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Abstract

Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known,

however, about how fragmentation affects animal trophic guilds and their patterns of inter-

actions with host plants. In this study, we analyzed changes in biotic interactions in forest

fragments by using a multitrophic approach. For this, we classified arthropods associated

with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and preda-

tors) and assessed the topological structure of intrapopulation plant-arthropod networks in

fragments and continuous forests. Habitat type influenced arthropod species abundance,

diversity and composition with greater abundance in fragments but greater diversity in con-

tinuous forest. According to trophic guilds, coleopteran herbivores were more abundant in

continuous forest and overall omnivores in fragments. Continuous forest showed a greater

diversity of interactions than fragments. Only in fragments, however, did the arthropod com-

munity associated with H aurantiaca show a nested structure, suggesting novel and/or

opportunistic host-arthropod associations. Plants, omnivores and predators contributed

more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do

not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our

study contributes to the understanding of the impact of fragmentation on the structure and

dynamics of multitrophic arthropod communities associated with a particular plant species

of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is

needed to strengthen the conclusion that forest fragmentation negatively affects arthropod

assemblages.
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Introduction

Habitat loss and fragmentation have been recognized as the most immediate threats to global
biodiversity [1,2]. Biotic interactions (e.g. pollination, seed dispersal, predation, etc.) are
important forces in structuring biological communities [3,4], and understanding how tropical
rain forest fragmentation affects the ways in which organisms interact within and across tro-
phic levels is relevant for conservation studies [4]. The new environments that develop after
fragmentation generally fall outside the range of conditions that occurred in the natural forest
in which different organisms interact [5,6]. Some novel environments, however, facilitate the
colonization of native and/or exotic disturbance-loving species affecting the organization of
ecological communities [7–10]. Because ecosystems are conformed by a web of trophic levels,
the loss or decrease in the population of one species or functional group could in turn affect
species of other trophic levels, thus modifying community structure and dynamics [7,11].

Plants are subject to colonization and/or attack by many different organisms (e.g. viruses,
bacteria, fungi, nematodes, insects, among others) that may modify or interrupt their vital
functions which affect plant fitness. In spite of this, some other organisms simply use plants as
temporal or permanent habitats without damaging them and are even considered beneficial
once they can predate on plant pests [12]. In Neotropical forests, antagonistic and mutualistic
interactions of someHeliconia species (Heliconiaceae: Zingiberales) have been fully described
under natural and cultivated conditions [13–15]. Some such organisms are incidental visitors
that use heliconias only as a substrate or to search for prey; they are also herbivorous inverte-
brates feeding on the rhizomes, stems, floral bracts and leaves of heliconias. In contrast, other
animal species expend part or their whole lives in the different structures of heliconias. These
specialized herbivores include hispine beetles (Chrysomelidae) and caterpillars (Nymphalidae)
[13]. Moreover, almost all species of Hispinae beetles are obligate pests of the Zingiberales,
including heliconias [16,17].

Therefore, the large number of invertebrates within different trophic guilds (e.g. parasites,
saprophytes, herbivores, omnivores and predators) associated with Heliconia species provides
an excellent model system for understanding the impact of tropical rain forest fragmentation
on multitrophic interactions and also arthropod species diversity, abundance, composition,
and species turnover. Several types of biotic interactions are increasingly at risk from local and
global extinction as a consequence of fragmentation and other anthropogenic disturbances;
however, most studies have focused only on species loss and overlook the loss of biotic interac-
tions within different trophic guilds [7,18,19]. Thus, in this study we aimed to understand the
patterns and processes underlying the structure of plant and animal communities in a frag-
mented landscape of southern Mexico. We used as a model system the understory perennial
tropical herb Heliconia aurantiaca Ghiesbreght ex Lamaire and its associated arthropod fauna.
We consideredH aurantiaca herbs as microhabitats, in which different trophic guilds of
arthropods interact (i.e. herbivores, omnivores and predators).

Based on graph theory, several studies have found nonrandom patterns of interactions in
plant-animal networks, including for example nestedness and modularity [20–22]. A network
is considered nested if species with fewer interactions (peripheral species) are connected with
species with the most interactions (central core species) in cohesive subgroups [23, 24]. Alter-
natively, a modular network indicates that there are subgroups of species that interact more fre-
quently among themselves than with species from other subgroups in the network [22,25]. In
fact, network analysis is a valuable tool for studying the diversity of species and interactions
within and across trophic levels [19–21].

In tropical forests, studies have shown that although a drastic turnover of animal species
from conserved to disturbed habitats the nested structure of ecological networks is maintained
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[8–10]. Therefore, by using H. aurantiaca as a model system we evaluated whether or not the
structure of ecological networks depends on habitat type and on the trophic guild of the associ-
ated arthropod faunas. Specifically we addressed the following questions: (1) Do arthropod
abundance and diversity change between continuous forest and fragments? (2) Do trophic
guilds change between habitat types? (3) Does individual-based network structure change in
H. aurantiaca plants between continuous forest and forest fragments? (4) What is the contribu-
tion of distinct trophic guilds to nestedness in the resulting ecological networks? Because the
abundance and composition of invertebrate communities have been shown to differ in human-
disturbed landscapes and specialized herbivores decrease therein (e.g. chrysomelid beetles and
caterpillars), we expected that fragments and continuous forest do not share similar ecological
network structures.

Methods

Study area

The Comisión Nacional de Áreas Naturales Protegidas (CONANP), granted permits to work
in Montes Azules Biosphere Reserve (MABR) (permission number SGPA/DGVS/07830). The
study was conducted within the MABR, Chiapas, in southeastern Mexico (16°06’N, 90°56’W,
120 m elev.). The MABR is within the Selva Lacandona region that comprises part of Guate-
mala and Mexico [26]. Human activities have dramatically reduced the original forested area
(500,000 ha) by one-third in 40 years. The MABR contains the majority of the remaining forest
of the region (3, 310 km2) and constitutes the main component of the Mesoamerican biodiver-
sity hotspot [27,28]. Currently the landscape is composed of a mosaic of land uses including
forest fragments, secondary vegetation of various ages, human settlements, cropland, pastures,
and paved and unpaved roads. Maximum and minimum annual temperatures are 31.8°C
(April-May), and 18°C (January-February), respectively. Annual precipitation is ca. 3, 000 mm
[29].

The main vegetation type is lowland tropical rain forest, with trees reaching up to 40 m in
height in alluvial terraces along main rivers [30]. There are ca. 4,000 species of vascular plants
[26]. Two replicates of contrasting habitat types were considered for this study: old-growth
continuous forests and small forest fragments (< 10 ha with 20–30 years of isolation). Tree
species richness and density are similar between fragments and continuous forest; however,
continuous forest sites hold a greater number of large trees (> 60 cm diameter at breast height)
and lower canopy openness than forest fragments [31]. In order to have different populations
ofH. aurantiaca, the four study sites were at least 4 km apart from each other and in alluvial
terraces [30].

Study species

Eight species of the genus Heliconia have been recorded in the study area, but only three can be
found under the shaded conditions of the forest understory: H. aurantiaca,H. librata, and
H. vaginalis [32]. The most common of these shade-tolerant herbs within forest fragments is
H. aurantiaca. Herbs of H. aurantiaca are native to America, and are 0.5–2.0 m tall, with a zin-
giberoid growth form and a spiral bract arrangement with erect inflorescences [32].

The foliage ofH. aurantiaca is attacked by three major groups of insects [33]: (i) hispine
beetles—mostly small chrysomelids, some specialized in the genus Heliconia [16, 17,34]; (ii)
caterpillars represented by a broad gradient of body size, including those large and specialized
Caligo and Opsiphanes (owl butterflies) [33,35]; and (iii) leaf-cutter ants of the genera Atta and
Acromyrmex—which are some of the most generalist herbivores in the Neotropics [36].
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Preliminary observations in the study area suggest that the density of specialist hispines
declines in forest fragments, whereas that of leaf-cutter ants increases. No change has been
observed in the abundance of caterpillars [37]. Three species of hispine beetles (i.e. Cephaloleia
spp) have been recorded feeding on the foliage ofH. aurantiaca; one species belongs to the
belti-complex, and the other two species belong to the instabilis-stenosoma complex. In addi-
tion, six species of caterpillars have been observed feeding on H. aurantiaca foliage; three of
which are considered specialized in Zingiberales (i.e. Caligo uranus, C.memnon and Opsi-
phanes tamarindi tamarindi), and the rest are considered as generalist herbivores (i.e. Tarchon
felderi, Antichloris sp., Acharia cf. stimulea [37]). Furthermore, the numbers of leaf-cutter ant
nests (Atta cephalotes) are higher in fragments than in continuous forest [37]. Other inverte-
brates found to inhabit different structures ofH. aurantiaca foliage include spiders, harvest-
men, other ants, other beetles, bees, cockroaches, ticks, flies, mosquitoes, grasshoppers,
phasmids, bugs and snails (Benítez-Malvido, unpublished data). The density of and the physi-
cal and chemical foliage traits of H. aurantiaca (i.e. leaf area, leaf toughness, leaf condensed
tannins, number of shoots per plant, etc.) have been shown not to differ significantly between
continuous forest and forest fragments (Table 1).

Invertebrate sampling

To assess whether or not forest fragmentation affects local arthropod diversity and abundance
within different trophic guilds, in each habitat at each study site we randomly selected seven
individuals ofH. aurantiaca. Individuals ofH. aurantiaca were at least 5 m apart from each
other on all study sites and habitat types. Arthropods were collected in three surveys during
May, August and November of 2013. In each survey, we randomly selected new individuals,
and therefore no plant of H. aurantiaca was sampled more than once. In total, we sampled 84
different plants: 42 in continuous forest and 42 in forest fragments. The samples of one plant
per habitat were lost however.

We collected all arthropods (mainly adults and a few larvae) found onH. aurantiaca
clumps. Firstly, we made a visual inspection of the plant to catch jumping insects and spiders.
Secondly, we collected arthropods by tapping the plant with a stick while holding a collecting
tray underneath. Finally, we carefully reviewed all plant structures including leaf blade, petiole,
and bracts to collect all the arthropods in the individual clumps. Arthropods were placed into
plastic pots containing alcohol 70% and subsequently identified to the lowest possible taxo-
nomic level. Voucher adult specimens were deposited at the Instituto de Biología and at the
Instituto de Investigaciones en Ecosistemas y Sustentabilidad collections, UNAM, Mexico.
Some of the collected specimens might be undescribed or new records for Mexico. Although

Table 1. Characteristics (mean ± SE) ofHeliconia aurantiaca plants in continuous forest and forest
fragments in southeastern Mexico (modified after [37]; Santos & Benítez-Malvido, unpublished data).

Continuous Forest Forest Fragments

Host density (clumps/314 m2) 98 ± 13 137 ± 22

No. of leaves 134 ± 18 154 ± 14

Leaf area (cm2)a 1532 ± 19 1396 ± 39

No. of shoots per year a 38 ± 04 43 ± 09

No. of flowers per year a 143 ± 20 172 ± 21

Absorbance of condensed tannins 26 ± 02 25 ± 032

Leaf toughness (g/cm2) 2626 ± 242 2738± 145

aMean leaf area, shoot number and flower number were calculated from 18 plants per habitat

doi:10.1371/journal.pone.0146461.t001
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caterpillars (Lepidoptera) have been reported as pests of Heliconia elsewhere [15], we did not
collect their larvae in our surveys [33]. All collected arthropods were subsequently classified
into four broad trophic levels as follows: herbivores, omnivores, scavengers and predators
[12,15]. The designation of the trophic guilds was based on the literature, morphological exam-
ination of the mouth structures and on expert knowledge. Scavengers were poorly represented
(three species of Coleoptera, Ptinidae and eight individuals) and therefore were excluded from
further analysis (S1 Table). Insect herbivores can feed either externally or internally within
plants (e.g., chewing insects, leaf miners, fluid and/or phloem feeders, and gall-making insects)
[15]. However, because of the limited knowledge on the arthropod community in the study
region, it was only possible to classify insects and other arthropods into the above trophic
guilds regardless of their feeding mode.

The arthropod community

To detect differences in arthropod density within trophic guilds between habitats we used gen-
eralized linear models (GLM) for count data with a Poisson error distribution and a logit link
function; we also checked for overdispersion [38]. Preliminary analysis showed that arthropod
density did not differ between sampling times (χ2 = 4.05, df = 2, P = 0.1) and therefore, data
from the three surveys were pooled for all analyses as indicated for repeated measurements [39,
40]. Sample coverage and true diversity metrics were calculated in SPADE [41]. Generalized
linear models and bootstrap plot curves were carried out using R. 3.0.1 [38,42]. Completeness
of arthropod species inventory per habitat type was evaluated as the percentage of observed
species in relation to the number of species predicted by the sample coverage estimator, which
is the least biased estimator of sample completeness [43]:

Cn ¼ 1�
f 1

n

ðn� 1Þf 1

ðn� 1Þf 1þ 2f 2

�

�

�

�

�

�

�

�

where f1 and f2 are the number of singletons and doubletons in the sample, respectively, and n
is the number of individuals. Furthermore, in order to make direct statistical comparisons of
species richness between habitat conditions, we generated individual-based rarefaction curves
by using the on-line resource ¡NEXT [44] that is based on R-statistical language.

We calculated the number of effective species by using the measure of true diversity of
Order 1 [45], which weights each species exactly by its frequency in each habitat type (i.e.
favoring neither rare nor common species). Given the presence of rare species (singletons) in
both habitats, we calculated the estimated diversity by employing the Chao and Shen method
[46], which is a non-parametric approach that allows for an accurate estimation when there are
unseen species in a community. In addition we calculated the diversity Order 2 (inverse of the
Simpson index) [45], by using the MVUE estimator (minimum variance unbiased estimator).
Finally, to assess the turnover of species composition between habitats we used similarity Bray-
Curtis index between the two habitats [47], and differences were analyzed with a permutational
multivariate analysis of variance after 999 permutations [48].

Patterns of species interactions by using an interaction network
approach

Firstly, we included the presence of different animal species visiting the 82 different individuals
ofH. aurantiaca in each habitat (continuous forest and forest fragments) as independent inter-
action networks. Each individual-based animal-plant network was built by an adjacency matrix
A, where aij = number of interactions from an individual plant j by the animal species i, and
zero otherwise. We then calculated the diversity of interactions (DI) for each network. This
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metric is derived from the Shannon’s diversity index and ranges from 0 (no diversity) to infin-
ity [49]. We used the NODFmetric (based on overlap and decreasing fill) [50] in the ANIN-
HADO program [51] to calculate if selective species would visit only a subset of plant
individuals visited by the central core species. We choose this metric because it is less prone to
Type-I statistical error: in other words, the incorrect rejection of a true null hypothesis (a “false
positive”). The NODFmetric reduces the chance of overestimating the degrees of nestedness in
ecological networks [50]. To assess if the nestedness value observed was higher than expected
by random interaction patterns, we tested the nestedness of each network with 1000 networks
generated by Null Model II. In this null model, the probability of occurrence of a new interac-
tion is proportional to the number of interactions of a given species [20]. Once our interaction
network in the forest fragments was significantly nested (see the Results section), we explored
whether the three trophic guilds (herbivores, omnivores and predators) contributed equally to
the structuring of the nested pattern. We estimated the degree to which the interactions of
plants or trophic guilds increase or decrease the network’s overall nestedness (contribution to
nestedness, cn) [52]. This estimate is derived from the NODFmetric, and positive values of cn
indicate a higher contribution to the nested structure. Thereafter, we used a one-way ANOVA
followed by a Tukey post hoc test to test for differences in mean values of cni among the three
trophic guilds and plants.

Results

Fragmentation and arthropod abundance

Overall, we collected a total of 727 individuals, 285 (71 morphospecies) in continuous forest
and 442 (55 morphospecies) in forest fragments. Arthropods collected fromH. aurantiaca
herbs included five orders and 27 families: Araneae, Coleoptera, Hemiptera, Hymenoptera and
Orthoptera. Hymenoptera showed the greatest abundance: 470 individuals, all of which were
ant species (Formicidae, S1 Table). All of the 82 sampled H. aurantiaca plants were occupied
by arthropods; however, not all arthropod taxa were present in all plants. The number of
arthropods per plant ranged from 1 to 25 individuals in continuous forest and from 1 to 55
individuals in forest fragments.

Arthropod abundance differed significantly between habitats (χ2 = 34.14, df = 1, P< 0001),
with forest fragments having the greatest abundance. Furthermore, there were significant dif-
ferences in the density of arthropods within taxonomic orders between habitats (χ2 = 392.42,
df = 4, P< 0001). Forest fragments hold a significantly greater abundance of Hymenoptera
(ants) than continuous forest, whereas continuous forest holds a greater abundance of Coleop-
tera (beetles) than forest fragments (Fig 1).

Forest fragmentation and trophic guilds

The arthropod community associated withH. aurantiaca in continuous forest and fragments
was grouped into three distinct trophic guilds: omnivores, herbivores and predators, with ant,
beetle and spider species being the most representative taxa of each guild, respectively (S1
Table). The most common herbivore species were tortoise beetles (Chrysomelidae: Cassidinae)
and bugs (Hemiptera); the most common predators were jumping spiders (Salticidae), whereas
the most common omnivores were ants of the genus Pheidole and Pseudomyrmex (Formici-
dae). The abundance of trophic guilds differed significantly between habitats (χ2 = 161.29,
df = 2, P< 0.001), with omnivore species being significantly more abundant in forest frag-
ments than in continuous forests (Fig 1). The number of species per trophic guild in continu-
ous forest and fragments was as follows: 37 and 43 for predators; 15 and 18, herbivores; and 3
and 10, omnivores, respectively.

Fragmentation and Arthropod Ecological Networks
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Fig 1. Total number of individuals within the five most abundant arthropod taxa and trophic-guilds
inhabitingHeliconia aurantiaca herbs in continuous forest and forest fragments in southeastern
Mexico. The number of arthropods was obtained from 41 clumps of heliconias per habitat type.

doi:10.1371/journal.pone.0146461.g001
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Fragmentation and arthropod diversity

Although estimations of sample coverage were high for both habitat types, 87% for continuous
forest and 91% for forest fragments, none of the rarefaction curves in either habitat reached an
asymptote (Fig 2). Comparing rarefaction curves at the lowest abundance value of 285 individ-
uals, species richness showed no significant differences between habitats; and comparing spe-
cies frequencies according to diversity Order 1, there were almost the same effective species in
continuous forest (25.83) as in forest fragments (22.54). In contrast, with diversity Order 2,
diversity was two times greater in continuous forest (12.48 effective species) than in forest frag-
ments (6.96 effective species). Finally, the permutational multivariate analysis of variance
showed significantly different species composition (Bray-Curtis similarity index) between hab-
itat types (pseudo-F1, 2 = 1.73, P = 0.05). Some species were exclusively found in continuous
forests (e.g. Dolichoderus lutosus) whereas others in fragments (e.g. Camponotus planatus) and
some others were common in either habitat (e.g. Dolichoderus bispinosus, see S1 Table).

Fragmentation and the structure of ecological networks

By evaluating the patterns of interactions, we found a higher diversity of interactions
(DI = 451) in the continuous forest compared to forest fragments (DI = 422). Interestingly,

Fig 2. Rarefaction curves of species richness (bootstrapmethod) based on the number of arthropods
inhabitingHeliconia aurantiaca herbs in continuous forest and forest fragments in southeastern
Mexico. The shaded area represents the confidence intervals of 95% based on 1000 randomizations.

doi:10.1371/journal.pone.0146461.g002
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only in forest fragments the interaction network involving plants and their associated fauna
was significantly nested (NODF = 8.99, P = 0.02) (Fig 3). The interaction network in the con-
tinuous forest did not exhibit a nested pattern (NODF = 8.79, P = 0.19). Contributions to nest-
edness differed greatly among plant and animal species for the interaction network in
fragments (ANOVA: F3, 109 = 32.73, df = 3, P = 0.02), and only a few species within each tro-
phic guild contributed strongly to the nested pattern. In general, plants (meanci ± SE:
0.28 ± 1.03), omnivores (0.27 ± 1.28) and predators (0.15 ± 0.76) contributed more to nested-
ness than herbivores (-0.27 ± 0.55) (Fig 4).

Discussion

Our results indicate that forest fragmentation influences the relative density and diversity of
arthropods associated with H. aurantiaca herbs. Species richness remained fairly constant, but
there was a marked species turnover in trophic guilds from continuous forest to fragments.
Contrary to other findings on arthropod assemblages in conserved and disturbed habitats, we
found that the structure ofHeliconia-invertebrate networks is not maintained in forest frag-
ments [8–10]. The changes in the local abundance, diversity and composition of invertebrates
across trophic guilds may seem to be caused by the combined effects of abiotic and biotic
factors.

Habitat fragmentation and the arthropod community

Physical and biological factors in fragments may affect the rates of colonization and extinction
of different arthropod taxa and trophic guilds in contrasting ways. In tropical rain forest frag-
ments greater canopy openness tends to favor disturbance-loving insect herbivores (e.g. leaf-
cutter ants; [7,36]). In fact we found a greater abundance and richness of ant species associated
withH. aurantiaca in forest fragments, many of which were omnivorous species. The density
of ants inhabiting H. aurantiaca was six times greater in forest fragments than in continuous
forest; fragments hold more than twice the number of ant species (17 ant species) than continu-
ous forest (seven ant species). Nevertheless, none of the common leaf-cutter ants Atta and
Acromyrmex (common pests in the Neotropics) were recorded in our surveys (but see
[33,37,53]). Apart from ants, our results revealed that fragments have a higher proportion of
omnivorous species that together with predatory spiders probably represent novel and oppor-
tunistic Heliconia-arthropod interactions (Fig 2).

Conversely, the abundance of beetles was greatest in continuous forests (70 beetles) than in
forest fragments (39 beetles). The Coleoptera was mainly represented by herbivores in both
habitats (63 herbivores vs. 7 predators, in continuous forest; and 36 herbivores vs. 3 predators
in forest fragments). Tortoise beetles (Chrysomelidae) of the genus Spaethiella sp. were the
most common leaf herbivores in our surveys (which is the first record for Mexico [54]).
Although evidence suggests that food and habitat are commonly not limited to chrysomelid
populations living on heliconias, we found however that their populations are limited in forest
fragments (S1 Table). Because of their role as herbivores and their great species richness else-
where, the chrysomelids are suggested as indicator taxa for monitoring environmental quality
and biodiversity loss in conserved and disturbed ecosystems [55]. Lower density of chrysomelid
adults and larvae in forest fragments may result from heavy parasitism and predation and from
changes in environmental conditions that make their eggs even more sensitive to desiccation
[13,16,17]. The low dispersal ability of these insects could be another possible explanation for
lower numbers in fragments [16,17,55,56].
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Fig 3. Interaction networks between individuals ofHeliconia aurantiaca and their arthropod
inhabitants divided into three trophic guilds inserted in (A) continuous and (B) forest fragments. Each
node represents one animal species or plant individual, and lines represent plant-animal interactions.

doi:10.1371/journal.pone.0146461.g003
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Host traits and the arthropod community

Host quality and density may affect invertebrate growth and reproduction and therefore plant–
invertebrate interactions (Table 1) [11,56,57]. Leaf toughness is likely the best defensive strat-
egy in heliconias as several species in the genus have few secondary compounds [56,58, 59]. In

Fig 4. Relative frequency of individual nestedness contribution for all species within each of three
trophic guilds. The data on absolute values of individual nestedness is presented as box plots illustrating
the median (center line), quartile (box edges), and extreme values (bars) of each trophic guild. Boxplots
sharing the same case letters are not significantly different among themselves according to Tukey post hoc
tests.

doi:10.1371/journal.pone.0146461.g004
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the study area, however, the local density and chemical and physical leaf traits of H. aurantiaca
did not differ significantly between habitats (see Table 1), indicating that bottom-up (i.e.
defense and nutrient content of plants) herbivory controls are not evident in our study system.
On the other hand, top-down controls (i.e. predators and parasitoids) may be regulating the
population dynamics of arthropods and therefore theHeliconia–arthropod interactions at
some level [7].

This study highlights that the persistence of specialized plant-herbivore interactions (Helico-
nia-chrysomelids) could be limited in forest fragments, in which the understory physical envi-
ronment, local extinction of some taxa, limited dispersal, reduced reproduction due to an
increased predation and parasitism, will likely have deleterious consequences for the coloniza-
tion ofH. aurantiaca plants by specialized beetles and other insects. The local extinction of spe-
cies within different trophic guilds may affect the population dynamics of arthropods and
therefore herbivory levels. In addition, as herbivores insects act as vectors of disease our results
suggest that other biotic interactions may be affected by forest fragmentation as well [15].

Ecological network patterns in fragments

Nestedness describes the organization of niche breadth within an interactive community in
which more nested interactions tend to have the highest niche overlap [9,60,61]. In this study,
we found that only in fragments the arthropod community associated withH. aurantiaca was
nested mainly because the increase of specialized herbivorous insects in continuous forest (e.g.
Spaethiella sp.). Moreover, we observed that more generalized trophic guilds (i.e. plants, omni-
vores and predators) had a greater contribution to network nestedness than did a trophic guild
with specialized species in Heliconia (i.e. herbivores). These findings indicate that aHeliconia-
arthropod network could be more functionally redundant in fragments compared to aHelico-
nia-arthropod network within continuous forest. In other words, habitat fragmentation could
be simplifying the community of arthropods interacting withH. aurantiaca and suggesting
novel and/or opportunistic host-arthropod associations as some other interactions may disap-
pear. Additionally, high herbivore diversity can also be promoted if plant–herbivore interac-
tions are specialized, because finely partitioned plant resources will facilitate species
coexistence [11]. In fact, fragments exhibited lower diversity of interactions than continuous
forest. Therefore, Heliconia-arthropod network properties do not appear to be maintained in
fragments mainly because of the decrease in specialized herbivorous insects.

Conclusion

Further studies are still needed to analyze the importance of forest fragmentation in the distri-
bution and phenology of specialized herbivores (e.g. Chrysomelidae) and other arthropods liv-
ing in Heliconia species. Studies including the impact of predators and parasitoids on
herbivorous populations, within host heterogeneity between young and old leaves (i.e. insola-
tion, chemical and physical leaf traits), arthropod colonization and spacing of host plants, are
necessary to establish the key and regulatory factors in the assemblages of the arthropod com-
munities and trophic guilds inhabiting Heliconia species. Regardless, H. aurantiaca individuals
in fragments hold a wide range of arthropods and other invertebrates in different trophic guilds
and contribute to the support of arthropod diversity in natural and human-disturbed tropical
habitats. Although we have only two replicates per habitat type, the generality of the results is
supported by the fact that significant changes in the abundance and diversity of arthropods
and trophic guilds occurred from continuous forest to fragments at different sites. However, a
larger number of sites per habitat type as well as the replication of the study in other Neotropi-
cal forests are needed to strengthen the inference that fragmentation negatively affects
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arthropod assemblages. The results obtained provide with valuable empiric information on
the effects of forest fragmentation on biotic interactions of a particular system (Heliconia-
arthropod interactions) within the Lacandon rain forest.

Supporting Information

S1 Table. Arthropod species associated to the tropical herbHeliconia aurantiaca. Labels
according to trophic guilds are: Predators (Pr), Herbivores (Hb), Omnivores (O) and Saproph-
agous (Sa). Trophic guilds and species are according to Arnett, et al. (2002), Ubick, et al.
(2005), Foelix (2011), Groc, et al. (2014). Numbers indicate the abundance of each species
within each habitat type, at Lacandon rain forest, Mexico.
(DOC)
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