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ABSTRACT

   This paper treats the  multiple-choice  (continuous) knapsack  problem  P[

maxi
 
mi
 
ze
 i-n- 1 j .M/ 1 cij x ,j su  biect to {1) 

i
 /r 1 J

 /L i] aii x ij ( b, (2) o<  x ij (  1, i=  1, 2,
..,,

 
n,j=

 
1,
 
2,

 .... mi  and  (3) at most  one  of  x il,x i2,...,xim. is positive fori=  1, 2, ..,,n,
where  n, ml  are  positive integers and  aii, cij, b are nonnegative  real  nu[mbers.Two  approximate  algo-
rithms

 and  an  exact  branch-and-bound  algorithm  are  proposed,  by making  use  of  the property that
the

 
LP

 
relaxation

 of  P provides considerabiy  accurate  upper  and  lower bounds  of  theoptima[  vaiue

of
 
P.
 
Although

 the multiple-choice  knapsack  problem is known  to be NP-compiete,  computation  re-

sults
 
are

 quite enceuraging.
 For example,  approximate  solut[ons  withing  O.OOI%  of  the  optimal

values
 are obtained  in less than  one  second  (on FACOM  230f60) for problems with  n =  1000 

and

mi
 

=

 
2,
 which  are  randomly  generated from the uniform  distribution, Exact optima]  solutions  of

these
 problems  

with
 
n
 

=

 500 and  mi  
::

 2 are also  obtainedin  less than  O.2seconds (on FACOM  Ml90).
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1. Introduction

    A variant  of  the  well  known knapsack  problem  is  discussed  in  this  paper.

                            n  Mi

a.i)
 

P:
 

rnaximize

 
:=iEi

 
g..iieig'Xig'

                            n  
Ma

a･2)
 

subject

 
t0
 

2;il
 
g.E.lai"'CigL`b

(1.3) OSxig･-<1, t=1,2,..., n,  g'--1,2,..., mi

(1.4) At most  one  of  xil,  :i2,...,  xim.  is positive,
                                                           ov

                                                  for  t=1,2,...,  n,

where  n,  
rni

 are  positive  integers,  aiJ･,  ib are  nonnegative  real  numbers,  and

ci,i
 

are
 

real
 

numbers.
 

This
 pr.oblem  

P
 
is

 
called

 the  mblZtipZe-choiee  (eontinu-

ous)  knapsack  p"ohZem  stnce  tt  requires  to  select  at  most  one  item  from  each

of
 
n
 groups  (group i has

 
mi

 
different

 
items).

 The  amount  ;:ig･ of  each  selected

item  is mea$ured  by  a  real  nuinber  between  O and  1.

     For  example,  suppose  that  there  are  n  different  types  of  space  foods  to

be
 
loaded

 
on

 a  
satellite.

 There  are  mi  different  brands  in  each  type,  and  at

most  one  of  them  is  $eleeted,  where  each  brand  has  its  own  weight  and  value

 (measured by  a  real  number).  Our  problem  ts to  decide  types,  brands  and  their

amount  to  be  loaded  on  a  satelLlite  so  that  the  total  value  is maximized  under

the  total  weight  constraint.

     Althovgh  this  probleTn  has apparently  not  been  treated  in the  literature,

a
 

discrete
 
version

 
with

 
the

 
addittonal

 constraint  xtg･--O  or  1 was  investigated

by Chanclra,  Hirschberg  and  Wong  [2], and  Nauss  [16]. As  we  shall  see,  some  of

their
 
results

 
are

 
extensible

 to  our  problem.  In case  of  mi=2  for  every  i, the

problem  P  becomes  a  special  ease  of  the  complementary  programming  problem  [5].
Our  ,ftrst rnotivatton  was  to  use  P  a$  a  relaxation  problem  to  obtain  upper

bounds  in  a  branch-and-bound  algorithm  for  the  general  eomplementary  program-

ming  prob]em.

     It  is  emphasized  here  that  the  multiple-choice  constraint  (1.4) (with m.>

                                     t
t

1)
 

and
 
the

 
upper

 
bound

 on  xtg･ in (1･3)                                       are  crucial  from  the  view  point  of

computational
 

comp.lexity,
 

since
 P  can  be easily  solved  if mtsl  for  t=1,2,･･-,

n
 (then P

 
ls

 
the

 
ordinary

 
eontinuous

 knapsack  problem)  or  if  xij  is  only

bounded
 
below

 (then an
 

opttmal
 

solution
 is given  by xTg-.=blatTgn  where  xi･t.+ 

haS

t The  particulaT  value  1 of  the  upper  bound  does  not  lose  generality  since

  Ofxig･-<dig･ can  be transformed.  
to

 
OSXtg･"-1

 
by

 
letting

 
Xig･=xtg･/dag･･
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the  maximum  cig･!aig･).  In the  above  general  setting  (even if mi;2),  the  multi-

ple-choice  knapsack  problern is  known  to  be NP-complete  [9]. The  NP-complete-

ness  strongly  suggests  that  there  exists  no  algorithm  which  alwsys  runs  in

computation  time  bounded  by  a polynomial  of  the  length  of  input  data,  t.e..  n.

m  and  log  b. (For further  irnplication  of  the NP-･eompleteness,  see  [1] [12] '

for  example.)

     To  avoid  this  computational  difficulty,  we  propose  two  approxiTnate  algo-

rithms  in Seetions  5 and  6, aEter  discussing  sorne  properties  of  the  LP  (Linear

Programming)  relaxation  P (i.e., P  with  constraints  (1.3) and  (1.4) replaced

     
int

               .
bY

 
OSg..EIXig･<-1.

 
Z=l,2,･･･,

 
n)

 
and

 
its

 
dual

 
P
 
in
 
Sections

 
3-4.

 
These

 
approxi-

mate  algeritnms  run  in  po]ynomial  time,  and  their  performance  seerns  to  be

extremely  good,  As  repor'ted  In Section  7, for  exampte,  approximate  solutions

within  O.OOI%  of  the  opti.mal  
'values

 are  obtained  in  less  than  one  second  on

FACOM  230160  for  preblems  with  n=1000  and  
n7t=2

 for  every  7- which  are  randomly

geneTated  from  the  untform  dii:stribution,  This  shouldi  be  s{Jfficient  for  prac-
                                                                  '
tical  purposes.

     In  Section  8, we  then  eonstruct  a  branch-and-bound  algorithm  for  obtain-

ing  exact  optimal  solutj.ons,  by  making  use  of  the  LP  relaxation  P and  the

above  appreximate  solutions.  Its  computational  re$ults  are  also  good  as  re-

ported  
in

 Section 9. For' example,  problems  with  n=500  and  rni=2  for every  t,

which  are  randomly  generated  E,rom the  uniform  distribution,  are  solved  in  less

than  O.2  seconds  on  FACOM  M190.  The  computation  ttme  seerns  to  be  O(n  ].og n),

as  opposed  to  the  NP-completeness  result.  Therefore,  we  also  test  highly

structured  difficult  problems,  The  computation  time  for  these  problems  seems

to  grow exponentially  with  n.

     In  conclusion,  we  may  say  that  the  multip].e-choiee  knapsack  problem  is

rather  easy  in  the  sense  of  the  average  computation  time  (not the  worst  case

time),  among  a  variety  of  NP-complete  problems.

2. Some Simplification  of  p

     In  the  definition  of  P  in  Section  1, it was  assumecl  that  a･.20.  This
                                                             tJ

loses  some  generality  of  the  problem,  but  tt  is  sattsfied  in  most  cases

practically  encountered.  We  uow  give  seme  further  assumptions  which  clo not

lose  generality  but  simplify  t/he subsequent  discussion.

     First  it can  be  assurned  without  loss  of  generality  that

(2･1) etJ･>O,  t=1,2,..,,  n,  J'--l,2,･.･, mi,
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since
 
eig･<-O

 
implies

 
that

 
xig.=O

 
can

 
be

 
assumed

 
in

 
optimal

 
solutions

 (thus arig.

cam  be deleted  from  the  formulation  of  P).  Also

        . ail2ai2i･･･2aim.

 (2.2) z

             Ctl)Ct2)･･･>-Cam.,  i=1,2,...,  n

                           z

does  not  le$e  generality.  To  prove  this,  first  rearrange  the  second  sub-

scripts
 (tf necessary)  so  that  ailigi2)...2aimx  holds･  Assume  aik)aik+1,  Cik`

                                           u

%k+1, X'ipt=or
 (>O) and  

::'ak+1=O
 hold  in  an  optimal  solution  x'.  Thep  the  new

solution  ac"i:k=O,  x''1:k+1=a  (all other  variables  do  not  alter  their  values)  

'also

sattsfies  constraints  (1.2)-(1.4), but  its  objective  value  of  xik  and  Xik+1  iS

             CtkX"ak+Cik+IX"ik+1.=etk+la

                          >C..s
 kor=CikX 

'ik+%k+IX

 
'ik+1

 '

Thts  contradiets  the  optimality  of  x'.  Thus  a:ik=:O  aan  be  assumed  and  xik  
can

be deleted  from  P.

     The next  assumption  is

             
etm.

 
eim,-l.

 
ea

(2.3) 
t>

 
t->...>

 
,
 t=1,2,...,  n.

             
aim.

 
aim.ml

 a.
                t -.  tl

(IIere we  use  the  conventtvns  that  g>gr for  any  c,  eS,  a>O,  and  g2gt if and

 only  if e  }e'.)

     This  also  does  not  lose  ge.nerality  as  proved  below･ Let  aik}ZZtk+1  and

07;kiCik+1,  and  assume  that

             
Cik

 
Cik+1

                > .

             
aik

 
atk+1

If an  optimal  so,lution  x'  satisfies  x'tk=O  and  x'tk+1=a  (>O) consider  the  new

solution  x'' with  x'"ik=(aik+1!atk)a  (=or if  atk+lmaik=O),  x"ik+1=O  (all other

variables  do  not  alter  their  values).  It  is easy  to  show  that  x"  is also  fea-

sible  in  P  and  has  a  greater  or  equal  objecttve  value.  Thus  =ik+1=O  can  be

assvmed
 
without

 
losing

 
all

 
optiTnal

 
solutions,

 
and

 
hence

 
xtk+1

 
can

 
be

 
deleted

from  P.

     As  a  result  of  (2.2), zge  can  assume  without  loss  of  generality  that

              n

(2･4)
 iElail 

>b
 ,

Sinee
 
otberwise

 
the

 
solution

 eclix21"...==nl=1  
and

 xtJ･--O  
for

 g'>l is
 trivially
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 optimal.

      Now  we  give  a  simp].e  prol/ierty  of  optimal  solutions  of  P.

      Theorem  2.1. P  (defined by  (1.1)-(1.4)) has  an  optimal  solution  such

 
that

 
all

 
variables

 
.ny.'ig-

 
except

 
at

 
mqst

 
ome

 
satisfy

 
XtJ-=O

 
or

 
1･

      
Proof:

 
AssuTne

 
that

 
an

 
o'pttmal

 
solution

 
x'

 
satisfieS

 
X;J･=a,

 
Xi,J･,=B,

 
where

 
O<a,

 B<1. Assume
 (･eiJ.!"iu.))-'(ci,J.,!ai;,J;,) 

without
 
lo.ss

 
of

 generality.

 Consider  the  new  sol-tion  x":  

'

              
x"iJ--I.

 
x"trJ･,:=i']'-(a2:J･lai,J-T)(l.-;v)

 
tf

 
B-(a2:u･la7:,J･,)(1-ftr)?O,

              
xrrtJr-u+(aiT,itlaiti)B,

 x-'i,J･,=O  otherwtse

 (all other  variab,les  do  not  alter  their  values).  x"  is  feasible  in P  and  has

 a  greater  objective  value,  as  easily  proved,  a  contradiction.  O

      This  suggests  that  our  prob!em  P  dtffers  only  slightly  from  its  discrete

 version  P' discussed  in  [2], Sinse  P  seems  computationally  easl'er  than  P'  as

will
 be shown  in the  subsequent  discussion,  it  may  be  possible  to  use  optimal

 solutions  of  P ta  construct  approximate  solutions  of  P'  or  to  obtain  upper

bounds
 in branch-･and-bound  algorithms  for solving  P'.

3. LP Relaxation  of  P and  Its Dual

     The  LP (Linear Programming)  relaxation  P of  P is  introduced  in  this  sec-'

tion  tn  preparation  for  the  subsequent  discussion.

                              12 Mi

 
(3.1)

 
P:
 

maximize

 
:=

 
,;il

 
u..-ZletJ'Xig'

                              n  
Mi

<3.2)
 

subjeat

 
tO
 til  g.-Zlaig'Xig'M`h

                              
mi

(3.3) Ex..gl. 2;=1,2,...,n

                             g'=1 
zg

(3.4) ;:ig･->O.  t==1,2,･.., n,  j'=1,2,.-･, mi.

This  is  an  LP  problem  vaith  a  feasible  region  greater  than P.  As  wtll  be  shown

in
 
Sectton

 4, an  optimal  solut/ion  of  P can  be easily  obtainecl  (without using

the  simplex  method)  by  consider/ing  its  LP  dual  D.

                              n

(3.5) D: minimizev=  rp.+bx
                             .'] 1
                             z-/=1

NII-Electionic  Libiaiy  
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 (3.6) 
subjeet

 
to

 vi)eigJ-aig･X,  t=1,2.･･., n,  g'--1,2,･.., mi

 (L'.7) pt20,  21=1,  2,...,  n

 (3.8) X20.

   , In  the  rest  of  th ±s  section,  we  give  an  algorithm  to  obtain  an  optimal

solution  of  D. Let  X be  fixed  to a  certain  nonnegative  value,  and  denote  the

resulting  preblem  by  D(.X). Stfice each  vi can  be  
independently

 
determined,

 
the

optimal  value  v(1)  of  P(],) is  gtven  by

                    n

(3.g) D(x) -

 i ilt(X)+bA
                    t==1

(3.10) Jt(X) -max[O,  max{diig･-aig･Xlg'=1,2,･s.,  mi}],  i=1,2,...,  n.

Thus  D is  solved  by  finding  a  X that  minimizes  v(X).

     Now  note  that  two  lines  (in X-v  plane)

             v=c･･-a･･X
                 zg  

'c
 u"

(3.11)

             
V
 
=Cigi-1

 
-'
 
atgLIX

eross  at

(3･12) x..-0iJLI-Ctg'  .

                 
aiJ--1

 
-aig･

By  direct manipulation,  it follows  from (2.2) and  (2.3) that  coefficients

(3.12) satisfy

,3.i3) :l.l,>-i}1.f.ii>:XI::･l-･
It can  be  further  assumed  that

              
ctl

 
-ci2

 
L'i2

 
-ci3

 
eim

 .-1 
-Cim.

                                           t z

(3'14) -r`
 

`'''`a.
 .a.  , i=1,2,''',n

              
aa-at2

 
ai2-ai3

 
zmi-l

 
zmi

(the same  cenventions  as  stated  aEter  (2.3) are  assumed)  as  far  as  optimal

solutions  of  D (and hence  P)  are  concerned.  To  show  this,  let

(3･is) :4.-ilC.4"I s:;'ejf2I2"'ii

                     zJ  zg-2                                  z"-1               zc-1
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                                    '                                    '                                     '                                   '                                    tt
hold  for  some  i and  gJ. Then  by (2.2) anq.  (2.3)
                                     '                           '

             
max{ci"J-ai"･X,

 
ct,i-2-aig･-2A}

 
ICig･-].-qig･-IA

                  t t                          '
always  holds  as  illustrated'in  Fig.  1. This  Tneans  that  the  constraint

V2;)Cig`.1-aig･-IX  (i･e., COeffiCientS
 
eigJ-1,

 
aig･-].)

 
can

 
be

 
deLeted

 
from

 
D
 

since

Ji(X)･<eiJ･-1--atJ--IA 
never

 
holds

 
for

 
feasi'ble

 
pi:

 
and

 
nc.

 
Deleting

 
these

 
dummy

eonstraints  and  adjusting  subseripts.  we  ,obtain D satisfy.ing  (3.14),

              v

c･･
   -･2 IJ

Cij-1

  
CiJ

                        
X

          
aiJ･"1'aij

               
Cij-2-Cij-･l

               
aij-2-aijNl

               Fig. I. I[11ustration  of  lines v='c-aX  when  (Ci"J-1-CiJ･)11

                       (aio'-1-aig')`(etg･-2-eij-1)1(aiJ･-2-atj-1) 
holds･

    The  property  (3.14) was  also  proved  in  [2]. However,  their  proof  is more

complicated  since  [2] does not  use  the  concept  of  D. It should  also  be noted

that  (3.14) cannot  be  geneTally  assumed  in  F. This  sometimes  introduces  some

complication  in  algorithms  for  solving  P  (not P).
  '

    Now  let  D  satisfy  (2.1)-(2.4) and  (3.14). Define  g'iQ)  for  X)O  as

follows  (see Fig.  2).

             g'i(x)=1  if OsA<(eirei2)!(aiia･i2)

65
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       (3

        (3

Reseaich

.16)

.16)

Society  of

c"

Ci2Ci3

v

Japan

     Z  thatuki, n Hl]segawa, K. Tkranaka and  X Iwase

-g'-1
 or  g' tf X=(ciJ･-1"Oiu')!(aiJ'-1-atg')

 t i

      
if

 J)3 
and

 (CiJ･-2-eig･-1)1(aigsN2-atgJ=e"  
-1

       
A<(t'rigJ-i"aiJ･)1(aiJ'-i'aig')

 
(Or

 
Cimt

=mi  or  co if X=:c･ fa･
  t zm.  zm,
                  tz

to  /if e.  !a. <A.

        zm.  zrn.
          zz

Cil-a

  il

c
 i2a

 i2

Ci3maa

  i3

  )<-1

la
  im

x

i

   'if

 g'-1wr7i)

L--L---L-

          ji(X)- 1 2

                   Fig. 2.

               '

Then  obv ±ously

(3.17)
 

Vi(A)=Ctgii(x)

holds,  where

(3.18) et.==ai.==O

is assumed  for convenience.

           3

Illustration  of

(2.2), (2.3), (2

-a,,;g･i(x)x,
 

i=l,

  This  gives

j.

2

            co

i(X) and  llt(X) under

4) and  (2.14).

)...)  

'n

       .
assumptlons
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                   n

(3･i9)
 

J(A)
 

;iii

 
(C'tg'i(x)-atJ'i

 (A)X) 
+bA

and  henee

(3.2o) gf ==b-£,ai,iie,)

holds  except  for  the  points  X:;fi-im.faim. and  X=(ctg･-1'-CiJ-)1(at,i-1-'aig･) at  Whieh

- tz
     is not  differentiable.v(1)

    First  let  X=ca (i.e., sufjiiciently  large)  and  g'i(A)=co for  all  i, then

             dV

             
'd'ff

 
x..;b

 
()O).

Then  decrease  pt eontinuously  to  A=O.  From  (3.20) and  the  definition  of  gi(X),

we  see  that  dvfdX decreases  by the  amount

             a･  when  1 crosses  e.  !a.' ,
 and

                . zm.  tm.              zm
               z tz

             aiJ･-1-aiu･  (20) when  
X
 arosses  (ei"･.1-ei"･)1(aig+-fatJ･).

When  X=O  is  
'reached,

(3.2i) g{ -b-S  Cii,  <O

                x==o                        z=1

holds  by  (2.4). Thus  v(X)  ehanges  as  illustrated  in Fig.  3. We  want  to  find

X which  minimizes  v(X),  i.e.,  A=X  such  that

                            dv             dv
(3･22)

 dx x.x+o)O  
and

 dx x.x-oSO.

    To  find  thts  X, first  compute

              
etm.

 
etm

 .-1 
'e
 
ctm.

 
ct2

 
-ci3

 
ctl

 
-ci2

                z  t  z

              a.  ' 
a.

 :a.  '''',  , ,i=1,  
2,...J

 n,

              
tmi

 
tnTi-1

 
tmi

 at2-ai3  ail-ai2

and  arrange  these  in  nondiecreasing  order,  i.e.,

(3.23) BI S 82 S･･L
 
f-
 BN ,

where

                n

(3.24)
 

N-iE,.mi･

67
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  i(x)
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                            x

                         B] B2･ B3-X  B4 Bs

                     Fig. 3. Zllustration  of  v(X)  and  X.

Note
 
that

 
Sk

 
is
 

of
 

the
 
form

 
etther

 
Bk"et,ni/Climi

 
Or

 
Bk"(eij-ieig')1(aig'-1-aig')'

     sorting  requipes  O(IV log N) computation  time  ge.g., [1] [13]). The  or-Thisdered

 
list

 
contatniri'g

 Sk' s is
 denoted  by  L.

to
 
de::IIetllSiS:II.OWi

 
g
 

aigOrtthm

 
obtains

 
an

 
optimai

 
soiution

 
of

 
D.
 

v,
 
is
 
used

                      '

     A]gorithrn DVAL(P) 
'

     
Dl : Obtatn  list  L={Bl,  32,..., Bm}, where  Bk' s are  sorted  as  in (3.23).

     D2 : v'+b,  g'i--o for  t=1,2,...,  n,  1+ilV.

     D3 :

             v,.I
 

V'-aimi

 
if
 
Bk=eimiiaimt

                  [ v'-'(aig･-i-aig･)  if 8k=(eig'-i-aag',)/(aiJ/-i-atj)

         .
        gt  

K.

        (Other

D4 : Ii v'.<o,

  m
   i

  g'-1

 g'ii s

go  to

if

 i

de

D5

f

;

Bkr-eim.Iatm.
      zz

 Bk=(%g'-1-C

not  change)

 else  return

ig')/(dag'-i:dt'g')'

 tso D3  after  letting  k+k-1.
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     Ds : ft+z, X+Bn
                                       '
    '

                   v'+az:m.  i't' Bk=Cim.lazT-m.

             e+

     . v'taig:..i  
tf
 BR=(cii･-rcig-･)1(aii'-i-"ig:),

            D .and  halt.

     
Deno,te

 g'i's 
computed

 
by
 
DIJAL(P)

 
by
 J'i(it). 

Th.en'ji(k)
 

and

 
e
 

satisfy

                                                     '
  . t/t

             g'i(k)=1  
if

 
ks.p

 
where

 Bp=(eaiCi2)/(atl-ai2)

                  
-g'-i

 
if

 p<)'Esq where
 3p=(cig･-2-Ctv'-i)1(aij-2raiJ'-i)

                        
and

 B,7;(eaJ･-1-etg･)1(aag--faig')
            '

(3.2s) 
nyT7i

 
if
 
iP<k'iq

 
Where

 
Bp=(etmi-iffci,nt)!(atmi.i-aimt)

 
and

                       
sq=eim:,;lain7t

                  
..

 
if
 p<R/ 

tohere
 
Bp"ei,rrilairni'

                b 
==b-tli,aig-i(R),

 
where

 
I
 
is
 
defined

 
by
 
Bk=cl･.I!al･mi

 
or

                      Bft=(elg--1-e7g.)1(alg--1-alg-･), g"-l=gl.(k).

     Theorem  3.1. Let

                n

             J-.Z fit(E)+ibX
               z=1(3.26)
              -r  -

 ･ Vt(k)=etg'i(R)-at,ii(R)X,  
i=i,2,･･･,

 
n,

where  X'and g'i(2) are  obtained  in DUAL(P).  Then  (X, lli(k), t=1,2,...,  n)  is

an  optimal  solution  of  D and  v  is its  value.  Furthermore  DUAL(P)  runs  in

O(N  log  ru) time.  ･

    ･ Proof: The  optimal"zy  is an  obviou$  coneequence  of  the  above  argument

            - -n
and  that  g'i(k) of  (3.25) can  be  regarded  as  g'i(X) of

 (3.16). To
 

show
 
the

 
time

complextty,  note  that  D5  is  eventually  reached  $inee  v'<O  holds  for  k=1 by

(3.21). Now  Dl  requires  O(ru ].og PJ) time  for  sorting.  .The loep  D2-]4  requires

at  most  O(ll) time  since  this  ti/s essentially  scanning  N  (or less)  numbers  BN,

BN-1,･･･, fi1 in
 
this

 
order.

 D
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               -- -

  , Although  ji(k) of  (3.2S) does  not  contradict  ga(X)  of  (3.16) for
 
X=X,

 
we

note  here  that  other  choiees  may  also  be possible.  (Note that  (3.16) does not

define  g-i(X) uniquely.)  In  particular,  if some  Bk's take  the  
same

 
value,

these  may  be numbered  a'rbitrarily  as  far  as  (3.23) is satisfied.  For  each

numbering,  DUAL(P)  may  give a different  set  of  g'i(2)'s.  The  optimal  so!ution

of  D of  Theorem  3.1  does  not  depend  on  such  numberings,  but  the  optifnal  so-

lution  of  P  constructed  in  Section  4 does  depend.  A modification  of  DUAL  is

therefore  considered  in Appendix  to obtain  a  numbering  whieh  tends  to  yield an

optimal  $olution  of  P  more  useful  in  the  algoritlm  for  solving  P.

'

4. Construction of  en  eptimal Solution  of  P

    An  optimal  solution  x  of  P is  constructed  from  an  optimal  solution  of

of  Theorem  3.1.  Consider  the  following  two  eases.

     (i) BE=e7m.lazm.  in DVAL(P):  Then  let co=(xll,  x12,.･･,  xnm  ) be given
              tt  n

             
Mtg'i(R)==1,

 
for

 
ill

 
such

 
tha't

 
g'a(n)<co

                       '

             IIm.=-e/aT,n. (b is given  in (3.2s))(4.1)
               e t

             th..rO for  other  i and  i
              tg

    (ti) Bk=(ei･J"-l-%･J-'･)f(ai･g-･-1-%･g-･), where  g-'-1=g'-i(E):

             - -

             
Xig･i(k)=1,

 
for

 
ifi

 
such

 
that

 
ga(k)<ca

(4.2)
 thl]-ct, rellr--l=l-or

             - - -
             x.iO  for other  t and  g,
              zJ

where

(4.3) a=(alg-･-i-e)/(a",g-'-.1'alJ')'

    Theorem  4.1. th defined  by (4.1> or  (4.2) is an  optimal  solution  of  P

5 can  be  eomputed  in  O(ru) tirne  from  the  optimel1  so!ution  of  P of  Theorem  3

     Proof: By  the  duality  theory  of  linear prograTurning,  it is sufficient

show  that  (4.1) or  (4.2) is feasible  in  P  and  satisfies  the  complementary

slackness  condition  with  respect  to  the  o'ptimal  solution  of  b of  Theorem  3

(e.g., [3]).

D

by

..Lto

.1
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     (a) Feasfibility.  We  first show  tbat

             O<eEa-T holds  
'Ln

 (4,1), and
                 ZM-
(4.4) t

            
a7,-t･<eg-ais-."l

 
hold$

 
in

 (4.2).

In  the  first  case,  O<e- follows  sinee  v'>O  and

                                         '

             
"'=b-i;e"ig"i(k)

 
(=:E

 
bY

 
(3･2S))

hold  for  k=E+1 (note gLt(k)=co), Efal･m. is also  obvious  since  
for

 
k=k

                                  z
                  n

             
v'=b-t.Ziafg'i(k)

              
=b-tllaig･i(k)-al･.I.=b-al.i(o

hold  in  Step  D4. The  second  relation  of  (4.4) can  also  be  sirnilarly  proved.

(4.4) then  implies  that  c  satlsfies  (3.3) (3.4) of  P.  Next  note  that

             a-v x"  =e  in  /(4.1)

                 zm.              tm.
               tt

             "i'g=-IMI'g-"--1+as'g-'Il-l3･=al･j'･-1(1-or)'euti･g-･a==e (by (4･3)) in
 (4.2)

hold.  Thus

              n  Mi

(4･S) i;i "..Eiai,ix-ijLmb+3iatg･i(k)=b

and  (3.2) of  P  is  satisfti.ed.  Therefore  m  is feasible  in  P.

     (b) Complementary  s].ackfiess.

     (b-1) For  each  positive  
tdual

 variable  
X
 

or
 vi,  

it
 
is

 
shown

 
that

 
the

corresponding  prirnal condition  is  satisfied  by equality.  First  X>O  holds  and

the  corresponding  constraint  1:Zaig･xig･<mb is satisfied  by 
equality

 as  
shown

 
tn

(4.s).
 

For
 
ili,

 
ui(k)>O

 
irnpltes

 
g'i(k)loo

 
(see

 
(3･17))

 
E}nt

 
patg･i(n)"1

 
by

 
(4･l)

          
Thus  Zxtg･<Ll is

 
sat.,tsfied

 
by

 
equality.

 
For

 
t=z,or  (4.2).

             va(k)"clm.-azTm..X'O
                     tz･

holds  in  case  gf (4.1) since  .X=eim.lai.m., and  ptw(k)>O  holds  in  ease  of  (4.2).
                               zt  

-
In the  latter  case,

             mi

             i.E,E}Ii-5ilg"-i'bil:i=(i'"or)"ct;i
and

 
Zxzg-<-1

 
is

 
satisfied

 
by

 
equaltty.
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      (b-2) For  each  pos/itive primal  variable  x..,  it is shown  that  the
                                              tg

 ii:idre.SaP.O:ding 
dUal

 
CO"Straint

 
is

 
satisfied

 
by
 
equality.

 
For

 
Wi,

 
5tg.i(R)=1

               
pi=vi(k)=cig･i(it)-ai"'i(k)X

                   '

 holds by (3.26). For i=-l, diim.>O holds  in (4.1), and

                    . z .'
                --

               Osu-,(k)tte-i･..-ai･,,.X=O 
'
 

'

                         zz                                    '

 
Finally

 
for

 
i=7'

 and  (4.2), 513･-1 andi  EE=zi･ are  both  positive.  But

              P-i(k)"e7.･3･-1-a-i3･-IX (bY "'-i(-k)-7'-l)

                   
=ee･.1-ai･s･-,1(e-is･-].-ci-J-･)1(al･i･-1-a-ii･)

                   =al=-a-=-X.  
'

                     tg  zg  ,

 Thus the  corresponding  eonstraints  are  satisfied  by  equality.

     The  result  for  the  computational  complexity  is  obvious.  O

     
A
 
simtlar

 optimal  solution  of  P is  also  considered  in  [2], without  tising
 the  concept  of  D.  The  next  theorem  is  an  obvious  eonseque'nce  of  the  above

constructien.  
'

                            '

     Theorem  4.2. (a) The  optimal  solution  i} of  ii given  by (4.1) or  (4.2)
either

 satisfies  the  multiple-choiee  constraint  (1.4) or  violates  (1.4) for
          .=
only  one  z't.  

'

     
(b)

 
x
 

satisfies
 (l.4) if

 
`:
 
is

 given by (4.1) (i.e･, Bk"clm.lai･m. holds in

DUAL(P))
 

or
 
if

 
or=O

 
holds

 
in

 (4.2) (t.e., i--al.g--.-1). 
t
 

t

 
'

     (c) If  i does  ]ot  satisfy  (1.4) fer i=i, only  two  suceessive  variables

Xla.-1
 
and

 
Xt=g-

 
asSume

 posttive  values  among  g'=1,2,...,  mi.  D

     In other  words,  EE is very  close  to  an  optimal  solutton  of  P, and  hence  it

may  be effeetively  used  to  solve  P.

- 
In

 
view

 
of

 
Theorem

 
4.2

 (b), it
 
is

 desirable  to  have  Bk=C;rn.!at-･m. Or

e=alg=-1
 in DUAL(P)  if possible.  Since  an  arbitrary  numbering  ig posgible  for

theSe  Bk' s with  the  same  valtte.  as  mentioned  at  the  end  of  Sectien  3, a  clever

gh:g
'

::.,:. [.:,::"Z:rk::.::. I,:e::;,: l,: SI::gm.z(a,L:i.;;.::: l･,,-ii,.F::.i:iZ,l. ::g:Se'
experiment

 
reported

 in  Sections  7 and  9 gre  done  with  this  rnodified  algorithm.
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                                      '

5. 4pproximate Solutions by Rounding

     Let  th be  an  optimal  solution  of  P obtained  in  Section  4. If  ii satisfies

the  multiple-choice  constr.a.  tnt (1.4), E5'is also  an  optimal  solution  of  P.

Therefore,  assume  that  x  does  not  satisfy  (L4),  i,e.,

 (5.1) ipsg--1, Xiy'O,

wheye

                    '

(5･2) Sk -

 (c7g-･-l 
-elgh)f(a7g--1

 
-alo.),

 g'--1-a'", ("k),
                                                           '

holds in  DUAL(l')  (see Theorem  4.2). (1.4) is satlsfied  foT  all  t exeept  i=l.

     From  this  5}, we  construct  the  following  solutions  e(1)  and  ti;(2) feasible

in P.

                      '

              xz(･gl･)=EI}ag･, for iitl, g'=1,2,･-･, rni

(5.3)

              xigi-)=i,  xigi･)=o  for g'lg".

   
'
 xE･g2･)±5}ag･, for iVl, gL-1,2,'",  mt

(5.4)              '

   , 
xig-2･Z,=bla7g--i}  a:Eg2･);o for  J';J-'-i,

where  

-e
 is  given  by (3.25). Their  objective  values  are  respecttvely  given  by

(s.s) 
a(i)=EEcig'xE'gi')=tlleitii(k)+CIg"

(s.6) 
z(2)orEZcig'xi['g2')=i/ileig'i(k)+i(CIJ'-ilaig-'-i)'

     The  better  of  a:(i)  and  ar(2)  is caned  the  apppoxtmate  sozutton  hy round-

ing and  denoted  x(R).  Its  objeetlve  value  is

(s.7) g(R)=max[a(1),  a(2)].

     Theorem 5.1. Assume  that  the  optimal  solution  te of  P does  not  satisfy  .

(1.4) (i.e., Sb is gtven  by  (4.2)). Denote  the  optimal  value  ef  P  by  aO.  Then

the  approximate  solutton  by  rounding  satisfies

                                        '

(s.s) a(R)lzO>y2.

                                             '     '

     PreOf: Since  the  LP  optimal  value  E of  P satisfies  E->zO, we  show
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z 
(R) 1-a >v2

(5.9)

Next  note

instead

that

Z thaniki, T Hdsegawa, K. 7ienxnaka andt  IAase

of  (5.8). By  (4.2), 2 is  given  by

'Z--ifE..eig'i(k)+eE･/J-.i(i-or)+olg.a-･

              il.teiJ'i(k))O, 
ei3>cig"a

 
and

              e(e.H                     la""                                  (e-a--)1(a-･-i                           )>c.-.                                               
-a")

                   -1                                -1                         -1                                             -1
                              zg                 zg                       zg                                      tg                                           zg                                                 tg

                            
='Clg--1

 (1'a) .

These  and  (5.5) (5.6) (5.9) imply

                          '

              z(1)+g(2)>2,

and  hence  :(R)=max[z(1),  z(2)]>2/2.  g

     Theorem  5.2. The  bound  given  in  Theorem  5.1  for  the

by  rounding  is sharp.  In other  words,  there  exists  a

problem  P  satisfying

              z(R)lzOs(v2)+c

for  any  e>O.

     Proof:
             

consider
 
the

 
Eollowing

 problem  P with  n=2,  Mlem2

              eu=1,  c12=y,  all=1,  a12=6

(S･10) e21tr1,  c27.=1--2y,  a21=2,  a22=1-6

              b=y

where  y and  6 satisfy

(5.11) 1>>y>>6 >O,

For  these  coefficients,  we  have

                  C21 ¢

22 2y e22  1-2y  ell-c

              
Bl=

 a21-a22"  1!+6`82= a22=  1-6`B3=  an-a

                           
CIL2  Y

                      
<

 
B,

 
=Eil.E

 
=E

 
'

Applying  ]UAL(P)  on  this  set  results  in

          .
    approxlmate

rnultiple-choiee

=2.

121-Y

!-6

solution

knapsack

12
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              Bn-B3-llg  (-x')

              i-l, g'1(k)=1,  g'2(k)=co                                     (by (3.25))

              e=b=y,  or=(1-y)/(1--6)  (by (3.25) and  (4.3)).
                                    '

xis  given  by  (4.2) as  follows  -

              
Xll=1-ct=(Y-6)1(1-6),

 x12=or-(1-y)f(1-6)

(5.12) X21=X22=O

              
-2=(2y-6-y2)1(1-6).

x(1)  and  x(2)  are  now  given  by  (s.3) and  (5･4)･

               (1)                       (1)                               (1)                                           (1)                                   (1)-
              

Xll
 

=O,

 
X12

 
=1,

 
X21

 
"X22

 
-O,

 
Z
 

=Y

               (2)                       (2)                            (2)                                 (2)                                        (2)
                                   =O,  n
              

Xu
 

=Y,

 
X12

 
=X21

 
=X22

                                           
=y･

                                           '

Fi.nally  the  optimal  solution  xO  of  P is given  by

               oo
             Xll ±X21=O,  x22=1,  xS2=(y-6)/(1-6)

              aO=(2y+2y6-2y2-6)1(1-6)

(the optimality  is  checked  by  exhausting  all  cases).                                                     Thus

                                                         '

              g(R)lgO-(y-y6)!(2y+2y6-2y2-6)

                            .- 1
                                      2,
                     v+O,  61y  T-  o

proving  the  theorem  statement.  D

     Note  however  that  the  theoretical  bound  112  is  attainable  only  if

t;iCtg'i(ft)tO 
holds

 
in
 
fe.
 

In
 
most

 
cases,

 
especially

 
when

 
n
 
and

 
b
 
are

 
large,

i}ctg-i(k) 
takes

 
rather

 
large

 
value

 
and

 
fi(R)1fiO

 
becomes

 cleser  to 1. This

tendency  is  actually  confirmed  in  the  computational  experiment  in  Section  7.
                                                                  (R)
     Finally  we  mention  the  computational  complexity  for  obtatntng  x  .

Since  (S.3) and  (5.4) ean  be computed  in  0(N) time  from  :, the  entire  process
            (R)
               from  a  given  P  requtres  O(ru log  ru) time.  The  sorting  time  into  eompute  ec

Step  Dl  of  DUAL(P)  is dominant  in  determining  the  total  eomputation  time.

75
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  '6.
 Approximate Solutions by Breadth-1 Search

      i                                                           '

     A  higher  order  approximate  algorithm  called  breadth-K  seareh  is investi-
                              '                                       '
gated  in  [9], as  a  generalization  of  the  approximate  solutton  by  rounding.
 'For

 a  given e>O,  the  selection  of  an  apprepriate  K  ean  yei,led an  approximate

solution  x(B)  with  its  objectitve  value  g(B)  satisfying

              g(B)/gO>lme,
                    '                                                                     '
in  computation  ttme,bounded  by  a  polynornial  of  ru. In  thi$  secti'en.  only  an.

outline  of  the  approximate  algorithm  by breadth-1  (i.e., K=1)  search  is  gtven.
                               '
Its

 computational  results,are  also  included  in Sectlon  7.

                                                       (3)
     Fir,st we  introduce  the  third  approximate  solution  sc of  P,  in  addition

to  x(i)  and  x(2).  Assume  that  
'
 ･

                                                       '
(6.1)

 
BniA==(ezg"-iClg-')1(al3-1'ali)

holds 
in

 
DUAL(P).

 Al$hough  asrg-･-11alJ-:-1  is not  stored  in  list  L of  DUAL(P),  it

is inserted  into L and  3's in L are  renumbered  so  that  (3.23) is  preserved.                         '   'Let,
 

.

              Bkt-X'-clu.-11al;.,-1 (>X)
(6.2)

              
A'=i;,.ai`g'i(k,)

 
(`b),

where  g'i(k') is given  by  (3.2S) with  k replaced  by k'.' Then  x(3)  ts obtained
                                                                            '
as  follows:

                   If A'+a
              (D lg-･-].2b, 

then

                  xE･g3･;. (k,)mi 
for isJt', xE･g3･)=o for afe, g\g'i(k')

(6.3) at£.3Zl
±(b-A")lalg--1, x £･)=O  for J'f3-1

                   Z(3)=il £ tj'a(k')'+Clg-'-i(h'A')/al"'-i'

                                            '

              (ii) If A'taig".1<b,  then  x(3)  is not  aomputed  and

(6･4) z(3)=-oo

                                                                     '

 (3)x
 obtained  in (6.3) is  obviously  feasible  in  P. It  is  the  LP  optimal  so-

lution･of
 
P
 
with

 
all

 
xig-,

 g'fJ"-1, fixed
 to  O. (The condition  A'talg.-1)b

guarantees  that  the  LP  optimal  solution  satisfies  condition  (1.4).)
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                                   (1)                                         (2)                                                 (3)                                                                (T)
           Finally,  let the  best of  x                                            and  =                                                    be  denoted  x                                                                   and  let                                      }x                                                   '

                     (T)                             (1)                                  (2)                                        (3)
       (6.5) :  =max[z  ,z  ,:                                           ]･

                               (3)
           In  order  to  cornpute  x  , it ts neeessaTy  to  have  X' and  A' of  (6.2)

       
calculat'ed

 
for

 
all･.ci;j-1/aiJ･-1

 (note that
 

ciJ･-Yaig･-1
 aFe  not  stored  in L for

      
P).

 
This

 
can

 
be

 
done

 
in

 
0(IV)

 
steps.

 
however,

 
by

 
storing

 all  eig･.11aal"･.1

       
implicit].y

 
together

 
with

 S.1, B2,...,31a of  (3.23) when  list  L is prepared  in

      DUAL(P).  The  detail  is  omttted.  .

           The  approximate  algorithin  by  breadth-rl  search  first  obtains  the  LP  opti-u

      mal  solution  El} of  P. If x- is feasible  in  p, p is  solved.  otherwise  
c(T)

 is

      
calculated

 
and

 
a
 
new

 problem  
}"
 (xlg"-1=O) 

is
 generated,  

i･e･,
 

xt7i-1
 

is
 
fixed

 to

      
O
 
in

 
P.

 
The

 
same

 procedure  
is

 
then

 
repeated

 for P (xlg--1=O) until  the  LP

      optimal  solution  of  a  tested  problem  e beeomes  feasible  tn  Q. This  proaess

      eventually  terminates  since  the  LP  optimal  solution  of  Q is trivially  feasible

      
±n

 e if all  
IV
 variables  arig. are  ftxed  to O. The  best feasible solution  ob-

      tained  in  this  process  ts the  approximate  solution  obtained  by  breadth-1

                               (B)                                                   (B)
      search.  It  is denoted  by  x  and  its  value  by  a  .

           Algorithm APPRXBI(p}

           Bl:e+p,  fif-co 
'

           B2 : Obtain  the  LP  optimal  solution  M and  its  value  E of  Q (i.e., DuAL(e)

      is  executed).  If x  is feasible  in  Q, then

                
'
 g(B)+max[z,  E] '

      and  halt.  etherwise,  calculate  x(T)  and  its  value  a(T)  of  q and  let

                   fiemax  [g, 2(T)].

          
'
 B3 : e+Q(tht.ifO), where  Bk=(cig=1-elg.)1(azTgtml-a.TJ-) holds  in  DUAL(e).

      Return  to  B2. []
                         '

           As  discussed  so  far,  the  first a (i.e'., P  ) requires  0(rv log IV) time  in

      B2.'  If  we  treat  other  problems  in  the  same  manner,  the  total  time  is

      o(lv2 log rv) since  at  most  lv px'oblems  are  generated･  HoweveT,  q(:ri.g-･-1"O) can

      be more  efficiently  treated  by  judiciously using  the  data  and  results  obtained

      
for

 e. Denote
 
k,

 
X,

 v',  if'i, e  
obtained

 in  DUAL(e)  by  E(Q), X(Q), v'@),  g'i(q),

      
e(q)t

 
1"hen

 xTg=-, 1=O  is imposed  to  e,
                                             '

                        . %'u"-1-CIi 
Ct'gJ'.2'ez"g-`-1

                   
Bk(q)

 
'
 a.-TJ-･-ia7g"  

'

 
Bk'=

 az'g"-2La7u"-i
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(Bki does  not  exist  if  g-'-1=1) are  deletEd  frem  1]={Bk},  and  then

                  
a7

 :, - 2'c  
-z.
 
-si

             B2 
=

 
'
 
crn.

 -a"  
'

                   zg-2  zJ

is  usually  added  (if 3'-1=1, none  is  added).  It  is  easy  to  show

(6.6) Bk, `
 
Ba

 
<
 
B'k

 (e)

and
 
hence

 3k's located
 

to
 
the

 
right

 
of

 B-k' (e) 
in

 
I]
 
do

 
not

 
change

 
by

 
this

 
modi-

fication.  The  searah  for  k of  e(x'z:-g･-1=O) is then  resuTaed  frorn k=k(Q)+1  (i.e.,
the

 
one

 
loeated

 
next

 
to

 
the

 
right

 
of

 
B-k(e))

 
to

 
its

 
left

 
on

 
the

 
rnodified

 
list.

Namely,  letting

             k+k (e)+1

(6.7) V'W'(e)+(a-i
 3･-1-a-i 3J) 

'

             s'-i (k)fg'･ ,ii(k)+g'i(Q)  for ilt,

Algorithm  DUAL  is enteied  from. Step  D4  (V'>O helds  at  the  first  entrance),  and

exeeuted  until  D5  is reached.  The  result  gives an  L?  optimal  solution  of

a(XE･s･.1=O)･ The
 

computation
 
time

 
required

 
for

 
this

 process  sheuld  be much

less
 

than
 
that

 
required

 
for

 
solvtng

 e(x"i3･.fO) from
 
seratch.

    Strtctly  speaking,  there  may  arise  some  cornplication  in the  above  prDcess,

if some  variables  suppressed  from  11st  L  of  q due to  (3.l5) have  revived  as  a

result
 

of
 
deleting

 
variable

 
x-ii.-1

 
from

 Q. Some  adjustment  of  
L
 is then  neces-

sary.  Hewever  basically  the  same  procedure  is still  applicable,  and  the  run-

ning  time  of  APPRXBI  is  at  most  0(mru log  N) for  sorting  and  O(mN)  for  the  rest,

as  diseussed  in [9], where  mmmaxi  mi.

    We  conelude  this  section  by  giving  the  next  theorem  proved  in  [9].

    Theorem  6.1. z(B)  obtained  in  AppRxBl(P)  
satisfies                                      '

           .(B)  laO '2  ,

andi  furthermore  this  bounct is  sharp.  D

7. Computational Experiments of  Approximate Algorithms

    The  approxiTnate  algorithms  of  Sections  5 and  6 are  codedt  in FORTRAN,

t Approximate  selution  x(3)  of  (6.3) is fiot incorporated  to  define  a(B)  of

 APPRXBI(P)  in  our  implementation.

NII-Electionic  Libiaiy  
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and  run  on  FACOM  230160  and  M190  of  Data  Proeessing  Center  of  Kyoto  University.

QVICKSORT  (e.g., [1] [13]) is  used  as  the  sorting  algorithm  in  Step  Dl  of  DUAL.

FACOM  230/60  and  M190  are  roughly  equivalent  ta  IBM  360/60  and  3701175. re--

speetively.  Although  the  accurate  comparison  is  difficult,  M190  seems  to  be

10v15  times  faster  than  23016C}.

     Three  types  of  problem$,  A,  B,  C, are  randomly  generated  for  test.  For

simplicity,  ma=2  is assumed  for  a==1,2,..., n  in all  probl,ems.

     
A･

 Coefficients  ail,  ai2,  eil,  ei2,  i=ls2,...,  n.  are  integers  randomly

taken  from  the  uniform  distri'bution  with  range  [1, 1000].  b is  then  deter--

mined  by

                 n

(7.1) b=di  (ail+ai2),
                 v#1

where  d ts  a  parameter  specifying  the  tightness  of  constraint  (1.2). A sinall

d implies  a  ttght  constraint.  Before  applying  approximate  algerithms,  un-

neeessary  vartables  are  deleted  according  to  the  properties  discussed  in  (2.2)
and  (2.3). After  thls,  only  abeut  n!4  t's have  both  :tl  and  Xi2  in P  (as eas-

ily  calculated  sinee  coefficients  a,  e  are  generated  independently).  If  the

resulting  problem  does  not  sattsfy  (2.4), it can  be trivially  solved.  Note

that  the  assumption  mi#2  (nTiS2 after  the  simplifications  (2.2) and  (2.3))
helps

 
to

 
simplify

 
the

 
implementation

 
sinee

 
only

 
one

 Bk Of
 tYPe  (Oig･-1-eiJ･)!

(aig･H.1-aig･) eXiStS  iOr each  i and  the  simplifiaation  based  on  (3.14) is not

necessary.

    B.
 

This
 

type
 ls generated  to see

 the  performance  of  approximate  al,go-

rithTns  when  many  Bk's in  (3.23) take  the  same  values.  eoefficlents ai2  and

ci2
 

are
 generated  

as
 
in

 type  A, but atl  andi  eil  are  determined  by

(7･2) atl=cra2+100,  eil==ei2+100,  i=1,2,..., n.

In
 
this

 
type

 
of

 problems, (2.2) is
 

automatically
 

satisfied
 and  all  (etl-ca2)1

(aii%2) take  
the

 sarae  value  1 for  i=1,2,..., n.  Coefficient  b ±s determined

by  (7.1).

    C. As  a  model  of  difficult  problems,  coefficients  of  type  C problems  are

generated  as  follows.

             ail=200,  ai2=100

    '(7.3)

 ci2 ± maxlzOOo+1006t,  O]

            
Ctl=et2+100'max[6i,

 O], i=1,2,...,  n,
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where
 6. are  random  numbers  taken  from the  normal  distribution  M(t,  a2)  with

      t
          '

(7.4) t-20.0,  cr-5,O,  1.0.0.            '

If we  neglect  the  truncation  effects  caused  by  max[]  in (7.3), pararneters  Bk

are  given  by

             (eil-Ct2)!(ail{it2)=6t

(7.5)
             eil!ail=5+6i,

 
e2;2!at2=lo+6t,

which  are  normally  clistribute{1  areund  ineans  20.0, 25.0  and  30.0  respectively.

(2.2) and  (2.3) are  always  satisfied  for  these  coefficients.  Coefficient  b
                                                               tt
'ls

 set  to  
'

                   '

(7.6) b=ll(ail"kii2)+O.:7(ailrat2)"15CM+70
                        '                                           '

for  the  following  reason.  If the  numbers  of  6i's  greater  than  and  .smaller

than  its  mea,n  t=20.0  are  about  the  same,  b of  (7.6) makes  X=BE(obtained  by

DUAL(P))  close  to  t=2e.O, beea.use  Eiil==1 iiolcls for  about  n12  t's and  Eii2=1 for
other  i's (exeept posstbly  one  i for  which  xil,  ct2>O)  in the  LP optimal  solu-
                                                 '     -tion

 
x.

 Thus  most  of  Bk's  around  BR (ineluding Bk) are  of  (Caiei2)/(ail-ai2)

type,  and  it tends  to  make  x  relative].y  far from  the  optimal  solution  of  P.

The  censtant  70 in  (7.6) is  introduced  as  a  perturbation  sinee  otherwise  the

case
 

of
 
Theorem

 4.2 (b) (the case  
of

 
e=at-Tg--])

 always  occurs.

     The  cornputattonal  results  for  type  A problems  are  suTmnarized  in  Tables

7.1-J7.3.  These  were  run  on  FACOM  230160.  10  problems  were  generated  for  each

n=100,  200,...,  1000.  Table  7.1 shows  the  number  of  problemsi  (out of  10)  for

which  either.(2.4)  is  not  satisfied  (i.e., trivially  solved)  or  L?  optimal  so-

lutions  x  are  feasible  in  P (Le., optimal  in  P).  For  a  large  d, the  nuTnber

increases  because  (2.4) tends  to  be not  satisfied.  For  a small  d, it  also  in-

creases  because  c  tends  to so].ve  P  because  X is  large  (and case  (b) of  Theorem

4.2  is likely  to  occur).  We  see  that  the  approxirnate  algorithm  by rounding  is

successful  to  obtain  exaet  optimal  solytions  for  the  majority  of  type  A prob-

lems.

    To  show  the  aceuracy  of  approximate,selutions,  Table  7.2  lists  the  maxi-
                                        '                '
mum  of

(7.7) ((x--z(*))IE)xlOO, where  *= ±R, B,

for  type  A  problems  (all cases  d=:O.2, O.3,...,  O.6  are  considered  for  each  n).

Note  that  the  ratio  is eomputed  against  a- (not iO).  Thus  the  real  accuracy

                                            '
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The  number  of  type  A  problems  (out of  10) for  which  the  LP

optimal  solutions  x  is  feasible  (t.e., optimal)  in P  or  (2.de)

is  not  satisfied  (i.e., trivially  solved).

81

)e}×<1.1002oe300400

o.210109 7

o.39 7 8 8

o.45 9 7 8

o.55 8 3 5

o.610101010

500

9

8

6

4

IO

600

10

10

6

7

10

700

9

8

6

8

10

800

8

10

5

6

10

900

10

9

5

4

10

1000

 10

 9'

 4

 7

 10

Table  7.2.                                                           (sc)The  maximurn  percentage  deviation  of  the  approximate  value  g

from  the  Lp  optima/L  value  fi, max((2-g(k))12)xloo,  ft=R,  B, among

SO  type  A problems  for  each  n.

n loa' 200300

Ronding(R)fi

Breadth-l(B)a

O.10

O.04

O.07

O.03

O.04

O,Ol

400

O.03

O.Ol

500

O.03

O.Ol

600

O.03

O.02

700

O.02

800

O.Ol

o.oe2  o.ol

900

O.03

O.OOI

1000

O.02

O.OOI

                 o
with  respect  to  a should  be  higher  than  that  of  Table  7.2.  The  compvtation

time  is. given  in  Table  7.3.  We  see  that  DUAL(P)  consurnes  a  dominant  part  of

total
 

computation
 
time,

 
which

 
/ts

 
essentially

 
the

 
sorting

 tirne of  8r  B2,.･.,

Bpm. The
 
total

 
aomputation

 
time

 
seems

 to  be  O(iV log  N)  (=O(n log  n)  since

miS2).  From  Tables  7.1-7.3,  we  may  eonclude  that  approximate  algortthms  are

efficient  eneugh  to  process  very  large  problems,  and  yet  its  aceuracy  is

extrernely  high.  It  is also  interesting  to  note  that  the  accuracy  becomes  even

higher for probleTns  of  larger  sizes.  Breadth-1  search  may  be  worthwhUe  since
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Table  7.3.
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Average  computation  time  for  type  A  problems.  in  milli-seconds  on

FACOM  230/60.  (On,ly problems  satisfYing  (2.4) are  eonsidered  in

this  table.  Tota,1 includes  some  CPU  tiTne  required  fer  printing

out.  
"Breadth-l"

 lists  the  average  computation  time  for  the  prob-

Iems  in  which  LP  optimal  solutions  x  does  not  solve  P.)

400500600700800900IOOO
1

         1"
DUAL  [ 59

Rounding  1

Breadth-1  2

Total  69

120

1

4

140

195

1

3

221

272

2

2

302

341

1

5

386

426

1

3

484

485

1

4

543

554

1

2

62!

629

1

3

700

732

 2

 4

814

it  also  runs  very  quickly  and  gains  a  noticeable  improvement.

     Type  B problems  are  then  solved  in  a  similar  manner,  10 problems  each  for

n=100,  200,...,  1000  and  d=O.2, O.3,...,  O.6.  The  computation  time  is  about

the  same  as  type  A problems  (and hence  is not  given).  A stgnificant  differ-

ence  from  type  A is that  LP  optimal  solutions  x  are  always  feasible  in P.

This  is  because  the  modified  I)UAL  of  Appendix  is quite  powerful  in  finding  a

numbering
 

of
 Bk=(ctiai2)1(a".-at2)  (=1 for

 
all

 
t)

 
which

 
results

 
in

 
e4cx7gs-1

(the case  of  Theerem  4.2 (b)). Although  the  strueture  of  type  B problems  may

be too  restrictecl,  we  may  conelude  that  approximate  algorithms  tend  to  be  more

accurate
 
if

 many  Bk's take  the  same  values.

     Finally,  computational  results  for  type  C problems  are  summarized  in

Tables  7.4  and  7.5.  0nly  app}:oximate  solutions  by  rounding  are  eomputed  for

these  probleTns.  Comparing  Table  7.5  with  Table  7.2,  we  see  that  the  aecuracy

of  the  obtained  approximate  solutions  is  about  the  same  as  that  of  type  A

problems.  However,  the  number  of  type  C problerns  for whtch  exact  optimal  so-

lutions  are  obtained  by the  ar)proximate  method  (Table 7.4) is noticeably  less

than  the  case  of  type  A  problems  (Table 7.1). This  may  indieate  that  type  C

problems  are  more  difficult  than  type  A  problems,  in  order  to  obtain  exact

optimal  solutions.  (This ten(iency  is  actually  coniirmed  in  the  expertment  of

Seetton  9.) The  computation  time  fer type  C problems  is  about  the  same  as

type  A  problems,  and  the  det5"ed  statistics  are  not  cited.
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Table  7.4.The  number

solution  x

fted  (i.e.

     71ieMultiple-C7ioice

 of  type  C problems

 is  feasible  (i.e.,

, trivtally  solved)

Knapsackl}vbiem

 (out of  IO)

 optimal)  in

.

fer  which

P  or  (2.4)the

 LP  opttmal

 is  not  sat ±s-

83

d><ft2040

5.0

10.0

1

6

1

4

60

1

7

80

o

2

100'

3

4

120

2

6

140･

o

2

Table  7.5.The  maxtmum  percentage  deviation  of

rounding  from  the  LP  optirnal  value

10  type  C problems  for  each  n  and  uz.

the  appreximate  value

,
 max((2-a(R))!E) × looz(R)

 by

, among

x 2040

5.0

10.0

O.44

O.41

o

o

.21

.2[]

 60

O.14  O

O.13  O

80

.11

.10

 100

O.08

O.08

120

O.07

O.07

140

O.06

O.06

see

 For  further

Teranaka  [17]details

 of

.

computationalresults  ofapproxlmatealgorithms,

8. Branch-and-Bound Algorithm  for Exact Optimal Solutions
                                     '

     Since  the  multlple-choiee  knapsack  problem  is  NP-complete  as  rnenttoped
                                                                    '
in  Section  1, it is  unli.kely  tihat  there  exists  an  exact  algorithm  which  al-

ways  runs  in  time  bounded  by a  polynomial  of  N and  log  b. This  does  not  deny,

however,  that  an  exaet  algorit:hm  solves  most  probleras  efficiently  and  the
                                                             '
average  time  is  of  polynomial  order.  To  explore  this  possibility,  a  branch-

and-bound  algorithm  is proposed  in  this  section.  As  reported  in  the  next

section,  its  average  eomputati.on  time  is  roughly  O(N  log  N) in  certain  cases.
                                                                         '
Similar  branch-and-bound  algorithms  are  also  discussed  in  [16] £ or  the  dis-

crete  version  of  the  multtple--choice  knapsack  problem.
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     The  branch-and-bound  algorithm  of  this  section  is constructed  by  follow-

ing  the  standard  recipe  described  in papers  such  as  [IS] [14], in  particular

 [7] [8]. Therefore  we  describe  only  basic  ideas  necessary  to  specify  a

branch-and-bound  algorithm.

     (l) Branching  operation.  Each  partial  probleiu  
Pt

 (including the  original

problem  
PEI'o)

 generated  
in

 
thc･

 
algorithm

 
is

 
also

 
a
 
multiple-choice

 knapsack

pToblem.  
If

 
Pt

 
is

 
not

 
terminated

 
by

 
the

 
test

 
applied

 
to

 
Pt,

 
it

 
is

 decomposed

tnto  the  following  two  parttall  problems:

(8･1) Ptl"Pt  (xzg--fO), Pt2= Pt (Xi J' 
-mO),

where

(8.2) Bk==(CIg-TTielg-･)!(aTg-'-1-aagH')

holds  in DUAL(Pt).  A  partial  problem  is therefore  specified  by a  set  of  vari-

ables  x..  fixed  to  O.
       zg

     (2) Upper  bound  of  the  optimal  value  of  l]t. The  LP  optimal  value  of  Pt

is used  for  this  purpose.  The  L?  relaxation  
Pt

 is also  used  as  a  test  to  ter-

minate  Pt;  Pt  is terminated  if its  LP  optimal  solution  l solves  Pt.  As  seen

from  the  computational  results  in  Section  7, thts  terminatton  occurs  very

frequently.

     (3) Lower  bound  of  t'he optimal  value  of  Pt.  The  objective  values  of  ap-

                                              (R)
proximate  solutions  of  Pt are  used.  Although  z  of  (5.7) is used  in our

                 (B)implementation,  g                     of  Seetion  6 can  also  be used  (probably more  desirable).

     (4) Search strategy.  Seareh  strategy  determines  the  order  tn  which  gen-

erated
 partial  problems  

l't
 
are

 
tested

 
in

 
a
 
branch-and-bound

 algorithm.  Al-

though  any  search  strategy  can  be  used  in  principle,  depth-m  seareh  [6]
based  on  the  LP  optimal  value  is coded  in  our  implementation  in  order  to  test

a  variety  of  search  strategies  relalizable  by  changing  parameter  m.  Accord-

ing  to  our  computational  results,  depth-first  search  is  best  from  the  view

point  of  total  aomputation  time  (though it sometimes  ttenerates  more  p.aTtial

problems  than  other  search  strategies  such  as  best-bound  search  (e.g., [7] for

the  theoretical  results)).

     It is now  possible  in  priLnciple  to  implement  a  branch-and-bound  algorithm

frorn the  above  constituents.  It  is  however  impoTtant  from  the  view  point  of

efficiency  to  consider  how  data  of  eaeh  partial  problem  P                                                         are  maintained  and
                                                       t
updated.  This  aspect  is  brieiily  sket ¢ hed  below.
          '

     
In

 
our

 
implementation,

 
li.sts

 
L
 

storiag
 Bl, B2,..., BN 

are
 
not

 prepared

for
 
all

 nodes,  but only  one  master  list  ts  maintained.  Each  Pt  has  the  data
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necessary  to  modify  the  inaster  list  into  the  list  
for

 
l't,

 assuming  that  the

eurrent  partial  problem  l]t, represented  by  the  master  list  
is

 known.  Given

Pt,,  it is  straightforward  to  obtain  
the

 
list

 
foT

 
Pt

 
if

 
l]t

 
is

 
directly

 gener-

ated  from PtJ, or  Pt, is directly  generated  from  
Pt.

 rf Pt  and  
1't,

 are  distant,

however,  we  first  obtain  the  list for  the  cornmon  (closest) ancestor  Pt,T of  
Pt

and  Pt,,  by  Eollowing  reveTseiy  the  sequence  of  decompositions  from  E't, to

PtTr, and  
then

 
modify

 
it

 
for

 
Pt

 
by

 
following

 
the

 
sequence

 
of

 
decomposittons

from
 Pt"  

to
 
Pt.

 This  
explains

 
why

 
depth-first

 
search

 
outperforms

 
other

 
search

strategies  in our  experiment.  (Pt tested  next  to  
Pt,

 tends  to  be in a post-

tion  close  to  Pt,  if depth-first  seareh  is used.)

    Next  consider  how  Ptl  and  Pt2  of  (8.1) are  solved  by  making  use  of  the

result  for Pt. Denote  k and  v'  obtained  tn DUAL  (Pt) by 
-k(P#)

 and  V'(Pt).

Ptl  is then  treated  in the  
same

 
manner

 
as

 a(xi･g-･.1=O) 
discussed

 
at

 
the

 
end

 
of

Section  6. Pt2=Pt(x73=O)  can  be  similarly  treated,  but  the  search  for k(1't2)

is  done  in  the  reverse  direction  on  list  L. Tg  see  this,  let

             s'k-(pt)= :i'SIiiiCl.1.' and  Bkt= !li/itll:lllllii (or llll/
'-'.'.

 if 3'-mi･)

be  deleted  from  list  L for P                            and  let
                          r

             B£ =  llZllmil:lll+ir (or :l'l'-i if imi･)
                                     eg-1                  tg-1  zg+1

be  added.  (If some  other  variables  which  have  been  suppressed  by  (3.15) re-

vive  as  a  result  
of

 deleting  
xlJ",

 this  process  
becomes

 
more

 
complicated,

 
but

can  be  similarly  done  [9].) It  is easy  to  see

(s.3) Bk(pt)<
 
3A

 
<
 
Bk,

 
･

Also  v'=v'(Pt)sO  holds  at  the  end  of  DUAL(Pt).  After  deletlng  BI(Pt) and  Bk'

from  I], and  inserting  BA, k is increased  from  k=k(Pt)  (i.e., the  seareh  is

directed
 
to

 
the

 
right

 
of

 
BR(pt))

 
unti!

 
V')O

 
is

 
reaehed

 
(see

 
(3,22)).

 
At

 
this

point,  the  eornputation  halts and  an  LP opttrnal  solution  of  Pt is constructed.

    Further  details  of  the  above  algorithm  are  given  in  [10].

9. Computational Experiments of  Branch-anci-Bound Algorithm

    The  branch-and-bound  algorithm  explained  in the  previous  section  Ss

eoded  in  FORTRAN  and  type  A, C problems  (defined in  Section  7) are  solved  on
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Table  9.2.    / Analysis

n=seo.

 of(The

   77ien4tiltiple-ChoiceKnapsackRrobtem

computation  tigte  required  for

 aveTage  of  50  problems.)

type  A  problems  with

87

d

O.2

O.3

O.4

O.5

O.6

Phase

119

U8

117

 90

 66

 (c:)I:) (d)PhaseIJ
(e)

?haseIII Total

o 2 121

o 4 122

1 11 129

20 25 135

o o 66

(c) Phase  l

(d) Phase  ll

(e) Phase  III

: TiTne tn  milliseconds  required  for  the  initial

 setting  of  parameters,  sorting  parameters  Bk,

 fsolvtng  Po (i.e., DUAL(Po)),  and  obtaining  the

 
'approxtmate

 solution  of  Po by rounding.

: Time  in  milliseconds  required  for  solving  all

 Pt's  and  obtaintng  
approximate

 
solutions

 
of

 Pt's,  where  Pt's  are  partial  problems  (eXcluding

 1]o) generated  during  
the

 
braneh-and--bound

 
compu-

     .
  1:atlon.

: [rime  in  milliseconds  required  for  constructing

  ihe  computed  optimal  solution  ef  Po. ?hase  III

  is not  necessary  if only  Po  is generated  as  a

  partial  problem.

FACOM  M190.

The  sorting

     Table

average  of

As  shown  in

Iem  P) are

  Depth-first  seareh  is  exclusively  used  unless  otherwise  stated,

 algorithm  implemented  in  this  code  is MERGE  SORT  (e.g., [1] [13]).

9.1 summarizes  the  results  for type  A  problems.  Each  figure  is the

50  problems  (which are  different  from  those  used  tn  Seation  7).

 Table  7,l, exact  optimal  solutions  
of

 
Po

 (i.e., the  
original

 prob-

usually  obtained  as  approximate  solutions  of  Po  foT  the  majortty  of
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                                                  '
type  A problems.  In  sueh  cases,  the  braneh-and-bound  algorithm  of  course  ter-

minates
 

after
 generating  only  

Po.
 i.e.,  the  number  of  generated  partial  prob-

lems
 
is

 
1.

 
In

 
other

 cases,  Po is  decomposed  into  finer  and  finer partial

problems.  Table  9.1  however  shows  that  the  numbers  of  the  generated  partial

problems  are  relatively  small  in  all  cases.  Interestingly  enough,  the  number

is almost  independent  of  the  problem  size  n,  though  it is  dependent  on  param--
eter  d (defined in (7.1)). Table  9.2  analyzes  the  cornputation  time  consumed

in each  phase  of  the  algorithm,  for  type  A probleins  with  n=500.  It  shows  that

phase  II  consumes  only  a  smaU  fraction  of  the  total  time,  indicating  that  the

data  structure  and  its  management  explained  in  Section  8 is quite  successful

to  reduce  the  computation  time.  Sinee phase  r is  highly  dominant  in  computa-

tion  trme,  we  may  conclude  that  the  average  time  required  to  solve  type  A

problems  
is

 Toughly  equal  to  the  time  required  to  solve  Po  by  an  approximate

algorithm,  which  is O(ru log  ru).

Table  9.3.Computat ±onal

C problems.

 results  of

(The average

a n 20

Number(a) 9

5.oTime(b)

167

10.oNumber(a)
4

(b)Time 36

(a)(b) :Seefootnotes

   40

  135

  198

    5

   45

to  Table

the

 of

 60

309

443

  6

 49

9.L

branch-and-bound

10  problems  for

 80

404

606

  7

 67

100

580

900

  8

 73

 algorithm

each  n  and

 120

 786

l506

   3

  71

for  type

U).

140

2107

4096

  6

 106

     Table

problems.

tlme  seem

Section  1         '

 9.3  lists  the  results  for

the  number  of  the  generated

to  grow  expenentially  with

 the  NP-completeness  of  the

type  C problerns.

 partial  problems

n,  when  g=5.0  is

 multiple-choice

 Contrary

 and  the

used.  As

knapsack

 to  type  A

        '
computatlon

 mentioned  in

problem  strong-
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ly  suggests  the  existenee  of  instances  of  difficult  preblems.  Our  computa-

tional  results  suggest  that  type  C problems  with  o=5.0  may  be such  difficult

instanees.  Note  however  that  the  difficulty  ef  type  C problems  is  highly

sensitive  to  parameter  a. For  o=10.0,  preblerns  beeome  much  easter,  and  the

required  time  seems  to  be  O(ru log  V).

     Finally,  to  see  the  effeats  of  search  strategies  in  the  branch-and--bound

algorithm,  type  C problems  with  o=5.0  (which are  different  from those  used  in

Table  9.3)  are  solved  with  both  depth-first  search  and  best-bound  search.

Table 9.4. Comparison  of  search  strategies  for  type  C problems  with  u=5.0.

            (The average  of  10  problems  for  n=8e,  100,  and  7 problems  for

            n=120.)

80

'

100
(f)120

n

(a)
Number

(b)
Time NumberTimeNumberTime

Best-Beund

Depth-First

206

245

I897

388

187

219

1521

254

9S

100

709

257

(a)(b) ; See  footnotes  to  Fig. 9.1.

(f) : Three  problems  could  not  be solved  because  the  memory  space

        bound  (1000 partial  problems)  was  exceeded.

Judging  from  Table  9.4, best-bound  search  (which is  theoretically  known  to

minimize  the  number  of  the  generated  partial  problems)  generates  slightly

less  nurnber  of  partial  problems  than  depth-first  search.  Depth-first  search,

however,  is  definitely  better  from  the  view  point  of  computation  tirne.  The

reason  for  this  was  diseussed  in  Seation  8. The  numbers  of  problems  for which

best-bound  search  generates  less  number  of  partial  problems  than  depth-first

search  are  as  follows.

              3 problems  out  of  10  for  n=80

              2 problems  out  of  10  for  n=IOO
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              3 problems  out  of  7 fer n=120  (other 3 problens  could  not  be

                solved  because  the  memory  space  bound  was  exceeded).

However,  except  for  only  two  problems  with  n=120,  depth-first  search  always

requires  less  computation  time  than  best-bound  search.

     Iwase  [10] contains  some  further  details  of  the  computational  results  of

the  branch--and-bound  algorttlm.

10. Conclusion

     Two  approximate  algorithT[is  and  one  exact  braneh-and-bound  algorithm  are

proposed  for the  multiple-chotce  knapsack  problem.  Judgihg  from  our  computa-

tional  experience,  approximate  algorithms  are  quite  fast  and  yet give extreme-

ly  good approximate  solutions.  The  exact  algorithTn  ls  also  quite  efficient

and  can  be practical  except  for  some  difficult  problems  deliberately  con-

strueted.  We may  thus  conclude  that  the  multiple-choiae  knapsack  problem  is a

rather  easy  one  in  the  sense  of  the  average  computation  time  among  many  NP-

complete  problems.  There  are  other  NP-eomplete  problems  eonsidered  traetable

in the  sense  of  the  average  time,  e.g.,  the  ordinary  knapsack  pToblern,  the  set

covering  problem,  the  set  packing  problem  and  a  certain  class  of  scheduling

problems.  It  would  be necessary  to  investigate  what  makes  these  problems

easier  than  other  N?-complete  problems.  t4] contatns  sueh  an  attempt,  and

classifies  NP-complete  problems  into  two  classes;  those  which  are  NP-eomplete

tn  the  strong  sense  and  those  which  are  not.  The  Taultiple-choice  knapsack

problem  is  not  N?-complete  in  the  strong  s,ense,  and  this  may  give  a  reason  why

it is  rather  tractable  among  ether  NP-complete  problerns.

     The  tdeas used  in  thts  paper  may  be extended  to  more  general  problems.

For example,  the  LP  optimal  solution  can  be  obtained  in  a  similar  manner  even

if constraint  (1.4) is generalized  hs follows. 
'

             
At

 
most

 
ki

 
of

 
xil,

 
xi2,...,

 
ecimi

 
are

 positive  
for

 
i=1,

 
2,...,

 
n,

             where  kt is  a  positive  integer  satisfying  ISkiSnt.

Therefore,  approximate  and  exaet  algorithms  Tnay  also  be constructed  in a  simi-

lar  manner.  These  extensions  may  be  subjects  of  the  future  research.
     '
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Appendix. Modification  of  DUAL(P)

     As  mentioned  at  the  end  of  Section  3 and  after  Theorem  4.2, it is  desir-

able
 
to

 
find

 
a
 

numbering
 

of
 Bft.'s 

with
 the  same  value  such  that'  Theorem  4.2 (b)

can  be  applied.  The  exhaustive  seareh  of  all  possible  numberings  is, however,

not
 

computationally
 
feasible

 
since

 
there

 
are

 
K!

 
different

 
numberings

 
if

 K  Bk's

take  the  sarne  value.  The  following  algorithrn  is  heuristic,  and  may  be consid-

ered  as  a  compromize  between  these  conflieting  objectives.

     Assume  now  that  Bk's are  initially  numbered  as  in (3.23) and  that

         '

(A.1) BkT, 3k,+1,･･･,  Bk,+2

take
 
the

 
same

 
value.

 
Let

 c7={k',  
1'+1,...,

 k'+ £ }. We
 

renumber
 these  Bk's so

that  Theorem  4.2 (b) may  be applied  if possible.  Partition  eT into  two  sets

Jl
 and  

J2,
 sueh  that

              Bk is of  cim./aam.  type  if  1Ecrl
                         tz

(A.2)

              
Bk iS

 Of  (Cag'.-1-etg')1(aag･-1-aig･) type  if kEg2･

Assume  further  that

              v'>O  holds  for  k=k'+2+1,
(A.3)
              vrgo  holds  for  k=k'
                                '

i.e,,
 

some
 Bk, kEcf,

 
is

 
selected

 
as

 BR, when  DUAL(P)  is applied  to these  Bz's.

     Denote  v'(>O)  for  k=k'+2+1  in DUAL(P)  by  vk.  The  basic  idea  is  as  fol-

lows.  First  we  check  whether
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 (A.4) v*  
-Z{ai;m.]ctm.!aam.=Bk,

 kEel'1}

                       tzz

is
 positive  

or
 

not.
 

If
 
it

 
is

 nonpositive,  choose  kEgl in any  order  and  re-

place  
v'

 
by

 
v'-aimi

 
for

 
each

 
seleeted

 
Bk=ctmilaimi,

 
until

 
v'SO

 
is

 
attained.

Then  Theorem  4.2  (b) is  satisfied.  On  the  other  hand,  if  (A.4) ts positive,

we
 

choose
 
kEcJ2

 
in

 
the

 
FFD

 (First-Fit-]ecreasing) order
 

of
 
atg･-iatg-

 (where
Bk"(etg'-ieig')!(atJ･-1-aaJ･)) Whenever

 V'-(aigJ-1-Citg･)>O  is satisfied.  when  Bk

is
 

chosen,
 
v'

 
is

 
replaced

 
by

 
v'-(aaJ--1-aaJ-).

 If V"O  holds  at  the  end  of  this

process,  then  kEgl are  chosen  in any  order  (for eaah  kEgl, v'  is replaced  by

v'-a.
    zmi  

if
 
Bk=Ctrni/aimi),

 
until

 
vrSO

 
is

 
attained.

 
If

 
v'so

 
occurs

 
in

 
this

process,  Theorem  4.2 (b) is satisfied.  On  the  other  hand,  if v'>O  still  holds

after
 

choosing
 
all

 kEA,  a  kEUr2 rejected
 in  the  first  stage  (beeause of  v'-

(aig･-lmaig･)`O) 
iS

 chosen  to  yi.eld V'<O.  If thts  is the  case,  Theorem  4.2  (b)
is  not  sattsfied.

     This  algorithm  is  based  on  the  well  known  heuristic  algorithm  FFD  for the

bin-packing  problem  [11] (consider that  a  bin  of  length  v*  is  packed  by  items

of
 
length

 
ata･.1ffaig')'

     Given  index sets  Lr,  cll,  cr2  and  vk>O  as  above,  the  algortthm  proceeds  as

follows.

     
Ml.

 
v'tv*,

 
k-k'+2,

 
cT3+On

 
if
 
vsc-E{aimtlci.7tlaami=Bk,

 
kEtil}SO,

 go  
to
 
M3t

     
M2.

 
Repeat

 
the

 
following

 procedure  while  tT21 ¢ : Select  kEer2 wlth  the

maximum
 aij-1-aie･  where  Bk=(cag･-1-eigi)1(aig･-1-aig-), and

             Jig2-{k},

             
v'+-v'-(atg･-1-atg･･)

 
if

 v'-(aig･-1-aiJ･))O

             J3"J3U{k}
 
if

 
V'-(aig'-1-atg')`O'

     
M3.

 
Repeat

 
the

 
following

 procedure  while  v'>O  and  eTllO:  Select  any  kEcll

where
 
Bk=eimilaimi,

 
and

             gl+kfi{k},  v'+v'-aim..
                                 z

     
M4.

 
xf

 
v'so,

 
halt;

 
else

 
select

 
one

 
kEil3

 
where

 Bk=:(Cig･-1-Ctg')1(atg'a-aiti),

and  v'`e"v'-(aij･.1-aag->  (<O). Haltt

     It  is  now  easy  to  see  how' this  modification  is  incorporated  in  DUAL(P),

and  how  an  LP optimal  solution  of  P is  constructed.  The  detail  is  omttted.

P3

i
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ア ブ ス　ト ラ ク　ト

多 重 選 択 ナ ソ プ ザ ツ ク 問 題

秀

美

郎

治

俊

勝

次

利

木

中

瀬

川

　

　

　

谷

茨

寺

岩

長

学

所

M

学

　

院

　

研

B

大

信

　

　

　

大

　

通

−

　

気

　

　

　

都

都

電

　

賀

本

　

須

京

横

日

京

　多重選択 ナ ッ プ ザ ソ ク 問題は ，通常の （連続形 ）ナ ソ プ ザ ッ ク 問題 に 多重選択条件を付 した もの で ，

つ ぎの ように 書か れる 。

P　 目標関数

　　拘束条件

・
一Σ

、！｝
−1 Σ

」叫 ・
・j ・ ii 　 → 敏

ぎ
、塁1 ・畢

i1
・・j ・ ・j 　 4 ・

　 0 ∠∠　　Xij 　　∠≦1　，　i　
＝ ］，　2 ，　

…
　，　n ，　　　j

＝
ユ．

　各 iに 対 し． XiJ 　（ j； 1 ．2 ．…．　 m 　i ）の

　た か だ か 1 個 が 正 の 値を と る
。

は IE整数，　 aij ． Cij ， b は 正 の 実数で ある 。

2，…， mi

12

3

（4｝

た だ し． n ， mi

　 こ の 問題 は ．い わゆ る NP 完 全族に属す難し い もの で あ る こ と が 分 か っ て お り，一
般 的に 多項式 オ

ーダ の計算量 で 最適解 を 得 る ア ル ゴ リ ズ ム は 存在し な い と考え られ て い る 。 本論 文 で は ，簡 単な計算

で 得 られ る 近 似解法 を 提 案す る と と もに ，分枝限 定法 に も と つ く厳密解法 に つ い て も述 べ ．両 者 の 理

論的性質 を調べ ，そ の 計算実験を 行な っ た 。 そ の 結果 ，本問題 は NP 完全族の 中で は 比較的容易 なも

の で あ る こ と が 分か っ た
っ

　両解法 の 基本 は ．P の 多重選択条件  を

　 　 　 　 　 　 　 　 　 　 　 mi

　　　　　　　　　　
Xj − 1 ・ i」

41 ・ i ＝ L 　
2 ド

”・ ・

　 　 　 　 （5）

cc緩和し て 得 られ る線形計画問題 P が 簡単 に 解け る とい う事実 に あ る
。　P の 最適解 x ＝ （x11

，

x12 ，

…・ Xnmn ）は ・そ の まま P の 最適解 で もあ る か
・ ある い は た だ ユつ の i ； iに 対 し・連続する xT 了＿1 ・

xTT 　が 正 の 値 を と り 。　 他の i は   をみ た す とい う性質を も っ て い る 。

　近似解法の 第 1 に　x の 変数 xTT ＿p 　x71”i” の一方を 0 に 固定 L ，他方を条件《2×3）の 許す範囲の 最 大値 に

定 め て 得 られ る解 の 良 い 方を と る もの で ある 。 係数を 一
様乱数 か ら生成 した 問題 で は， n

；／000 ．，

mi ＝2 程度 の 大規模な問題 で も，　 FACOM 　230 ／ 60 の 1 秒 以 下で ，　 z
（R ）

／ zo ≧ 0．9990

を み た す良．い 近似解 が 得られ て い る 。 た だ し， z （R ） は 近似解 の 値．　 zo は P の 最適値で あ る 。 さ

らに ．こ の近似解法の 改良も検討 され．より優れた計算結果を 得 て い る。

　つ ぎtc，厳密解 を求め る 分枝限定法の ア ル ゴ リズ ム をつ ぎの よ うに 構成 した 。 分 解操作 ：各 部分問

N 工工
一Electronlc 　 Llbrary 　
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題 Pt ｝こ 対 し そ の 線 形計画問題 Pt 蠏 き・ x
巧 一1

，

・ τPQ な らば’ そ れ ぞれ を ・に 固定 し

・ ・個 ・ 部分聴 を 鍼 す・ ・ 醍 操作 ・ 戸・
の 面 ・

の 近 蠏 の 値 ・

（5） をそれぞれ上 ・
下界値 ・

して 限定操作を実行する
。

　
こ の ア ノレ 「’

”
　 1）ズ ム は きわ め て 効率・R・〈動作 し 潮 記 の一

様乱数 か 暁 成 し た 問題 で ｝a． 。
− 5 。（）　 ！

mi ＝ 2 程度 の 問題 で もFACOM 　 M190 を用 い て 0．1 〜 0．2 秒 で 最適 解 が 得 られ て い る
。
　 n に 対

す る 計算時間の 増加 も 0 （ nlogm ） 程度 で あ る。　し か し，意地 悪 く構成 した 難 し い 問題 で は ，

計算量 が n の 指数 オ ーダ で 増加 する こ とも確か め られ て い る 。

N 工工
一Electronlc 　 Llbrary 　


