.02 —0.03 0.02
Random effect

Var(u;) 0.42 0.46

Var(r) 0.48 0.48
Note. N for Level 1 = 2,133; N for Level 2 = 108. Average cluster size = 19.75. All parameter estimates except the intercept and ¥,, are statistically

significantly different from zero (p < .001).
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for how to calculate standardized regression coefficients in
MLM. Standardization strategies in MLM remain a topic of
research (e.g., Raudenbush & Bryk, 2002).

Students’ ratings of their teachers’ behavior seem to be a
good example of an L2 reflective construct where the ratio-
nale of the MLC approach is appropriate. In this example,
the main purpose of the L2 measurements is to assess an .2
group-level construct—the behavior of a particular teacher
as perceived by his or her students. In his seminal paper on
multilevel issues in educational research, Cronbach (1976)
was very clear about the role of students’ perceptions in
assessing aspects of the learning environment. In a discus-
sion of the Learning Environment Inventory (LEI), he ar-
gued that

The purpose of the LEI is to identify differences among class-
rooms. For it, then, studies of scale homogeneity or scale inter-
correlation should be carried out with the classroom group as
unit of analysis. Studying individuals as perceivers within the
classrooms could be interesting, but is a problem quite separate
from the measurement of environments. (p. 918)

From this point of view, it is reasonable to correct for
factors that impinge the measurement of that class-level
construct. In the MLC approach, the restriction to small
samples of students within classes and disagreement among
students are taken into account when estimating the effect of
aggregated student ratings on achievement.

Study 5: School-Average SES—A Contextual Effect
Analysis of a Formative L2 Construct

Educational researchers believe that a student’s perfor-
mance in school is affected by the characteristics of his or
her fellow students (Marsh, Kong, & Hau, 2000; Willms,
1985). For example, several researchers have posited that
aggregated school SES or mean ability affects individual
student outcomes (e.g., student achievement or academic
self-concept), even after controlling for the individual ef-
fects of these L1 constructs—a contextual effect. Rauden-
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bush and Bryk (2002, p. 139) define such a contextual effect
to exist “when the aggregate of a person-level characteristic,
}_(.j, is related to the outcome, Y, even after controlling for
the effect of the individual characteristic, X;;.”

Background to the Application

In the present example, individual students’ SES is used
to assess the effect of school-average SES on reading liter-
acy after controlling for individual SES, drawing on data
from the German sample (Baumert et al., 2002) of the
Programme for International Student Achievement (PISA)
2000 study (Organisation for Economic Co-operation and
Development, 2001). The analyses are based on 4,460 stu-
dents in 189 schools, giving a mean of 23.6 students per
school. Note that the PISA study sampled 15-year-old stu-
dents from schools rather than classes. Hence, in contrast to
Study 4, where the L2 groups were classes, the present
example focused on the school at Level 2 (meaning that the
sampling ratio is much lower). The ICC for SES was .22,
indicating that a substantial amount of the variance in stu-
dents’ SES was located at the school level.

Results and Discussion

The results for both manifest and latent models are re-
ported in Table 6. SES and reading scores were standardized
(z-score with M = 0, SD = 1) at the individual level. For the
MMC approach, the standardized SES was aggregated but
not restandardized at the school level. As expected, the
differences between the two approaches in the parameters
based on student-level data were negligible. The effect of
students’ SES ¥, on reading achievement, the L1 residual,
and the intercept v, were almost the same. In contrast,
estimates at the school level differed across the two ap-
proaches. As expected on the basis of Equation 8, the effect
of school-average SES was higher in the MLC approach,
which corrects for unreliability of the school-average SES
scores. Because we group-centered the L1 predictor vari-

Table 6
Study 5: Empirical Analysis Results of the Effects of Socioeconomic Status (SES) on Reading Achievement
Latent Manifest
Variance Variance
Variable Coefficient SE component Coefficient SE component

Fixed effect

Yoo intercept —0.01 0.03 —0.02 0.03

o1 SES (average) 1.52 0.06 1.29 0.06

Y10 SES (student) 0.10 0.01 0.10 0.01
Random effect

Var(u,,) 0.08 0.15

Var(r) 0.43 0.43
Note. N for Level 1 = 4,460; N for Level 2 = 189. Average cluster size = 23.6. All parameter estimates except the intercept are statistically significantly

different from zero (p < .001).
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able, the compositional effect was determined by subtract-
ing the within-school regression coefficient from the be-
tween-schools regression coefficient: o, Y10 (e.g.,
Raudenbush & Bryk, 2002). We obtained a compositional
effect of 1.42 for the MLC approach and 1.19 for the MMC
approach. The contextual effect can be interpreted as the
difference expected in reading literacy between two stu-
dents with the same individual SES who attend schools
differing by one unit in mean SES. One unit in mean SES
corresponds to one standard deviation at the individual level
metric because the aggregated individual SES score were
not restandardized. Similarly, when the regression coeffi-
cients at the school level are interpreted in relation to the
school-level standard deviation of SES, they decrease in
absolute size. For instance, the regression coefficient for the
MLC decreases to 0.71 when interpreted in relation to the
school-level standard deviation. Again, this demonstrates
that the magnitude of the parameter estimates is very sen-
sitive to the different standardization strategies.

The central question now is whether we can justifiably
correct for unreliability based on the MLC approach in
the present example. In contrast to Study 4, where stu-
dents’ responses serve as reflective indicators of the L2
construct (each student provides a single fallible estimate
of the teacher’s distractibility), in Study 5 student re-
sponses reflect the L1 construct SES. Variability in indi-
vidual student levels of SES in a given school clearly
reflects systematic true score variation in a well-defined
L1 construct in which the referent is the individual stu-
dent (consistent with the formative approach to aggrega-
tion). Hence, it does not seem appropriate to assume a
reflective aggregation process for school-average SES.
However, another reason for choosing a MLC approach
might be a low sampling ratio. On average, 23.6 students
were sampled from each school in the present example.
Assuming an average school size of 500, only 5% of the
pupils from each school were sampled. Given such a low
sampling ratio in connection with a potentially very large
number of L1 units within each L2 unit, application of
the MLC approach may be justified. On the basis of these
assumptions, one can even go further and use the results
of the simulation study to infer the direction of the bias.
For instance, given these assumptions, in the present
example a researcher can infer that the true value for the
contextual effect of average SES is expected to be closer
to the estimate of the MLC approach than to the estimate
of the MMC approach (see Table 4A). However, as this
example shows, the choice of the analysis model (MLC
or MMC approach) is very sensitive to the assumptions
made about the underlying population sampling model.
For instance, if classes (with ns of approximately 25) and
not schools were chosen as L2 units and the sampling
ratio approached 1.0, we would have more confidence in
the MMC approach. For a formative process in which the

sampling ratio is small or moderate, our simulation re-
sults might provide preliminary evidence about the rela-
tive size (and direction) of biases under the manifest and
latent approaches. Resolving this problem is clearly be-
yond the scope of this study. It is, however, important
that applied researchers are aware of the problem, which
does not seem to have been clearly demonstrated in
previous research.

Discussion

Multilevel analyses are frequently used to estimate the
effects of group-level (L.2) constructs in the social sciences.
When using aggregated individual data to assess an L2
construct within the MMC approach, however, the observed
group mean might not be a reliable measure of the unob-
served, latent group characteristic. We compared two ap-
proaches to the analysis of contextual models: a new MLC
approach that corrects for the unreliable assessment of the
latent group mean when estimating MLMs and the tradi-
tional MMC approach, which relies on manifest group
means that are assumed to be perfectly reliable.

Statistical Considerations

By means of mathematical derivation, we showed that the
MMC approach results in biased estimates of contextual
effects for reflective aggregations of L1 constructs, partic-
ularly when the ICC and L1 sample sizes within groups are
small. This result was confirmed by a simulation study,
which also showed that the MLC approach is generally
unbiased. Although the contextual effects estimated within
the MLC approach were larger, they were also substantially
more variable in certain data constellations (e.g., small
number of L2 groups, small ICCs, and small ) than those
obtained using the traditional MMC approach. Indeed, due
to this trade-off, the results of Study 4 suggested that the
likelihood of obtaining statistically significant results was
similar for both approaches. Although this article clearly
does not provide sufficient evidence to suggest that this
result will generalize more broadly, it is a relevant consid-
eration for further research. More generally, because the
contextual effect estimates are so variable within the MLC
approach, results based on a given sample may deviate
substantially from the true population parameter—as can be
demonstrated by a simple inspection of the standard error.

What are the consequences of these mixed findings for the
statistical properties of the estimator of the contextual effect
in cases of reflective aggregation? The MMC approach is
used almost exclusively in research practice. Our results
suggest that for the single predictor case at least the sizes of
contextual effects published are likely to be conservative.
Although the new MLC approach is unbiased, the large
sampling variability in certain data constellations (e.g.,
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small number of L2 groups, small ICCs, and small n)
suggests that it should be applied only very cautiously in
such cases. Although asymptotically the MLC approach
provides the most efficient and consistent estimator of the
contextual effect and is thus asymptotically superior to the
MMC approach, the results of our simulation study suggest
that large numbers of L2 groups (K) may be needed for
these asymptotic properties to hold. Particularly for studies
where the number of L2 groups and the number of L1 cases
within each group are modest, the latent variable approach
can be recommended only when the ICC is very large.

We also compared the MLC approach to the two-stage
latent variable approach for L2 reflective constructs pro-
posed by Croon and van Veldhoven (2007). Consistent with
their speculations, our simulation study showed that the two
approaches yielded very similar results, except under the
condition with small sample sizes at both L1 and L2 and a
low ICC. For this data constellation, the FIML MLC ap-
proach outperformed the two-stage approach. Because the
two-stage approach is only a limited information approach,
the FIML implementation should be generally preferred.
Although it was not a focus of our study, we also note that
the potentially cumbersome two-stage approach to estimat-
ing standard errors requires further consideration. When
discussing critical issues for future research in multilevel
latent variable modeling, Croon and van Veldhoven (2007,
p. 55) emphasized that “efforts should be made to develop
a reliable numerical and generally applicable procedure that
yields the full information maximum likelihood estimates of
the model parameters.” Mplus provides such a flexible
latent variable model that integrates several different anal-
ysis models within a unified MLM framework (L. K. Mu-
thén & Muthén, 2007). Hence, we recommend that the
one-step approach demonstrated here be used instead of the
two-stage approach.

Another even simpler approach (related to the Croon &
van Veldhoven, 2007, two-stage approach) would be to
estimate the reliability of the group mean via Equation 6 and
then to correct the estimated regression coefficient for the
unreliability of the group mean (see Grilli & Rampichini,
2007). To this end, the well-known correction for attenua-

tiOIl formula can be used to adjust the bet W een-groups
i fﬁ i b y ul i ly i i by = - /
I’egl‘eSSIOIl coelncient m p lIlg 1 ( j) 2

This disattenuation approach thus consists of two steps.
First, the MMC model is specified to estimate the between-
groups regression coefficient. Second, the estimated be-
tween-groups regression coefficient is corrected for unreli-
ability by the attenuation formula. In other words, the MMC
approach is used to implement an MLC approach. A major
drawback of that approach is that it is well defined only for
balanced group sizes. However, even if the group sizes vary
moderately, it may be acceptable to use the mean group size
(see Snijders & Bosker, 1999, for a discussion of different

adjustment formulas). In addition, the standard error of the
regression coefficient needs to be adjusted when applying
the disattenuation approach (e.g., using a bootstrapping
procedure; see Carpenter, Goldstein, & Rasbash, 2003).
Further research should evaluate how this disattenuation
approach is related to the FIML implementation of the MLC
approach as well as to the MMC approach for balanced and
unbalanced group sizes. Although it may be premature to
recommend that this disattenuation approach be used rou-
tinely, it does provide the applied researcher with an initial
indication of the size of the bias that might be expected
within the MMC approach when the MLC approach is
appropriate. However, further investigation of the approach
is required, particularly for small sample sizes.

Another important application of the MLC approach is
when the true value of an L2 formative construct is un-
known because the entire cluster has not been sampled. In
this case, the MLC approach is used to control for a low
sampling ratio and the limited reliability of the L2 formative
construct. In Study 3, we tested the MLC approach’s suit-
ability for adjusting for the effect of a small sampling ratio
from a finite population. The results showed that, when the
finite sample size of the L2 units is at least moderate (e.g.,
100) and the sampling ratio is low (e.g., 20%; 20 cases from
a finite population of 100), the MLC approach outperformed
the MMC approach in terms of both bias and RMSE.
Critically, however, the bias associated with the two ap-
proaches was in opposite directions. Importantly, for for-
mative aggregations, a sampling ratio tending to O corre-
sponds with the assumptions of the MLC approach, whereas
a sampling ratio of 1 corresponds with the assumptions of
the MMC approach.

The relative sizes of the counterbalancing biases associ-
ated with the two approaches varied systematically with
sample size and sampling ratio. When the number of L1
cases within each L2 group is sufficiently large, the manifest
and latent approaches give similar results (because L2 un-
reliability is negligible). However, when the sampling ratio
and sample size are both small, and the two approaches are
thus likely to give very different results, the only conclusion
that the applied researcher can make with confidence is that
the true value is on average somewhere between the results
of the MMC and the MLC approaches. Hence, the most
reasonable recommendation is to use both approaches to
determine whether their results point to substantively dif-
ferent conclusions. If so, conclusions must be made with
caution.

What are the consequences of these findings for applying
the MLC approach to group-level constructs based on for-
mative aggregation? In research practice, it is often difficult
to determine the true cluster sizes because ad hoc samples
are frequently drawn without a sampling scheme. In Study
5, for example, there was an average of 23.6 students per
school. If we assume that the average school size is at least
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500 students, then the sampling ratio is less than .05. How-
ever, the sample was limited to students who were 15 years
of age, and the average number of 15-year-old students per
school might be just 100. We are not necessarily arguing for
this alternative interpretation, but we use this example to
illustrate why the computation of sampling ratio might not
be straightforward. Furthermore, the true cluster sizes are
likely to vary, perhaps substantially, across different 1.2
groups. Thus, further research is needed to study the effect
of varying finite sample sizes of the L2 clusters on the
estimator of the contextual effect based on L2 formative
constructs. Although our simulation results do not provide a
sufficient basis for making detailed recommendations, we
would like to offer the following guidelines (subject to
further research).

For formative L2 constructs (as in Study 5), the MMC
approach can comfortably be used when the sampling ratio
approaches 1.0. Even when the sampling ratio is moderate
(at least .5), the MMC approach seems to provide relatively
unbiased estimates as long as the sample size and ICC are
large. The MLC approach should be considered instead of
the MMC approach when the sampling ratio is very small
and the numbers of L2 groups and L1 cases in each L2
group are large. In all other cases, the applied researcher
should apply both the latent and manifest approaches and
compare the results of each. If the results of the two ap-
proaches differ substantively, the applied researcher should
be cautious in drawing any conclusions. Because these
recommendations are not entirely satisfactory in providing
clear-cut advice, this is an area in which more research is
needed. We also note that there may be applications where
the true population mean for each L2 group is known (e.g.,
based on information external to the study such as gender
ratio of a school), although only a sample of participants is
considered. In this special case, it would be appropriate to
use the known true population mean for each group (instead
of the sample mean based on data actually collected) and to
interpret the sampling ratio in relation to this L2 construct as
being 100%. Hence, for formative L2 constructs in which
the true (population) sample mean is known for each L2
group, we recommend that the MMC is always appropriate
and should be used instead of the MLC approach described
here.

For reflective L2 constructs, the researcher should always
use the MLC approach in preference to the MMC ap-
proach—even when the apparent sampling ratio is very
large. The rationale for this recommendation, as for the
domain sampling rationale in the classical approach to mea-
surement, is that there is a potentially infinite number of L1
indicators that could be sampled. There are, however, im-
portant qualifications to this recommendation. When the
number of groups, the number of cases within each group,
and the ICC are all modest, the contextual effect estimates
for the MLC approach are—because of their larger vari-

ability—Iless accurate than those of the MMC approach.
However, we cannot recommend the MMC approach be-
cause the parameter estimates are likely to be very nega-
tively biased and the apparently small standard errors are
likely to substantially underestimate sampling variability (at
least in terms of making population inferences). Rather, we
recommend that the results of contextual effects studies for
reflective L2 constructs based on small ns at L1 and, in
particular, small numbers of L2 groups be interpreted very
cautiously unless the ICCs are substantial.

Theoretical Considerations

In multilevel studies, group-level constructs are often
constructed by aggregating individual data at the group
level. The theoretical rationale for the aggregation process
may differ. In this article, we distinguish two quite different
aggregation processes—reflective and formative aggrega-
tion—that represent opposite ends of a continuum.

At the reflective aggregation end, the aggregation process
assumes an isomorphic relationship between the individual-
level data and the group-level construct. In other words, a
generic group-level construct is assumed to be measured by
the corresponding constructs at the individual level. A typ-
ical research paradigm was presented in Study 4, in which
L1 students’ responses were treated as observers of their L2
teacher’s behavior and the referent was the L2 teacher.
Ideally, each student would assign the same rating, such that
the responses of students in the same class would be inter-
changeable. Because the L1 perceptions of each student
were designed to measure the same L2 construct, variation
within each class can be regarded as L2 unreliability (Cron-
bach, 1976; Van Mierlo, Vermunt, & Rutte, 2008). This
situation is analogous to typical assumptions in test con-
struction, in which differences between multiple items are
assumed to reflect measurement error that varies as a func-
tion of the number of items and the size of correlations
among items. Further examples of group-level constructs
that rely on this aggregation process are multiple L1 asses-
sors’ evaluations of the L2 quality of grant proposals (Ja-
yasinghe et al., 2003), L1 students’ evaluations of L2 teach-
ing effectiveness (Marsh, 1987, 2007), and multiple
interchangeable L1 markers assessing the quality of student
essays. In each of these situations in which the referent is a
group-level construct, the reflective aggregation of L1 con-
structs to form L2 constructs and the application of the
MLC approach seem reasonable.

At the formative aggregation end of the continuum, the
aggregation process assumes that the group-level variable is
merely an index of a well-defined L1 construct that is aggre-
gated to the L2 group level. In other words, the aggregation is
not based on multiple interchangeable observations of a single
entity but on different characteristics associated with discrete
(noninterchangeable) individuals. In fact, under appropriate
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circumstances (high levels of reliability at L1 and large num-
bers of L1 cases within each L2 group or a sampling ratio that
approaches 1.0), it is reasonable to argue that nearly all of the
within-group variability reflects true score differences among
different individuals within each group. As such, L2 unreli-
ability becomes trivial in size and, perhaps, ignorable (consis-
tent with the MMC approach). Particularly when the main aim
of a construct is to reflect individual differences at L1 (e.g.,
academic achievement, SES, individual demographic charac-
teristics such as race, age, and gender) and the referent is an L1
construct, the level of interrater agreement associated with the
aggregated L2 construct may be of no consequence to con-
struct validity at L1 (Bliese, 2000). This situation was demon-
strated in Study 5, in which school-average SES was deter-
mined by aggregating individual-level (L1) student SES.

Limitations of the Manifest and Latent Approaches:
Directions for Further Research

As formulated in this article, both the manifest and the
latent covariate approaches begin with manifest scale scores
at L1, largely ignoring the potential to estimate and control
for measurement error at LI—even when L1 measures are
based on multiple indicators. Under appropriate circum-
stances, the integration of multiple L1 indicators into the
analyses would allow researchers using either of the two
approaches to differentiate between L1 measurement error
and L2 unreliability due to sampling error associated with
the aggregation process in moving from L1 to L2 aggrega-
tions. This would be particularly valuable for the MMC
approach, offering researchers a way to estimate L2 unre-
liability in L2 formative measures (see Kline, 2005, for
discussion of how to take account of measurement error in
observed exogenous variables). Furthermore, low reliability
of individual measures can give the appearance of substan-
tial estimates of group-level contextual effects. However,
these estimates are biased because the aggregate measure is
more reliable and “mops up” variance that would be ex-
plained at the individual level with more reliable mea-
sures—the so-called phantom effect or contextual fallacy
(Harker & Tymms, 2004; see also Liidtke, Robitzsch, &
Koller, 2002). Historically, limitations in statistical software
posed intractable problems in integrating confirmatory fac-
tor analysis/SEM and MLM models (e.g., Mehta & Neale,
2005; B. O. Muthén, 1991). However, even with conven-
tional MLM programs that do not explicitly incorporate
multiple indicators of each L1 construct, it is possible to
incorporate information about L1 measurement error (e.g.,
Goldstein, 2003; Raudenbush & Bryk, 2002). More sophis-
ticated statistical packages are increasingly providing ap-
plied researchers with added flexibility to incorporate mul-
tiple indicators at L1 while addressing the multilevel
structure of their data.

In the present article, we looked at models in which only

the intercepts were allowed to vary (random-intercept mod-
els). However, in research practice models that allow slopes
to vary between L2 units are of great interest (random-slope
models). For instance, following our application in Study 5,
the relationship between SES and reading achievement
could be different in high and low SES schools (see also
Example 9.10 in L. K. Muthén & Muthén, 2007). Further
research is needed to investigate the behavior of the MLC
and MMC approaches when identifying these cross-level
interactions.

Implicit in our presentation of the MLC approach for L2
reflective measures is the assumption that L1 individuals
can be regarded as indicators and that these indicators are
drawn from a population of infinite potential indicators to
represent each L2 group, analogous to assumptions made in
the domain sampling approach to classical measurement
theory. From this perspective, sampling ratio is not a critical
concern for reflective L2 measures, although concerns about
having adequate numbers of L1 cases in each L2 group are
still relevant. Although the correction for unreliability in L2
aggregates in the MLC approach is generally appropriate
under the assumption that it is at least hypothetically pos-
sible to have an infinitely large sample size, this assumption
may be questionable in situations in which it is not feasible
to have a large number of L1 cases for each L2 group.

In the MLC procedure, ICCs are an index of interrater
agreement and one basis for the determination of L2 reli-
ability. With an ICC = 0, which implies a reliability of zero,
correction for unreliability becomes problematic. The same
would apply to reliability estimates based on multiple items
in the classical approach to measurement; this is not an issue
that is idiosyncratic to our new approach. Hence, it is not
surprising that the largest difference between the MMC
approach (that ignores unreliability) and the MLC approach
(that corrects for unreliability) is when reliability is very
low. Thus, it is important that researchers routinely provide
an estimate for the ICC when applying the MLC approach
and, if the ICC is close to zero, justify the appropriateness
of subsequent analyses and their interpretations. Further
research on the most appropriate estimation procedure and
interpretation of results based on very small ICCs is war-
ranted.

Conclusion

The simultaneous investigation of individual and group
effects is one of the basic features of MLMs. In research
practice, the L2 group characteristics are often measured by
aggregation from L1 individual measures. Two approaches
that differ in their treatment of the aggregated group-level
construct were compared. Whereas the MLC approach cor-
rects for the unreliable assessment of the latent group mean
when estimating MLMs, the MMC approach relies solely
on the observed group mean that is assumed to be measured
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with no L2 unreliability. We argue that the appropriateness
of either of these approaches depends on the research ques-
tion and the nature of the L2 construct under study. If a
generic group-level construct is assessed through a reflec-
tive aggregation of L1 measures to form the L2 construct,
then the MLC approach is appropriate and offers many
advantages as long as minimal standards are met. However,
when the aggregated variable is a formative summary of the
observations at the individual level (e.g., school-average
SES), the assumptions made by the MLC approach are
appropriate only when the sampling ratio is small. In re-
search practice, the distinction between group-level vari-
ables based on reflective and formative aggregation is not
usually so clear cut, and it is easy to imagine situations in
which the theoretical status of the group-level construct is
ambiguous and the calculation of the sampling ratio is not
straightforward. Hence, it might be useful to analyze the
sensitivity of empirical results to both approaches. In con-
clusion, although the latent covariate approach demon-
strated here has wide applicability in relation to a serious
limitation of existing research, the appropriateness of its
application varies depending on the nature of the data, the
number of L2 groups, the number of cases within each
group, and the sampling ratio.
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Appendix

Derivation of Bias for the Multilevel Manifest Covariate (MMC) Approach

In this Appendix, we derive the bias for the MMC ap-
proach. Because we are interested in within-group and be-
tween-groups relations, the following population model for
two variables X and Y will be assumed (see Snijders &
Bosker, p. 29):

X;j=m +U;+R

xij
Y, =p, + U, + Ry

In this model, group (e.g., school) j has specific main
effects U,; and U,; for variables X and Y, and the within-
group deviations R,; and R,; are associated with individual
(e.g., student) i. The population means are denoted w, and
I,» and it is assumed that the Us and the Rs have population
means 0. In addition, the Us and the Rs are independent.

The covariance matrix of X and Y at Level 1 and Level 2

can be written as

Level 1 (within)

2 2
o} > T .
2 2
Oxy Oy Txy Ty

Level 2 (between)

We are interested in estimating the following relationship in
the population:

Y[j = I‘Ly + Bwithininj + Bbctwccnljxj + 8j + 8ij'

where ., is the grand mean, By, the within-group regres-
sion coefficient, By ween the between-groups regression co-
efficient, 3; a group-specific residual, and €; an individual-
specific residual. In the group-mean centered case, the
following multilevel model would be specified to estimate

Buwithin and Byighin’
Yi= Yoo+ vio(X; — X)) + yoX + ug + 1y

Under the assumption of equal group sizes n, )_(.j

1 n
=, 2 X, is the mean for group j. Furthermore, vq,

i=1
Yio.and yo, denote the estimators for ., Byimin and Bpe-
tween. The L2 and L1 residuals are given by u; and r;;. Given

the covariance matrix of X and Y at Level 1 and Level 2, the
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observed covariance matrix of Y, X; — X, and X,; is
distributed as follows:

Y
Cov| Xj— X,
X,
o, + 1)
=| o, (1 —1/n) oX(1 — 1/n)
Txy+0-xy/n O T§+O'%/n
As can be seen, the covariances between Y, X;; — )_(,j, and

)_(.j depend on the common group size as well as on the
“true” covariances within and between groups. Employing
the OLS principle and bearing in mind that the predictors
X, — )_(.j and )_(.j are uncorrelated, the estimator ¥, for the
within-group regression coefficient B, can be obtained
as

~ Cov(YyX; — X.) oyl —1n) o,

ij»

a O _ -
Yo = Var(Xl-j - X'j) - ()'3(1 - l/n) - 0-3 BWlthm'

2

TX
TQT’Z. denote the ICC for X. The

X X

estimator ¥,, of the between-groups regression coefficient
Bpetween can now be formulated as follows:

Now let ICC,

. Cov(YpX,) 14+ o0,/n
Yo Var()_(.j) 2+ oln
Ty 72 o /n  oiln

i+ ao¥n on TP+ o¥n

X

- 1 1 (1 —-1CC,)
= Bbe[ween n ICCX —+ (1 — ICCX)/n
1 (I -1ICC))

* Buinin ) {GC (1 = ICC)n

Thus, the bias on the between level is now computed as
follows:

E(’?Ol - Bbetween)
- 1 (1 -1CC,)
- (Bwilhin Bbetween) n ICC,( + (1 _ ICCX)/I’l

As can be seen, the bias depends primarily on the proportion
of variance in X that is located between groups (ICC,) and
on the average group size n. If n — oo, the estimator will be
unbiased.
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