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The Multiple-Scale Transport Equation 
in One Space Dimension(*)(**). 

L. G. DE PILLIS 

A b s t r a c t .  - This study examines the behavior of the one-dimensional non-homogeneous trans- 
port equation of the form eut .= u~ + f,  ~ << 1. The solution consists of behavior which changes 
on two different time scales, one rapid and one slow. This time scale behavior is known. Ad- 
ditionally, however, we find here that because of the presence of the non-homogeneous forcing 
term f ,  and large wave speed 1/e, there is a component of the solution which will vary only 
on a very large spatial scale. This large space-scale solution persists throughout all time, 
even after the source term of the solution has been shut off. The analysis of this large space- 
scale behavior is the focus of this paper. Numerical experiments highlight some of our re- 
sults. These results have applications in fields such as meteorology, and other areas where 
multiple time scales are of interest. 

1. - I n t r o d u c t i o n .  

In the process of modeling certain interesting physical phenomena, such as sound 
propagation, the equations that often arise are the well-known Navier-Stokes equa- 
tions of fluid flow; in particular, one makes use of the slightly compressible Navier- 
Stokes equations when dealing with acoustical problems. It has been shown in [3] how 
the slightly compressible Navier-Stokes equations in an infinite plane will transition to 
the wave equation for the pressure in the far-field. Related work can be found in [5] 
and [10]. If one is eventully to exploit this fact in computation, we must make a more 
thorough study of the wave equation which arises. The Cauchy problem for the wave 
equation is given by 

(1) 
f s2utt(x, t) = du(x ,  t ) + f ( x ,  t), 

u(x, O) = Uo(X) , 

ut(x, 0) = Ul(X) 

t~>0, 
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where 1/e>>1 is the constant wave speed, x = (x~, ..., x~) is a point in real n-dimen- 
sional Euclidean space, and u, u0, ul, f e  C ~ are scalar valued functions. The forcing 
function f and the initial data Uo and fu l  dx are assumed to have compact support in 
space. 

The analysis in this work will be confined to one space dimension. Extensions to 
higher dimensions will be forthcoming in later works. We note that in one space dimen- 
sion, the wave equation can be written as a decoupled system of first order (trasport) 
equations, cf. [9]. Since the system can be decoupled, the wave equation case is reduced 
to that of the transport equation. We study, therefore, the behavior of the Cauchy prob- 
lem for the non-homogeneous transport equation, on an infinite domain, of the 
form 

(2) { su t = u  x + f ( x , t ) ,  x c ~ l ,  

u(x, O) = uo(x), x e ~1 

t~>0, 

where u, u0 and f are as described above. 
An analysis can also be carried out on a periodic domain, and would be similar to 

that of the infinite domain in many respects. There are, however, some significant dif- 
ferences in the behavior of the periodic versus infinite solutions. On a periodic domain, 
standard asymptotic expansion of the transport equation solution will be uniformly 
valid. Fast  parts of the solution will arise from non-zero initial data, and these fast 
waves will remain in the domain of interest for all time. On an infinite domain, however, 
an asymptotic expansion of the solution will only be valid if the initial data and the forc- 
ing function decay rapidly enough in space so that the solution of the transport equa- 
tion is bounded. We note that the solution of the transport equation on and infinite do- 
main can be shown to be bounded in terms of the L2 norms of the initial data and the 
forcing function, cf. [9]~ 

We will show that on an infinite domain, the presence of the forcing functionf(x, t), 
in conjunction with large wave speed 1/~ >> 1, gives rise to large space scale waves, 
which persist in time, even after the forcing function has been shut off. On a periodic 
domain, however, where the period L << 1/s ,  the large space scale waves will not be ob- 
servable. Stated formally, we have 

THEOREM 1. - Let function f(x,  t) be compact in space (x) and in time (t), and be 
differentiable to at least order p in space and time. Then the solution of the Cauchy 
problem given in (2) can be expressed as 

(3) u(x, t) = Uo(X + t/e) + So(x + t/e) + S(x, t) + Q(vx, t) + o(~ p) 

where Uo is the compact initial data function. It also follows that So is bounded by 
(% 1 Ix) behavior in space. S(x, t) is bounded by the behavior of the high frequency por- 
tion of the forcing function f (x ,  t) and its derivatives. Q(x, t), the large scale compo- 
nent of the solution, persists in time, even after the forcing function has decayed away 
in time. 
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In Section 2, we give the proof of this theorem. In Section 3 we present some nu- 
merical experiments which illustrate the low and high frequency behavior predicted by 
the theory. 

Equation (2) is of interest in problems corresponding to waves with large wave 
speed, including electromagnetism, acoustics and meteorology, where in certain appli- 
cations, the forcing function introduces long waves into a system. It has been observed 
that in some cases, these long waves remain even after the source of the waves has 
been shut off. An understanding of the causes for this behavior can be enhanced 
through the mathematical analysis of this simple transport equation. 

2. - The  f i r s t  order  w a v e  e q u a t i o n  in  o ne  d i m e n s i o n .  

We begin our analysis by examining the first order one-dimensional one-way wave 
equation, or transport equation, on an infinite domain, of the form 

(4) t sut(x,  t) = u~(x, t) + f ( x ,  t) , 

Forcing function 

I n ( x ,  O) = U O(x),  X �9 ~ 1 ,  

x e ~  1 , t~>0, 

Functions u0 andf(x ,  t) are C ~ and compact in space. Functionf(x, t) is also C ~ and 
compact in time. The exact solution of equation (4) is well known and is given by 

1 (1 )  l j i ( ,  1 ) 
(5) u ( x , t ) = u o  x + - t  + -  x + - t - - v , v  dr .  

8 ~ E 

The solution (5) has components which vary on time scales of O(t) (slow) and O(t/s) 
(fast). The proof of the existence of two time scales in equations of the form of equation 
(4), in addition to equations of more general form, is given in great detail in [6, 7, 8]. In 
meteorological as well as other applications, one is often interested in the portion of 
these solutions which varies on the slow time scale only. This is because it is generally 
on this time scale that interesting qualitative behavior of physical phenomena, such as 
weather systems, evidences itself. It has been shown in [7] as well as in [8] that the 
Bounded Derivative Principle is valid for equations of this type. (See also [2] for a de- 
scription of the Bounded Derivative Principle as applied to nonlinear equations.) The 
Bounded Derivative Principle for partial differential equations is stated in [7] as 
follows: 

THEOREM 2. - Assume  that p time derivatives at t = 0 are bounded independently 
of  s. Then the same is true in  a time in tewal  0 <~ t <~ T, where T > 0 does not depend 
on ~. 

A proof of the Bounded Derivative Principle is also provided by KREISS in [7], so we 
do not include it. here. The implications of the Bounded Derivative Principle are given 
in detail in the above references. One of the implicaions which is discussed at length 
in [6, 7, 8] is that by the Bounded Derivative Principle, one can choose the' initial data 
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Uo(X) so that within a finite time interval, rapid time oscillations in the solution u, and 
its derivative up to a certain order, will not be excited. Therefore, according to the work 
in [2] and in [6, 7, 8], if the initial data are properly chosen, they will have a negligible 
effect on the solution within a finite time interval. 

It is easily seen by (5) that general initial data move at speed �9 through the do- 
main of observation. Localized initial data will continue to have a localized effect on the 
overall solution throughout time, and will eventually be transported out of the domain 
of observation. The solution form of (5), however, does not immediately evidence the re- 
maining elements of the solution described in Theorem 1. In order to find these, we 
carry out our analysis in frequency space through Fourier transforms. 

We define the Fourier transform pair to be given by 

(6) ! t) f ( x ,  - 1 f eiX~f(x,t) d$. 

It is clear that the function f(~, t) is bounded in ~ sincef(x, t) is compactly supported in 
space. This would also be the case had we only specified that f (x,  t) decay rapidly to 
zero for large x, as opposed to having specifically compact support. In fact, standard 
Fourier theory tells us that the faster the decay rate of f as I x I --~ ~ ,  the smoother 
2~(~, t) is; similarly, the faster)~(~, t) decays as I~1---> ~ ,  the smoother f(x,  t) is. The 
derivatives of all orders o f f  decay to zero for large ~ as rapidly as is necessary for our 
analysis. Clearly, the inverse Fourier transforms off(~, t) and all derivatives off(~,  t) 
exist. 

Let us define cut-off function X to be the step function 

(7) 
[1 for X(~) J 

[o for I :1 >'7. 

We can then describe our Fourier transformed forcing function ? by ? : f ,  + A  
where 

(8) f l  : z f ,  and A :  ( 1 - X ) f .  

Both f l  and A are bounded in ~, since ? itself is bounded in ~. By the definitions, both f l  
and f2 are piecewise smooth, containing only a finite number of jump discontinuities. 
According to standard Fourier theory (cf. [1]), this implies that the inverse transforms, 
fl(x, t) andf i (x ,  t), will decay in physical space at least as rapidly as 1Ix for large x. 
Additionally, bothfl(x,  t) andf2(x, t) are bounded over all x. Had we chosen the cut-off 
function X to be smoother than a step function, then the ~ (x ,  t), j = 1, 2, would have 
been smoother, making the decay of~(x,  t) in physical space more rapid. For our pur- 
poses, however, inverse distance decay is sufficient. 

We now write the Fourier transform of u(x, t) as a sum of two functions, ~(~, t) = 
= ~(~, t) + ~(~, t), where ~ satisfies 

(9) [ s~t(~, t) = is~(~, t) +f2(~, t), 

~(~, 0) = ~0(~), 
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and ~ satisfies 

(10) { ~,(~, t) = is~(~, t) +]~(~, t), 
~(~, o) = 0. 

In the next sections, we examine solutions 9 and D arising from the respective forcing 
functions J~l and f2. We keep in mind that fl is the inverse transform of f l ,  which 
has supporte over an ~/-neighborhood of the origin, and fi  is the inverse transform 
off2, which has support outside an y-neighborhood of the origin. The question arises as 
to how to choose ~/ appropriately. This will be determined upon examining solution 
and D. 

2.1. High frequency driven behavior. 

Let us first examine the behavior of the solution w to equation (9). An asymptotical- 
ly expanded representation of the solution D is achieved by following the method out- 
lined in [6]. The expanded solution to (9) is then given by 

(11) ,-1 ~j as]2(i,t) +w~ ~ + ~ ,  ~ = _ ~  - =  
j = 0 ( i ~ )  j + 1 at j 

where S is the Fourier transformed forcing driven slow part of the solution, and where 
the remainder term ~p is described by the equations 

(12) 

I ep aP]2(~, t) 
s(~)t = i~gp + (i~)---; atp ' 

p-t ~j a~f2(~,0) 
[ ~ ( ~ ,  0) = ~0(~) + ~ - -  

j = 0 ( i~) j + 1 8t j 

The Fourier transformed solution (11) is a valid asymptotic expansion when e/[~l << 1, 
i.e., I~1 >Ks for K>>I. It is, then, sufficient, to choose 

(13) 7/= Ks,  

for some constant K>> 1, since we are on the domain I~1 ~> tl. 
We now move to examining what this solution form in frequency s]~ace implies 

about the behavior of the solution in physical space. Let us first transform S from equa- 
tion (11) back to physical space, so we may examine the effect of this piece on solution w 
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of equation (9): 

S(x ,  t) = ~ e ~  S(~, t ) 4~  
V2z  !_~ 

+ e~e~(~,t)  d~ = 
+7 

i ~  -7 ~Jfe(~' t)/2t; "~ $Jfe(~' t)/~tJ d~ 
- 1 e j  e ~ d ~  + e ( i~ )  j + ~ . 

~ z  _ ( i ~ )  ;+~  +~ 

IntegralA1 IntegralA2 

Taking inegral A2, for example, we perform a change of variables, substituting ~' for 
a/~, giving 

+co 

-7 f2(~, t) d ~ -  ~]j+l e~(7*)~' ' d~' A2 = e ~ (i~)j+ 1 (i~,)j§ 
- w  +1 

A similar manipulation can be carried out on integral A1. We can now write 

(14) S(x,  t) = 

# _ 1  

-- e d~ + ~f e i(7~)~ 9Jf2(~l~'(i~)jT- ~t) /atj d~ 

where the prime symbol (') has been dropped on the ~ for convenience. 
In the same way, performing a change of variables on the Fourier representation of 

j~(x, t) yields (see (6) and (8)), 

_ _ 1  ~f2(~,  t) d~ + eiX~f2(~, t) d~ = (15) f2(x, t)= ~ _ +, 

g ~  - ~  +1 

Comparing S(x, t) in (14) withf2(x, t) in (15) gives us an estimate for S(x, t) in terms of 
the forcing f2(x, t), namely, 

p 1 d t aJf2(x,t) ! 
(16) IS(x,  ~) I < - Y~ : j = o ~ at J " 

This shows that each slow term in the asymptotic expansion S(x, t) is bounded by the 
behavior off2(x, t) and its first p - 1 time derivatives. The estimate also depends on s 
and the choice of ~/. 

We next examine the contribution of the remainder term ~p in (11) to the solution. 
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Since the forcing function in equations (12) is only of magnitude O(sP), the more signifi- 
cant contribution from ~p is likely to come from the initial data. Therefore, we focus our 
attention on the effect of the initial data in (12). Upon transforming equations (12) back 
to physical space, we see that the form of the physical space equations is that of our 
original transport equation (4): 

(17) 

- - c r  ^ 

swp~ = wpx + s p j" 3Pf2(~,~_p t) e x~ d~, 

with initial data given by 

1 p-1 
w p ( x ,  O) = Uo(X) - - -  ~ sJ. 

V ~ J = O  

-7 3Jf2(~, O) 1 e~e 3Jf2(~, O) 1 
�9 e e~ d~ + d~ = Uo(X) + S (x ,  O) 

_ ~ t  j (i~)j + 1 +7 9tJ (i~)J + 1 

It is then clear that these new initial data also move through our domain at speed 
t/s. The difference is that although Uo(X) is compact in space, which implies that after a 
short period of time, we no longer see the effects of Uo(X), the portion of the initial data 
arising from S(x, 0) is no longer necessarily compact in space. However, since the in- 
verse transformf2(x, t) off2(~, t) is known to decay at least like 1/x in physical space, 
this implies that the physical initial data, Uo(X) + S(x, 0), also will decay in space at 
least like 1/x, because of our estimates. Using our bound on S(x, t) given in (16), we 
see immediately that 

y0 I I p-1 sj 3Jf2(x, 0) ~< ]u0(x)] + --  
IwP(x'O) l<~tu~176 ~ at j x 

~ J 

Constan'~'-in time 

for constant C as specified, and for x large. 
Suppose that function Uo(X) has support within x e [a, b]. Let us also choose 

our domain of interest to be the interval x e [a, b]. Recall that the ,domain of 
interest, refers to some fLxed, bounded subregion of the infinite domain. Then for 
all t > s(b - a), the effects of Uo(X) have been completely transported out of the domain 
of interest. 

Now, suppose we represent our initial data by the function U(x). The fact that U(x) 
decays like 1/x in space means that if we fLX a point in space to observe, a point which 
lies within the domain of interest, the contribution of the initial data U(x) after time t at 
point x is given by U(x + t/e). The magnitude of U(x + t/e) is O(s/t) of the magnitude of 
U(x) at point x at time zero. Therefore, after only a short time, the effect of the initial 
data on our solution within the bounded domain of interest will be negligible. After 
some finite time, the main contribution to solution (o p within the domain of interest will 
come from the forcing function, which has been reduced to (9(sP). 

In sum, the analysis of equation (9) has shown that the solution to equation (9) can 
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be written 

w(x,  t) = Uo(X + t/e) + So(x + t/e) + S(x,  t) + O(eP), 

where So(x) = S(x ,  0). Additionally, within the domain of interest, and for t > to > 0 for 
some to, the solution to (9) will be bounded as 

p-~ cj I SJf2(x, t )  l +O(cp). (19) i w(x, t) l -  < 
j = o ~ $ t  j 

2.2. Low frequency driven behavior. 

Let  us now examine the behavior of v described in (10). The functiona21 has support 
on the interval [ -7 / ,  r/]. Therefore the Fourier  representation of the corresponding 
portion of the forcing function in physical space is given by 

1 
| t) (20) 

We re-write the Fourier representation off1, letting ~] = Ke by (13) and then perform a 
change a variables, letting ~' = ~/c be the new Fourier space variable. This gives 

K~ 

1 ; t) = 
fI-v _K, 

1 ei(~) ~'fl(e~', t) d~' . 

fl(ex, e, t) 

This means that  J~ = ef~ (ex, e, t) is a function of (ex) and e. For  convenience, we sup- 
press the e variable and write f l  = cfl(ex, t) instead ofJ~ = cfl(ex, e, t). In (10) we make 
a change of variables, letting x '  = cx, and write 

(21) vt = vx + f l ( x ' ,  t ) ,  v(x ' ,  O) = O. 

This has exact solution 

t 

v(x, t) = f f ( s x  + t - T, v) & = Q(ex, t). (22) 
0 

We now see that  f~ gives rise to a solution which varies slowly in space, on the scale 
of O(ex). That is, variation will be observed over a spatial range x = 1 / s .  The implica- 
tion is that  the effects of local sources can be seen over very large domains. We see 
from the solution (22) that  even after the forcing function has been shut off in time, i.e., 
t is large enough sof (x ,  t) = 0, the effect of the forcing term is still brought in through 
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the time integral. Therefore, large space scale solutions persist for all times, even when 
the source of the large space scale solution has been turned off. 

By equations (18) and (22), one now sees that the complete solution to equation (4), 
represented by 

(23) u = v + w,  

has a portion which varies on the O(x) space scale, brought in through w, and a portion 
which varies on the �9 space scale, brought in through v. This slow spatial variation 
will only be observed over domains where the support of the forcing function is small 
with respect to the size of the domain of observation. The O(x) spatial variations will 
disappear after the forcing function has been shut off in time, but the (9(ex) variations 
will remain throughout all time. As mentioned previously, the fast time scale variations 
are considered to have little impact on the solution since the initial data tend to travel 
rapidly away from the domain of observation. 

Theorem 1 of Section 1 has been proved. 

3. - N u m e r i c a l  e x p e r i m e n t s .  

In this section we visualize our results through numerical experiments. We solve 
the nondimensionalized transport equation of the form 

cut = ux +f(x ,  t), t >I O, 

u(x, O) = Uo, 

on the domain x e [ -  500,500]. The forcing function and initial data are chosen to 
be 

Forcing: f (x ,  t) =fl(x ,  t) +f2(x, t), 

Initial data: Uo(X) = 0.0, 

F o r c i n g  Func t i on - -S low  and  Fas t  

0 . 15  

0 .1  

0 .05  '-ii!il 
2 1 - - 5 " 0  0 5 0  1 O 0  

t 0 1 O 0  x 

Fig. 1. - Forcing function f(x, t). 
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F o r c i n g  F u n c t i o n - - $ | o w  o n l y  

o . 0 1 5  

~ O . 0 1  

�9 o 

�9 - - S O  

t 0 ~ 1 0 0  x 

Fig. 2. - Low frequency forcing component fl(x, t). 

where 

~ ( X ,  t) : __~r e x2/4~176 s i n ( t )  e 
20 

-2t  2 

f2(x, t) = ~ (cosh (x2/4) - sinh (x2/4))  cos (10x) sin (t) e -2t2 

The initial data are set to zero since we want to focus on the effects of the forcing func- 
tion alone. We choose the wave speed to be 100, that is, ~ = 1/100. The forcing function 
is chosen so that it will die away smoothly in space, and both start up and die away 
smoothly in time. Although the function is not compact mathematically, it can be con- 
sidered to be compact numerically, since by machine precision values become zero for 
large x and large t. 

Three dimensional mesh plots of the forcing function, along with its low frequency 
and high frequency components, are shown in figures 1, 2 and 3. The right horizontal 

F o r c i n g  P : u n c t l o n - - F a s t  o n l y  

O . 1 5  

O 

x 

Fig. 3. - High frequency forcing component ~(x, t). 
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L o w  F r e q  W a v e  S o l n :  T i m e = 0 . 1 6  

0 . 8  

0 . 6  

0 . 4  
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-o_-~o o 0 5 0 0  
L o w  F r e q  W a v e  S o l n :  T i m e = 2 . 5 6  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 

- - 0 . 2  
- - 5 0 0  0 5 0 0  

LOW Frecl W a v e  Soln:  T i m e = 1 . 2 8  

0 . 8  

o 

0 . 4  

= 0 . 2  

0 

- - 0 . 2  
- - 5 0 0  0 5 0 0  

�9 L o w  F r e q  W a v e  S o l n :  T i m e = 4  

Fig. 4. - Solution profile, e =0.01, forcing fl(x, t). 

axis is the spatial axis, and runs from -100  to 100. The left horizontal axis is the time 
axis, and runs from 0 to 3, The vertical axis is the forcing function height. 

We note that since the Fourier transforms of the forcing are given by 

f l ( w ,  t) = e -1~176 sin(t) e -2t2, 

f2(w,  t) = (e -(w-10)2 -[ - e - ( w +  1 ~  

it is clear that  f l  will give rise to the long spatial waves, a n d ~  will give rise to the short 
spatial waves. 

We employ a method of lines scheme which uses sixth order centered finite differ- 
ences in space, and a fifth to sixth order adaptive Runge-Kutta method in time. Fortran 
code MOLID [4] was run on a Sparc I workstation. Numerically, one must be careful 
when trying to capture both the large and the small spatial scales simulaneously. In or- 
der to run a numerical experiment to completion within a reasonable amount of time 
with the above mentioned hardware and software, we can discretize in space with at 
most 2000 steps. This means, that  over x E [ -500 ,500] ,  we can get at best space step 
dx = 0.5. This is sufficient to capture the large scale solutions, but not the small scale 
ones. In order to capture the small scale solutions, we need at least dx = 0.01, which 
means we need to run our calculation over x ~  [ - 1 0 ,  10] instead. However, in this 
range, the large space scale variation will not be observable. 

The solution to this dilemma is to run the two cases separately, one over the large 
spatial range, and one over the small spatial range. Since solution u(x,  t) = v(x, t) + 
+ w(x,  t) can be split, as in equation (23), where v is driven byf l  and w is driven b y e ,  we 
separately observe the solutions of v(x, t) and w(x,  t) instead. 
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Fig. 5 . -  Solution profile, c =0.01, forcing f2(x, t). 

Experiments were run from time t = 0 to t = 4. In figures 4 and 5 we view the re- 
sults of four time snapshots of the experiment, with wave-speed set to 100. 

Figure 4 plots the portion of the solution which changes on an (?(sx) space scale. In 
contrast to the high frequency portion of the solution in figure 5, this low frequency 
portion, while traveling through the domain of interest, clearly does not decay away in 
time, even though the source itself does. This is the cO(~x, t) portion of our solution, and 
is behaving as the mathematics of the previous section predicts. 

Figure 5 clearly shows the portion of the solution which changes on an (?(x) space 
scale. As opposed to the low frequency portion of the solution, this high frequency part 
dies out in time as the forcing function dies out in time. This is the S(x, t) portion of our 
solution. There are, of course, no initial data effects to see. The remaining portion of the 
solution which travels rapidly out of the domain of interest, So(x + t/s), is small enough 
in magnitude that it is not discernible with the numerics. 

These numerical findings are consistent with the analysis of earlier sections, and 
that of section (2.2) in particular, where it was predicted that the transport equation 
solution would vary over large space scales, proportional to the wave speed 1/s .  

4 .  - C o n c l u s i o n s .  

An examination, both analytical and numerical, of the transport equation in one 
space dimension, has been carried out. It is known that when the equation has wave 
speed on the order of 1/s ,  slow and fast time scales are introduced. We have seen addi- 
tionally, that the presence of a localized forcing function will give rise to portions of the 
solution which vary over larger space scales which persist for all times, even when the 
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forcing function has been shut off. If the domain of observation is smaller than l / s ,  
these variations will not be seen. 

Having analyzed the solutions of the one-dimensional wave equation (via the one- 
dimensional transport equation) in Section 2, we intend, in a future work, to advance to 
an analysis of the wave equation in two and three dimensions. It is surmised that the 
results can be pushed through, virtually in tact, to higher dimensions. 

Additionally, it might be of interest to perform an analysis of the higher-dimension- 
al transport equation, which is used in the modeling of various physical phenomena 
such as neutron diffusion and radiation transfer. In this case, it is not so clear that the 
extension to higher dimensions will be so straightforward, either analytically or com- 
putationally. This remains to be seen. 
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