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Abstract
Lipids, the building blocks of cells, common to every living organisms, have the
propensity to self-assemble into well-defined structures over short and long-
range spatial scales. The driving forces have their roots mainly in the
hydrophobic effect and electrostatic interactions. Membranes in lamellar
phase are ubiquitous in cellular compartments and can phase-separate upon
mixing lipids in different liquid-crystalline states. Hexagonal phases and
especially cubic phases can be synthesized and observed in vivo as well.
Membrane often closes up into a vesicle whose shape is determined by the
interplay of curvature, area difference elasticity and line tension energies, and
can adopt the form of a sphere, a tube, a prolate, a starfish and many more.
Complexes made of lipids and polyelectrolytes or inorganic materials exhibit
a rich diversity of structural morphologies due to additional interactions
which become increasingly hard to track without the aid of suitable computer
models. From the plasma membrane of archaebacteria to gene delivery, self-
assembled lipidic systems have left their mark in cell biology and
nanobiotechnology; however, the underlying physics is yet to be fully
unraveled.

PACS Codes: 87.14.Cc, 82.70.Uv

1. Introduction

Lipids are the building blocks of cellular compartments. By self-assembling into bilayers, they

form fluid membranes that act as relatively impermeable barriers to the passage of most water-

soluble molecules. Lipid membranes enclose the cell machinery and protect it from the extracel-

lular environment [1]. They likewise maintain the characteristic differences between the contents

of each compartments and the cytosol. They accommodate a number of specialized molecules

performing crucial functions to the life of the cell: ion channels pumping protons across the

plasma membrane [2], nuclear pore complexes controlling access to and from the nucleus [3,4],

or rotary motors synthesizing ATP [5,6]. Several of membrane proteins and glycosphingolipids
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are used as receptors by viruses and pathogens, including the Alzheimer's associated amyloid

peptide [7-9].

Lipids share with other amphiphilic molecules the ability to self-assemble in solution into

more or less complex aggregates, provided their density exceeds a certain critical micellization

concentration (cmc) which depends upon their chemical structure and the ions present [10,11].

A typical cmc value for bilayer-forming lipids ranges from 10-10 to 10-6 M while micelle-forming

lipids require 10-5 up to 10-2 M in the bulk solution [12]. The traditional view of the aggregation

of amphiphilic molecules is based on the poor solubility of hydrocarbons in water, leading to

what is known as the hydrophobic effect [13]. The presence of hydrocarbon residues induces the

formation of a cavity in the water structure which causes an increased degree of order and conse-

quently a significant decrease in the entropy of water [14,15]. When hydrocarbon residues meet

upon an effective long-range attractive force [16,17], the cavities fuse with one another and expel

water from the interface releasing entropy to the solution. This leads to the spontaneous forma-

tion of stable aggregates [18].

The hydrophilic headgroup – although not driving the aggregation – is responsible for the for-

mation of an interface with water, and contributes to determine, in principle, the size and the

shape of the aggregates through the interactions between the molecules. Simple geometric pack-

ing considerations allow the prediction of the final aggregate conformation given some elemen-

tary structural information on the amphiphilic molecules [19]. For this purpose, a geometric

factor can be conveniently used, the dimensionless packing parameter p, defined as p  v/a0lc

where v is the hydrocarbon volume, a0 the optimal headgroup area, and lc the critical chain length

beyond which the hydrocarbon chain can no longer be considered as fluid [12]. This parameter

determines whether the amphiphiles will form spherical micelles (p < 1/3), non-spherical

micelles (1/3 <p < 1/2), vesicles or bilayers (1/2 <p < 1), or inverted structures (p > 1). This heu-

ristic picture holds as long as only one amphiphilic component enters the system. Otherwise, the

interactions between components – electrostatic interactions, van der Waals forces, or hydrogen

bonding – may reorganize the system following a complex phase diagram. For example, the mix-

ing, in the absence of added salt, of cationic and anionic surfactants with different packing

parameters, yields a segregation of the amphiphiles and gives rise to unexpected aggregates such

as nanodiscs, punctured planes, and facetted icosahedra, depending on stoichiometry [20-23].

Due to their natural occurrence in living organisms, lipids, and the assemblies they generate,

are of special interest not only for the understanding of the many biological functions they are

involved in, but also in regard of their applications as biocompatible carriers of drug and gene

for pharmaceutical and biomedical purposes [24,25]. Another reason for this interest lies in a

high potential in material science and nanobiotechnology, for example, by constructing intricate

nanoscale networks of enzymatic reactors [26,27], or by arranging inorganic materials with the

liquid-crystalline regularity of lipid complexes used as templates [28].
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This article gives an overview of the various structures and arrangements based on lipids which

have attracted the attention of biophysicists in the last few years. The functions of particular lipid

structures within the cell are presented and the applications in therapeutic treatments or nanobi-

otechnology are mentioned whenever applicable. Emphasis is also given to the underlying phys-

ics that governs self-assembly processes and vesicle formation. The review begins with lamellar

membranes along with a discussion on the phase separation occurring in raft microdomains.

Afterwards, the varying forms of non-lamellar phases are described. The long-range (> 20 nm)

organized structures come next, including liposomes, exotic vesicles and tubular objects. The last

section encompasses complexed systems where lipids are associated with other entities, namely

biological polyelectrolytes and inorganic materials. The review ends with a short section which

highlights the benefits given by computer simulations in complementing experimental data to

visualize and to understand the mesoscale structure of self-assembled lipidic systems.

2. Various aspects of lipid membranes

2.1 Lipid bilayer and lamellar phase

Bilayers are certainly the most common structure formed by lipids as they are present in every

cellular organisms. They can take various shapes within the cell: fairly flat in the plasma mem-

brane, spherical and tubular for the components involved in vesicular transport, or with an intri-

cate geometry in the endoplasmic reticulum and Golgi apparatus. In this section, we focus on the

short-range (over a few nanometers) organization of lipid bilayers.

Figure 1A depicts a planar lipid membrane assembled into bilayer. This kind of flat membrane

typically occurs for lipids with a packing parameter close to 1, which means that an individual

lipid molecule fits to a cylinder (Figure 1C). Some of the phospholipids – one of the most fre-

quently encountered family of lipids in nature [1,29] – have a tendency to form bilayer mem-

brane, as is the case for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) shown in

Figure 1B. The elastic properties of planar membranes are often described by the mean curvature

modulus  and the spontaneous curvature c0 [30,31]. The vast majority of bilayers in a biological

context have an asymmetry – the interior and exterior of the cellular compartments – resulting

in a finite spontaneous curvature. Yet recent studies by small-angle x-ray and neutron scattering

showed that the inner and outer leaflets of vesicle bilayers can be indistinguishable, even for

highly curved vesicles with diameters down to 62 nm [32]. The mean curvature modulus gives a

measure of the membrane rigidity. Most biological membranes have   30kBT, where kB is the

Boltzmann constant and T the temperature, which makes them essentially flat at the molecular

scale.  depends upon the temperature and the bilayer composition – especially because of the

interactions between the hydrocarbon chains of lipids [33,34] -, and contributes to the amplitude

of membrane fluctuations [35].

Pure lipid bilayers are fluid at high temperatures but undergo a phase transition when the tem-

perature decreases below a critical value [36]. The phase transition temperature is -2°C for POPC
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depicted in Figure 1B. According to its state, a lipid bilayer is said to be: in L liquid-crystalline

phase when it is fluid with melted hydrocarbon chains; in L gel phase below the phase transition

temperature; in  tilted phase when the gel phase tilts relative to the layer normal; and in 

phase for tilted phase distorted by a periodic asymmetric ripple with a wavelength of the order

of 100 Å [37,38]. The fluidity of lipid bilayer allows the membrane to reorganize spontaneously

over a short time upon external stimulation: for instance, in response to an intense external elec-

tric field, biological membranes form submicrometer pores provided their transmembrane

′L ′P

Lipid bilayerFigure 1
Lipid bilayer. (A) A flat membrane of lipids assembled into bilayer. (B) Chemical structure of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine, a common phospholipid with p ~1 and which thereby forms flat bilayers. A schematic 
lipid molecule is depicted in (C), with the hydrophilic headgroup represented in red and the double hydrophobic 
alkyl chain in grey. The molecule fits to a cylinder making its packing parameter p close to 1. (D) Lamellar phase L 

of fluid lipid bilayers.
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potential exceeds a critical breakdown value [39,40]. With no longer electrical stimulation, the

pores reseal over a period ranging from milliseconds to a few seconds depending on the mem-

brane dynamics. This technique, known as electroporation [41], is used to inject plasmid DNA

across the plasma membrane of cells.

Notice that several bilayers can pile up with a thin layer of water solution separating each of

them; such a structure is referred to as lamellar phase, denoted L when the bilayers are fluid (Fig-

ure 1D). They are quite common with phosphatidylcholine (PC) lipids [36].

2.2 Phase separation and raft microdomains

A mixture of lipids in different phases – L and L, or liquid-disordered and liquid-ordered phases

[42] for example – can phase-separate and give rise to the formation of raft microdomains in the

bilayer. Each of the microdomains is enriched with lipids in the same liquid-crystalline phase.

The size of microdomains ranges typically from a few nanometers to a few micrometers. Based

on the properties of lipids in liposome membranes, domain models have long been proposed

for native cell membranes [43,44]. The lateral segregation of lipids is believed to play a crucial

role as it may govern a number of fundamental cellular processes such as signal transduction and

inter and intracellular trafficking [45-48]. The self-organization into distinct domains permits the

concentration of raft-associated specific receptors of proteins, which promotes the uptake of

these proteins via the endocytic pathway. For example, a peptide sequence common to the Alzhe-

imer's disease-associated A peptide, the HIV-1 gp120 glycoprotein and the Prion protein was

found to bind preferentially to raft-associated glycosphingolipids [7,49,50]. Such a peptide con-

jugated with a fluorophore constitutes a good raft marker for live cell imaging [51].

Biophysicists often investigate raft microdomains on supported lipid bilayers by atomic force

microscopy (AFM), because this technique, unlike fluorescence microscopy, does not require the

use of marker that may affect the phase separation of lipids [52-57]. Figure 2 shows a AFM image

of a supported lipid bilayer on mica. The bilayer was made of a binary mixture of 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) in liquid-disordered phase and sphingomyelin in liquid-

ordered phase. We can clearly see the domains of sphingomyelin emerging from the background

of DOPC due to their larger size. A raft-associated protein is also visualized almost exclusively in

the raft microdomains as expected [52].

Whether such idealized situations are transposable to live cells is still lively debated. Experi-

ments on native lipid mixtures extracted from pulmonary membranes have shown the separation

of two fluid phases [58], but the direct observation on live cell remains almost impossible due

to the presence of anchored proteins and receptors that cover the membrane surface. Moreover,

it seems that different experimental methods probe their own typical available length scales and

therefore result in biased data. In an interesting computer study, Yethiraj and Weisshar [59] mod-

eled a binary lipid mixture by using an Ising model on a square lattice comprising obstacles that
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mimic proteins anchored to the cytoskeleton. They reported that even at 5–10% by area of pro-

tein obstacles, the phase separation of lipids was dramatically reduced. This finding might bring

the size of possible raft microdomains in live cell down to a few nanometers at best. However,

another recent study reported that at physiological temperature, raft microdomains in the plasma

membrane of an epidermoid carcinoma cell line coalesce upon the binding of cholera toxin B

subunit to raft-associated ganglioside GM1, leading to the formation of raft clusters of a few

micrometers in size [60].

2.3 Non-lamellar membrane structures

Lipids with packing parameter p ~1 form preferentially bilayers, or more generally, a lamellar

phase made of bilayer sheets. For other classes of lipids and mixtures of lipids, the three-dimen-

sional polymorphism can be quite diverse, accompanied by a complex phase diagram depending

on temperature, pressure, molecular structure and concentration of components [61]. The pio-

neering work in this field was carried out by Luzzati and coworkers who studied lipid-water sys-

tems by x-ray scattering techniques and found a number of non-lamellar liquid-crystalline

arrangements which can be categorized into hexagonal and cubic phases [62-64].

Hexagonal phases are made of thin lipid cylinders with a radius of a few nanometers and

arranged on a two-dimensional hexagonal lattice (Figure 3). When the polar headgroup of lipids

Three-dimensional atomic force microscopy image of raft microdomainsFigure 2
Three-dimensional atomic force microscopy image of raft microdomains. A binary mixture of 1,2-diole-
oyl-sn-glycero-3-phosphocholine (black) and sphingomyelin (orange) forming a bilayer is immobilized on a mica sub-
strate and exhibits a lipid phase separation. The height of the raft microdomains is ~7 Å. The yellow peaks 
correspond to a glycosylphosphatidylinositol-anchored protein which is located preferentially in the raft microdo-
mains. The width of the scan is ~2 m. Adapted from reference [52]. Used with permission.
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is oriented towards the internal space of the cylinder, which is filled with water, the structure is

called inverted hexagonal phase or HII [65]. In contrast, when the internal volume is filled with

the hydrocarbon chains, the phase is said to be micellar hexagonal HI. Phosphatidyleth-

anolamine (PE) is a class of lipids abundantly found in biological membranes and prone to form

an inverted hexagonal phase [66]. At 20°C the radius of the water core in the cylinder is 15.9 Å

for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) whose molecular length is 20.8 Å

as inferred from x-ray diffraction reconstruction [67]. Below 20°C, DOPE can form a fluid lamel-

lar L phase in coexistence or not with an inverted hexagonal HII phase as the water content varies

above ~10% (w/w) [68,69]. The propensity of PE lipids to form an inverted phase may be of high

importance in relation to membrane fusion events. PE lipids may help their host membrane

achieve highly curved intermediate structures during fusion, which is energetically favorable for

the process [70,71].

The other category of non-lamellar structures is made of three-dimensional cubic phases

which are subdivided into bicontinuous and micellar classes [72,73]. The inverse bicontinuous

cubic phases consist of a single continuous curved lipid bilayer folded into a three-dimensional

cubic network and separating two disjointed water compartments. Following the mathematical

argument of periodic minimal surfaces [73,74], the inverse bicontinuous phases can exhibit three

distinct morphologies [75,76] labelled Ia3d, Pn3m and Im3m (Figure 4), the latter being not well

established experimentally. The additional sponge phase (L3) can be viewed as a melted cubic

phase because it shares the properties of bicontinuous cubic phases but does not have a long-

Illustration of hexagonal lipid phasesFigure 3
Illustration of hexagonal lipid phases. Inverted hexagonal (HII) and micellar hexagonal (HI) phases. The lipids 
are represented with the same conventions as on Figure 1, the hydrophilic headgroup in red and the hydrocarbon 
chains in grey.
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range order [77]. In the micellar cubic phase, the structure is made up of disjointed inverted

micelles packed on a cubic lattice. The micelles are actually distributed in two populations of dif-

ferent sizes to allow a more efficient packing of space. This is the case for phosphatidylcholine-

glycerol mixtures which form a Fd3m micellar cubic phase [78]. Figure 5 provides a close-up view

on the internal structure of lipid nanoparticles exhibiting bicontinuous cubic, sponge, and

inverted hexagonal phases.

There are many evidences that lipid membranes in cubic phase are ubiquitous in the biolog-

ical world. They have been observed in the plasma membrane of archaebacteria [79], as well as

in the endoplasmic reticulum and mitochondria of mammalian cells [80]. In structural biology,

lipid cubic phases can be employed as matrices to crystallize membrane proteins enabling dif-

fraction and thereby reconstruction with a high resolution [81-83].

Schematic structures of lipid cubic phasesFigure 4
Schematic structures of lipid cubic phases. Ia3d, Pn3m and Im3m are the inverse bicontinuous cubic phases 
reported so far experimentally. Fd3m is an inverse micellar cubic phase found with mixtures of DOPC and glycerol. 
The two types of inverse micelle (open and grey spheres) with their polyhedral shapes are indicated on each site of 
the cubic lattice. Adapted from reference [73]. Reproduced by permission of the PCCP Owner Societies.
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3. Vesicular and tubular shapes

3.1 Liposomes

When lipids are dispersed in an excess of aqueous solvent, they are no longer able to form a con-

tinuous phase and make instead a suspension of aggregates exhibiting locally one of the phases

described earlier. For a lipid component with a packing parameter between 1/2 and 1, the result-

ing aggregates are spherical vesicles comprising one or several bilayers, and are called liposomes

[25,84,85]. Liposomes come in varying size and lamellarity (Figure 6) [86]: the nomenclature

usually distinguishes the small unilamellar vesicles (SUV, 10~100 nm), the large unilamellar ves-

icles (LUV, 100~1000 nm), the multilamellar vesicles (MLV, with an onion-like layered mem-

brane), the oligovesicular vesicles (OVV, small vesicles incorporated into a bigger one), and the

giant unilamellar vesicles (GUV, > 1 m), but other morphologies frequently occur as well. Lipo-

somes can be prepared by spontaneous swelling of a lipidic film hydrated with an excess of the

desired aqueous solution [87]. After formation, they are in general not colloidally stable and

slowly aggregate and fuse into larger and more lamellar structures.

Submicrometer liposomes can be obtained with a narrow size distribution. Given that their

membrane is biocompatible and impermeable to hydrophilic molecules, they can be conven-

iently used as nanocapsules. Consequently, submicrometer liposomes have attracted a strong

interest in the biomedical and pharmaceutical sectors for their applications in drug delivery

[24,88-90]. Liposomes are not just merely passive capsules transferring drugs into cells, their

membrane can be engineered, for example so as to release the cargo inside a low pH environment

such as in the endosome [91]. Many kinds of site-specific ligands such as antibodies, receptors

Cryo-Transmission Electron Microscopy micrographs of non-lamellar lipid nanoparticlesFigure 5
Cryo-Transmission Electron Microscopy micrographs of non-lamellar lipid nanoparticles. Inverse 
bicontinuous cubic phase nanoparticles viewed along the [001] (A) and [111] (B) directions. The Fourier transforms 
of magnified areas shown in the right-lower inserts of each micrographs are consistent with a body centered cubic 
phase Im3m. The nanoparticles are made up of a dispersion of glycerol monooleate (GMO), surfactants and poly-
meric stabilizers. (C) Sponge phase L3 nanoparticles containing diglycerol monooleate (DGMO) and glycerol 
dioleate (GDO). (D) Inverted hexagonal HII nanoparticles also based on DGMO and GDO but with a different frac-
tion of stabilizer. Adapted from reference [75] with permission. Copyright 2005 by the American Chemical Society.
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and peptides can be anchored to the membrane, directing the cargo to designated cell types [92].

The grafting of poly(ethylene glycol) (PEG) at the surface of a liposome carrier enables an

extended circulation lifetime in the body [93]. Other applications include the use of liposomes

as marker for ultra sensitive detection of biological toxins [94,95], or in binding assays of pep-

tides to membrane receptors [51,96].

Liposome morphologiesFigure 6
Liposome morphologies. Liposomes are presented with respect to the shape, size and number of bilayers. SUV 
= small unilamellar vesicle, LUV = large unilamellar vesicle, MLV = multilamellar vesicle, GUV = giant unilamellar ves-
icle, OVV = oligovesicular vesicle. The short-range structure of the lipid bilayers is shown in the magnified view. The 
GUV on the fluorescence picture is made of a mixture of phospholipids and fluorescent dye, and contains three red-
fluorescent 200-nm polystyrene spheres which can move freely within the vesicle. The scale bar is 5 m. Adapted 
from reference [99] with permission. Copyright 2005 by the American Chemical Society.
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Giant vesicles occupy a privileged place in biophysics because their micrometer size allows a

direct observation under optical microscope. They can be conveniently used as model of cell

membrane for investigating biological processes in controlled environment, as well as for bioan-

alytical purposes [27,97]. The electrically-induced fusion of giant vesicles gives insights into the

response of biological membranes to electric fields; it reveals for instance the existence of a

threshold intensity related to the critical transmembrane potential [39,98-101]. The activity of

particular ion channels embedded into giant liposomes can be recorded via patch-clamp meth-

ods [102]. Giant vesicles also constitute a good biomimetic environment for monitoring enzy-

matic reactions [103,104], and more fundamentally, they can be envisioned as a minimal system

for constructing an artificial cell assembly expressing genes [105-107].

3.2 Exotic vesicles

The shape of lipid vesicles at equilibrium is not limited to a sphere. A large variety of shape defor-

mations on giant vesicles are achievable by changing the external constraints on the membrane,

namely the osmotic pressure difference between the interior and exterior of the vesicle [108] and

the temperature [109]. The equilibrium shape of the vesicle can be fully determined by the area

difference elasticity (ADE) model [110,111], which implies an additional term to the curvature

energy of the membrane. This energetic term arises from the deviation in the total area difference

between the inner and outer leaflets. Minimizing the thus-obtained free energy leads to the final

shape. Complex two-dimensional phase diagrams can be numerically calculated, and the mor-

phology of vesicles is then obtained as a function of a dimensionless measure of the volume-to-

area ratio and of the intrinsic area difference which indicates the preferred curvature of vesicles

[111].

Such calculations predict for phospholipid vesicles, a structural hierarchy of unexpected

shapes such as rackets, boomerangs, and starfishes [112,113], and point out the existence of a

critical point in the phase diagram where minute variations of membrane parameters can induce

large shape transformations. Other shapes include stomatocytes, discocytes, prolates, and pears

(Figures 7A, B and 7C) and have been reported experimentally with ternary mixtures of fluid lip-

ids by adding salt into the extravesicular solution so as to apply an osmotic pressure difference

[114].

In the case where the membrane of vesicles experiences a phase separation into raft microdo-

mains, a term arising from the line tension at the phase boundary must be added to the free

energy [115]. It results in complicated morphologies where the domains impose locally their pre-

ferred curvature and generate budding portions on the surface of vesicles [116-118]. Two photon

fluorescence microscopy on giant vesicles provides a direct way to visualize lipid domains

labeled with distinct fluorescent dyes. It gives information about the deformations induced on

the vesicles (Figure 7D) [119-122] and allows to evaluate quantitatively the dynamics of raft

microdomains [114,123,124].
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3.3 Lipid nanotubes

Electron microscopy has revealed the existence of tubulo-vesicular elements interposed between

the endoplasmic reticulum and the Golgi apparatus in pancreatic rat cells [125]. It was suggested

that these lipid nanotubes, abundant around the Golgi complex, interconnect adjacent Golgi ele-

ments and are involved in the transport of membrane outward along microtubules [126]. The

directed transport of small membrane blebs along a lipid nanotube has been observed in red

blood cells as well [127], supporting the idea of the general interconnection of cellular compart-

ments by lipid nanotubes.

Lipid nanotubes consist of multiple lipid bilayers rolled up in a long cylinder [128,129]. Their

inner diameter ranges from ~10 nm with synthetic lipids to hundreds of nanometers for natural

phospholipids, and their length can reach up to several centimeters [130].

Because most phospholipids do not self-assemble into tubular shapes upon simple disper-

sion, phospholipid nanotubes must be obtained for example by pulling on the membrane of

immobilized giant vesicles with a micropipette [131,132]. In doing so, complex tubulo-vesicular

networks in which the transport of specific molecules between compartments is assured by con-

trolled diffusion can be constructed in view of bioanalytical applications [27,132,133]. In other

protocols, the lipid tube growth is induced by a fluid flow guided in microfluidic channels

[130,134], or by the binding of steptavidin to biotinylated membranes [135].

Exotic vesiclesFigure 7
Exotic vesicles. (A) Prolate, (B) stomatocyte, and (C) starfish vesicles made of a ternary mixture of saturated and 
unsaturated phospholipids and cholesterol, in presence of ~1 mM of sorbitol at 60°C. Reprinted figure with permis-
sion from reference [114]. Copyright 2008 by the American Physical Society. DOI: 10.1103/PhysRev-
Lett.100.148102 (D) Three-dimensional confocal microscopy image of a giant vesicle labeled with two distinct 
fluorescent dyes staining the liquid-ordered and liquid-disordered phases of a ternary mixture of lipids. Reproduced 
from reference [123] by permission of the PCCP Owner Societies.
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It is worth noting that synthetic polymerizable phospholipids have enabled the spontaneous

assembly of nanotubes with diameters of approximately 500 nm upon cooling down below the

gel-to-liquid crystalline phase transition temperature [136,137]. Besides, elongated assemblies

called cochleates have been derived from dioleoylphosphatidylserine (DOPS), simply by adding

calcium chloride to a dispersion of liposomes. Cochleates are made of spiral multilayered struc-

tures (Figure 8) held together by a cation bridge, and have been used in drug delivery [138].

Following the spirit of research conducted on carbon nanotubes, studies on lipid nanotubes

with attoliter void volume have been carried out. The typical nanotube diameter must lie in the

range of ~10 nm, a curvature inaccessible to most of the lipid bilayers. Synthetic glycolipids pre-

senting a single hydrocarbon chain are able to self-assemble into nanotubes of interdigitated

lamellar layers stabilized thanks to a - stacking mechanism. Their inner diameter is about

10~15 nm, and their wall thickness up to ~15 nm [139] conferring a tubular persistence length

of about 5 cm, that is, fifty fold as high as that of microtubules [140]. Interestingly, these glycol-

ipids yield nanotubes with varying morphologies according to the degree of unsaturation of their

hydrocarbon chain: twisted ribbon, coiled ribbon or nanotube without helical marking (Figure

9). The water confined within these nanotubes was shown to be highly structured with respect to

the bulk [141].

4. Lipid-based complexes

Lipids can be complexed with virtually any materials provided that the electrostatic interactions

are favorable. It is therefore impossible to review all the existing structures in a comprehensive

manner. We will limit ourselves to the systems that have been extensively studied or that present

a particular interest to biophysicists.

Transmission electron micrograph of cochleatesFigure 8
Transmission electron micrograph of cochleates. Transmission electron micrograph after freeze-fracture of 
cochleate cylinders prepared from anionic phosphatidylserine (PS) and calcium ions. The layered structure is clearly 
visible. The scale bar is 200 nm. Reproduced from reference [138] with permission. Copyright 2002 by Elsevier Sci-
ence.
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4.1 Lipid-DNA complexes or lipoplexes

Mesoscale assemblies made of lipids and DNA are perhaps the most documented self-assembled

lipid-based complexes because they are a good case study of the intermolecular interactions

between lipids and polyelectrolytes, and most importantly because they hold great promises for

the future of gene therapy and protein delivery into cells [142-147]. Lipid-DNA complexes, also

called lipoplexes, were first introduced some 20 years ago by mixing cationic liposomes with

DNA, and allowed the effective transfer and expression of genes in cultured cells [148]. The

encapsulation of DNA was by far more efficient than previous techniques involving liposomes

because the cationic charge of the synthetic lipids enabled a 100-%-efficiency association with

the negatively-charged DNA.

Several of the liquid-crystalline structures listed previously are recovered by lipoplexes (Figure

10). The complexed lamellar phase  consists of alternating monolayers of parallel DNA rods

and lipid bilayers [149-151]. The spacing between the two-dimensionally condensed DNA rods

is extremely regular and varies from nearly close packing (~24 Å) to about 60 Å depending on

the lipidic charge density [152] and on the ions that screen the electrostatic repulsion created by

the rods [153]. Moreover, there is a transbilayer correlation in the DNA ordering possibly con-

trolled by the membrane rigidity which varies with the temperature [154]. Another structure

often encountered is the complexed inverted hexagonal phase  where DNA rods are coated

by a lipid monolayer and arranged on a two-dimensional hexagonal lattice. In comparison with

the lamellar phase , this structure is obtained either by increasing the spontaneous curvature

LC
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Morphologies of glycolipid nanotubesFigure 9
Morphologies of glycolipid nanotubes. Transmission electron microscope images of (A) twisted, (B) coiled, 
and (C) tubular one-dimensional assemblies of glycolipids. Reproduced from reference [128] with permission. Cop-
yright 2005 by the American Chemical Society. (D) Schematic cross-section of the interdigitated lamellar layers of 
single hydrocarbon chain glycolipids in the nanotube membrane. The glycolipid headgroup is represented in red and 
the hydrocarbon chain in grey.
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of the membrane or by lowering its mean curvature modulus down to a few kB T [155]. A com-

plexed micellar hexagonal phase  was reported as well, where the DNA rods are arranged on

a honeycomb lattice in the interstices of the lipid micelle arrangement [156].

Cationic lipids scarcely occur in cell membrane, they are only found in tiny amounts in neu-

ronal tissues as cationic glycosphingolipids for instance [157]. As a result, the injection of syn-

thetic cationic lipids into cells induces a number of toxic effects, often lethal, the more so as the

lipid-to-DNA charge ratio of lipoplexes increases [158]. To address this issue, non-cationic phos-

pholipids have been used in association with multivalent cations. By binding to the lipid head-

group, multivalent cations are able to turn the overall headgroup charge positive [159], making

H I
C

Lipoplex phasesFigure 10

Lipoplex phases. Schematic representations of the phases of lipid-DNA complexes: complexed lamellar , com-

plexed inverted hexagonal , and complexed micellar hexagonal . The lipids are depicted in red (headgroup) 

and grey (hydrocarbon chain), while the DNA rods are in blue.
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the complexation with negatively-charged DNA electrostatically favorable. In doing so, the usual

complexed liquid-crystalline structures are recovered, namely lamellar [160-162] and inverted

hexagonal [163,164], the cations being intercalated so as to bridge the phospholipid headgroups

and the DNA rods. Such systems have been proven as efficient as cationic lipids to transfer genes

in cultured cells depending on the concentration and the valence of cations [164]. Monte Carlo

calculations have shown that phospholipid-DNA complexes are the more stable in terms of free

energy as the cation valence increases but this stabilization saturates beyond the value +4 [165].

The efficacy of gene transfection into cells depends upon a large number of variables and to

date no clear picture has been drawn relatively to the requirements for an optimal delivery of

genes. It is commonly admitted that lipoplexes are internalized by endocytosis after binding to

the negatively-charged cell surface thanks to their cationic charge [166]. The charge may also play

a role in promoting the fusion necessary to escape the endosome. However, at high lipid-to-DNA

charge ratio, the DNA may be so strongly coupled to the lipids that it cannot be released toward

the nucleus [167]. The liquid-crystalline structure appears to be critical for an efficient release of

DNA. A good configuration seems to start from a stable lamellar  lipoplex, which turns into a

non-lamellar – possibly non-complexed hexagonal or cubic phase – upon mixing with the ani-

onic lipids of the endosomal membrane [168,169].

4.2 Other lipid-polyelectrolyte complexes

Mixtures of cationic and neutral lipids that yield membranes in lamellar phase have been used

in association with negatively-charged filamentous bacteriophage M13 virus and cytoskeletal fil-

amentous actin (F-actin). The two polyelectrolytes have similar diameters, ~6.5 nm for the

former and 7.5 nm for the latter, but different surface charge densities, 1 e-/256 Å 2 and 1 e-/625

Å 2 respectively. Like DNA, M13 virus and lipids form a complexed lamellar phase  with an

inter-M13 spacing of 8.2 nm, slightly larger than the diameter of the M13 virus [170]. In contrast,

F-actin and lipids result in the formation of ribbon-like nanotube structures with an average

width of 250 nm and length up to 100 m, consisting of lipid bilayers sandwiched between two

layers of actin [171]. This difference of structure is attributed to the charge-density-matching

mechanism: because the F-actin lattice of low charge density cannot compensate the charge den-

sity of the lipid membrane (1 e+/251 Å 2), the system self-assemble into a superlattice structure

where one layer membrane is matched against two layers of F-actin.

Another unconventional complexed lamellar structure is produced with poly-L-glutamic acid

(PGA) polypeptides. Small angle x-ray scattering data revealed a "pinched lamellar" structure

where anionic PGA and cationic lipids formed localized pinched regions; in between, the adja-

cent quasi-neutral bilayers swelled into large pockets of water stabilized by hydration repulsion

[172].
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The final structure of lipid-polyelectrolyte complexes arises from the interplay of the electro-

static interactions, the spontaneous curvature c0 and the mean curvature modulus  of the lipid

membrane, the polyelectrolyte itself being considered as rigid enough not to bend over length

scale comparable to the liquid-crystalline periodicities. When the polyelectrolyte curvature is

much higher than c0, the complex ends up in either  or  phase. If the curvatures fall into

the same range as is the case with negatively-charged microtubules (~26 nm in diameter), the lip-

ids form either a beads-on-a-rod structure along the polyelectrolyte at  >> 10kB T, or at low  (<

10kB T), they wrap it up in a bilayer to make a templated nanotube (Figure 11) [173-175].

4.3 Association with inorganic materials

Lipid bilayers immobilized on solid supports have become very popular for mimicking the basic

processes occurring on a real cell membrane (see the section dedicated to raft microdomains)

and for biotechnological applications [176,177]. A number of coupling techniques have been

developed over the past decades including polymer-cushioned lipid bilayers [178,179], hybrid

bilayers [180], tethered lipid bilayers [181] and physically self-assembled lipid monolayers

[182], with the possibility to pattern the membranes on the micron scale by using photolithog-

raphy [183]. The simplest route though is by the spreading of small lipid vesicles on hydrophilic

substrates [184], employing if necessary divalent cations to bridge the like charges of lipids and

substrate [185,186].

In nanotechnology, the association of lipids with carbon nanotubes aims at functionalizing

inorganic nanoobjects for bio-related applications. Carbon nanotubes are tubular assemblies of

carbon atoms with inner diameters ranging from 1 to 10 nm and possess a number of attractive

mechanical and electrical properties [187]. Intrinsically hydrophobic, they are poorly soluble in

aqueous solution. Synthetic single-chain lipids designed for the immobilization of histidine-

tagged proteins can successfully coat carbon nanotubes in monolayer [188]. Lysophospholipids,

i.e. single-chained phospholipids, form striated arrangements with a ~4.5-nm periodicity [189]

on the surface of single-walled carbon nanotubes (Figure 12), and improve dramatically their sol-

ubility [190]. Lipid bilayers can be also obtained around nanotubes by coating them with layers

of oppositely charged flexible polyelectrolytes prior to liposome fusion [191]. These systems are

anticipated to yield novel sensors, biosensors and photo-switched functional devices [192], and

may be used for nanotoxicological studies [193].

5. Perspectives on computer simulations

Most of the studies described above relied on experimental methodologies to get structural infor-

mation about the system of interest, often indirectly. Electron microscopy, x-ray scattering,

atomic force microscopy, all these techniques give only certain features of the structure – symme-

try or periodicity -, and must be supplemented with careful interpretations to reconstruct the

detailed arrangement. The prediction of the final structure for a given system is challenging
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because a huge number of molecular interactions usually come into play. With the refinement of

statistical mechanics models and the increasing rapidity of modern computers, fine structural cal-

culations and dynamic over long time scale become accessible, for system complexity up to a lim-

ited extent though. We shall give a few words about the possibilities offered by computational

techniques to self-assembled lipidic systems.

A lot of the underlying physics can be obtained by phenomenological Hamiltonians which

conceive of the lipid systems as an assembly of thin interfaces characterized by their elastic con-

stants. This description permits to deal with large systems, considering the collective behavior of

Lipid-microtubule nanotubeFigure 11
Lipid-microtubule nanotube. Complexed nanotube consisting of a microtubule (~26 nm in diameter) made of 
tubulin protein subunits (red-blue-yellow-green spheres) coated by a cationic lipid bilayer (headgroups in green and 
white, hydrocarbon tails in yellow). A third layer of tubulin oligomers actually wraps up the bilayer in the plane per-
pendicular to the nanotube axis. The arrangement is deduced from x-ray data and transmission electron microscopy 
images. Reproduced from reference [175] with permission. Copyright 2007 by the Biophysical Society.

Lipid bilayers templated on carbon nanotubesFigure 12
Lipid bilayers templated on carbon nanotubes. Transmission electron microscopy image of self-assembled 
single-chained lysophospholipids on single-walled carbon nanotubes. The assemblies display a striation periodicity of 
~4.5 nm. The scale bar is 15 nm. Reproduced from reference [189] with permission. Copyright 2006 by the Ameri-
can Chemical Society.
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lipid molecules possibly in interaction with polyelectrolytes. It is a very convenient approach to

predict the equilibrium shape adopted by exotic vesicles [111]. We can also calculate the com-

plete phase diagram of cationic lipid-DNA complexes as a function of the lipid composition and

the lipid-to-DNA charge ratio [194,195]. This method, easy to implement numerically, yet

requires an a priori knowledge of the system and of its behavior through the choice of suitable

parameters. Density-Functional Theory (DFT) proceeds in a similar way, namely by assuming

that the organized structures satisfy a local minimum of the free energy, this latter being repre-

sented in terms of molecular density-functionals [196,197]. Based on coarse-grained models of

lipid molecules, DFT is able to reconstruct the phase diagram of lipid bilayers, predicting the

transition from dilute bilayers to lamellar phase [198]. Applied to self-assembled systems, DFT

is still in its infancy but holds many promises as it provides a rather fine structural description at

a low computational cost.

A step further toward the real life is achieved by coarse-grained models implemented in Monte

Carlo or molecular dynamic computer schemes [199,200]. In these models, group of atoms are

lumped into pseudo-particles interacting via pair potentials. Noticeably, models with implicit

solvent, in which hydrophilic/hydrophobic interactions are heuristically embedded into the pair

potentials without the mediation of solvent molecules, enable to simulate large self-assembled

lipidic systems with a decent accuracy and reasonable computational cost. They reproduce the

elastic properties of weakly undulating lipid bilayers [201], as well as the self-assembly of lipid-

DNA complexes [152,165,202]. Figure 13 shows a self-assembled lipid-ion-DNA complex in 

phase simulated through a Monte Carlo scheme. Such a simple simulation gives quantitatively

access to the thermodynamical stability of complexes in function of the valence of cations for

instance. Other models, with explicit solvent, are able to reproduce the thermotropic lamellar-to-

hexagonal phase transition of unsaturated phospholipids [203] or the two-dimensional phase

separation occurring on the surface of binary fluid vesicles [204].

The ultimate refinement in molecular simulation is achieved by atomistic models in which

the molecular structure and the interactions of components are described faithfully, including

chemical bonds (bond, angle and dihedral potentials), electrostatic and van der Waals interac-

tions [205]. Extremely accurate, they cannot, however, deal comfortably with mesoscale systems

(extending beyond 10 nm) or track most of the self-assembly processes taking place beyond

microseconds given the insufficient power of nowadays computers. Atomistic models have been

up to now well suited for investigating the atomic interactions between lipids and proteins [206],

lipids and DNA [207], or the configuration of lipids sticking around carbon nanotube [189],

from a pre-assembled system close to its equilibrium, but they might reveal themselves as the

method of choice for unraveling the full dynamic of self-assembly processes at atomic scale as

soon as the computer technology will allow it.
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6. Conclusion

This short review has shown the diversity, the complexity and the multiscale nature of lipidic sys-

tems, no matter if they are purely made of lipids or in association with polyelectrolytes and inor-

ganic materials. Figure 14 summarizes the various lipidic structures described before. When the

packing parameter of lipids p is larger than 1 or smaller than 0.5, the system tends to form non-

lamellar phases such as hexagonal and cubic phases. Otherwise (1/2 <p < 1), lamellar phases are

obtained, with lipids in fluid or gel state depending on their phase transition temperature. Upon

mixing lipids in different state, segregation into raft microdomains occurs. At the macroscopic

scale, lamellar membranes form spontaneously spherical vesicles, or exhibit other shapes (tube,

starfish, prolate etc.) when submitted to a constraint such as a difference of osmotic pressure

between the interior of the vesicle and the bulk solution. In the presence of another material pre-

senting a favorable electrostatic interaction with the lipids, three other structures are achieved

depending on c0, the local curvature of the material CM, and the mean curvature modulus of lipid

membrane . At high material curvature CM >> C0, complexed phases are generally obtained ( ,LC


Computer simulation of a self-assembled lipidic complexFigure 13
Computer simulation of a self-assembled lipidic complex. This water-free Monte Carlo simulation repre-
sents a hexagonal complex of zwitterionic lipids (headgroups in red and hydrocarbon chains in grey), divalent cati-
ons (yellow spheres) and DNA rods (blue). The DNA rods are maintained fixed on a hexagonal lattice over the 
simulation. Lipids and cations are randomly distributed at the initial stage (inset). Reproduced from reference [165] 
with permission. Copyright 2007 by the American Chemical Society.
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 etc.). If now the membrane curvature is higher than that of the material, either lipid vesicles

with a stiff membrane ( >> 10kB T) are immobilized on the material surface, or the lipid mem-

brane is flexible enough ( > 10kB T) to coat the material and results in a templated system.

If Biology finds naturally more interest in active compounds, that is, proteins and enzymes

with dynamic and vital functions to the cell, Physics still remains intrigued and inquiring about

H II
C

Overview of the structures formed by self-assembled lipidic systemsFigure 14

Overview of the structures formed by self-assembled lipidic systems. The structures described in this 
mini-review are summarized along with the physical factors enabling to get from one structural category to another. 
p denotes the lipid packing parameter, c0 and  are the spontaneous curvature and the mean curvature modulus of 

membranes, Tc is the critical temperature of lipid phase transition,  is the difference of osmotic pressure between 
the interior of vesicles and the bulk solution, and CM stands for the local curvature of a material to associate. Each 
structural category is illustrated by a schematic of a typical lipidic structure: inverted hexagonal phase HII, fluid and 
gel lamellar phases L and L, raft microdomains, liposomes and starfish vesicles, complexed inverted hexagonal 

phase , lipid vesicles on a surface, and lipid-coated carbon nanotubes.H II
C
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the fundamental principles that drive the lipid self-organization into mesoscale structures cover-

ing three orders of magnitude in the nanometer range. Not only lipids may tell us about the spark

that gave birth to primitive living organisms – Life is after all, a self-assembly process -, but also,

by harnessing the building blocks of Life, we may be able to mimic, or even trick, Nature, and

design Life-like systems performing specific tasks in a better way. No matter what the applications

may be, protein crystallization or gene delivery, it is a safe bet that understanding self-assembled

lipidic systems will continue to enrich the biological and medical research.
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