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THE MULTIPLE SEQUENCE ALIGNMENT PROBLEM
IN BIOLOGY*

HUMBERTO CARRILLO’$ AND DAVID LIPMANt

Abstract. The study and comparison of sequences of characters from a finite alphabet is relevant to
various areas of science, notably molecular biology. The measurement of sequence similarity involves the
consideration of the different possible sequence alignments in order to find an optimal one for which the
"distance" between sequences is minimum. By associating a path in a lattice to each alignment, a geometric
insight can be brought into the problem of finding an optimal alignment. This problem can then be solved
by applying a dynamic programming algorithm. However, the computational effort grows rapidly with the
number N of sequences to be compared (O(IN ), where is the mean length of the sequences to be compared).

It is proved here that knowledge of the measure of an arbitrarily chosen alignment can be used in
combination with information from the pairwise alignments to considerably restrict the size of the region
of the lattice in consideration. This reduction implies fewer computations and less memory space needed
to carry out the dynamic programming optimization process. The observations also suggest new variants of
the multiple alignment problem.

Key words, sequence comparison, biological sequences, dynamic programming

AMS(MOS) subject classifications. 49, 68, 92

1. Introduction. The comparison of two or more sequences of numbers or letters
is common in several fields, such as molecular biology, speech recognition, and
computer science (see Sankoff and Kruskal 11 for an overview of the area). Sequence
comparison is particularly important in molecular biology where it has been critical
in the study of evolution, the control of gene expression, and in the analysis of protein
structure/function relationships.

Let us consider the problem of comparing two related proteins: sequences whose
elements are taken from an alphabet of twenty different amino acids. In the course of
divergence from a common ancestor, mutations may occur involving amino acid
replacements, insertions, and deletions. Lacking knowledge of the original correspon-
dence of amino acids, we may consider all possible transformations of the sequences
using insertions, deletions, and replacements and choose a configuration that is optimal
with respect to the resulting intersequence correspondence of amino acids. The criterion
of optimality may also consider an associated cost of the transformations involved so
as to choose the most "likely" set of transformations given some model of protein
evolution. For example, some amino acid replacements may be more costly than others
and, because several consecutive amino acids may be inserted in a single mutational
event, the cost of adjacent insertions may not increase in a strictly additive fashion
(see Fitch and Smith [3]).

In problems such as the construction of an evolutionary tree based on sequence
data, or in protein engineering, where a multiple alignment of related sequences may
often yield the most helpful information in the design of a new protein, a molecular
biologist must compare more than two sequences simultaneously.

To solve the optimization problems of sequence comparison that appear in
molecular biology and other areas such as speech processing and computer science,
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1074 . CARRILLO AND D. LIPMAN

the methods of dynamic programming have proven to be useful (see Kruskal [7]). The
dynamic programming approach has the limitation that its complexity scales up greatly
with dimension (see Sankott et al. [12]). In the following, we make observations on
the problem of aligning N sequences and that of aligning subsets of these sequences
that reveal constraints of the problem that will prove useful in reducing computation
in the dynamic programming method.

2. Sequences. We assume here that an alphabet a of n characters is given:

A sequence of k characters, or a k-sequence, of this alphabet is a subset of

k
k

t H O
i=1

where H stands for the cartesian product of sets. Thus a k-sequence S is a set of the form

where for each j 1, , k, nj is a natural number that satisfies that 1 _-< nj _-< n. Together
with a we will consider another alphabet/3 which is obtained from a by adding the
blank character "-"’.

,8={-}u{,,..

To simplify notation in the present discussion we will assume that a is the set of
the first n natural numbers a ={1,..., n}.

3. Alignments. An alignment of the sequences $1, , Sn is another set of sequen-
ces, S1,"" ", Sn, such that each sequence Si is obtained from Si by inserting blanks in
positions where some of the other sequences have a nonblank character.

More precisely, if the sequences are

S1--(nl, ", nkl),

NSN (n, nkN)

then ,the alignment ($1,""", SN) is an element of the set

k+. .+k N

max{ kl, k

that satisfies the following conditions. Assuming that for each i= 1,. ., N,

S, (m,, .,
with

max {kl, , kN} <= 1<= k + "+ kN,

then there are increasing functions
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MULTIPLE SEQUENCE ALIGNMENT 1075

such that:
iforj= 1(a) m,(.j)= n

(b) If some ,J= 1,..).,, is noti isinatheblank.image of the function ,i (i.e., j # ,(k) for
all k-- 1 ..., ki then m

Finally, it is also required that for each j-- 1,..., l, there is at least one value of for
which m; is not a blank. Each alignment of the sequences S,. , Su encodes a set
of different insertions, deletions, and replacements that transform one sequence into
another. As an illustration of the notion of an alignment, we present a simple example.
Consider the short amino acid sequences, $1 DQLF, $2 DNVQ, and $3 QGL,
where each capital letter corresponds to a different amino acid (note that most proteins
are at least 100 amino acids in length). A possible alignment of these sequences is
shown in Fig. 1.

4. Paths. To any given set of N sequences $1,. ., SN of length k,..., kN, we
will associate a lattice L(S,..., SN) in N-dimensional space. This lattice consists of
the N-dimensional hypercubes (from here on, referred to simply as cubes) that are
obtained by making the Cartesian product of N strings of squares. Each of these
strin.gs is considered to be associated to a particular sequence and has as many squares
as characters in the corresponding sequence (see Fig. 1). All cubes in the lattice form
an N-dimensional parallelepiped. The corner of this parallelepiped that corresponds
to the first character of all sequences is called the original corner. The corner of the
parallelepiped farthest away from the original corner, corresponding to the last charac-
ter of all sequences, is called the end corner. The corner of a sublattice L’ of L that is
closest to the original corner of L will be called the original corner of L’. Similarly,
the corner that is closest to the end corner of L will be called the end corner of L’.
When N 2 the lattice L(S, $2) is just a net of squares or a "matrix."

A path y(S,..., SN) between the sequences S,..., SN is a connected broken
line joining the original corner to the end corner. The segments of this broken line
join vertices of the lattice that belong to one cube. We also require a path to be such
that each intersection of it with a plane parallel to the faces of the parallelepiped has
to contain only one point or the union of several edges of the cubes of the lattice. An
alternative expression of this latter property is to say that if a point is moving along
the broken line, starting at the original corner, then each time it travels a segment, it
gets closer to the end corner. Paths in an N-dimensional lattice encode alignments of
the N sequences that form the lattice. Reciprocally, each alignment of the sequences
St, , SN determines a unique path in the corresponding N-dimensional lattice. This
one-to-one relationship between alignments and paths is very convenient because it
provides us with a geometrical insight to study the problem of sequence comparison.
For example, a path in an N-dimensional lattice, T(S,..., SN), can be projected

F

D

Q D N V Q
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DNVQ-

QGL
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1076 H. CARRILLO AND D. LIPMAN

into any of the planes formed by each pair of sequences (Si, S/). The projected path,
which we denote PiJ(3’(S1, , SN )), represents an alignment ofthe sequences Si and S..

5. Optimal paths. Each alignment of a set of sequences is to be understood as a
pattern of comparison of these sequences. If a set of scoring rules that penalize each
individual deletion, insertion, or replacement is given, then we may assign a score to
an alignment corresponding to the sum of the scores of each of the transformations
that it encodes. This gives rise to the problem of finding optimal alignments in the
sense that they have a minimum score associated with them. Conceivably, there are
many different ways in which scoring rules can be established. The penalty for a
particular transformation might be dependent on the position where it occurs and on
the transformations that have been made previously. For example, in the evolution of
proteins and nucleic acids, the probability of two adjacent deletions is not the square
of the probability of a single deletion because a single mutational event may have been
responsible for both deletions.

Since each path is associated with a unique alignment, in this way the scoring
rules allow us to assign to any given path 3’ a measure that we denote by M(T). The
number M(T) is a measure of the similarity among the sequences $1,..., SN when
they are compared according to the alignment associated to the path y. In some
particular cases M will make a metric space out of the set of all paths (Sellers [13]),
but this is not true for all biologically interesting measures.

Corresponding to each measure M(y) there is at least one path, T*(S,..., Su),
such that M attains a minimum value at 3’*. Such a path is called an optimal path.
The optimal paths in the lattice L(S,. , Su) can be found by dynamic programming
methods. In what follows we give a brief description of how the algorithm proceeds,
(see Needleman and Wunsch [9] for the first application of dynamic programming to
biological sequence comparison and Waterman [17] for a recent review).

Consider the N-dimensional lattice L(S,..., SN). Each vertex in L may be
thought of as the end corner of the sublattice L(S(i),..., SN(iu)), where for each
sequence S, S(i) denotes the sequence consisting of the first elements of S. The idea
of the method is to recursively find optimal paths for all these sublattices of
L(S,. ., Su). Initially, we compute the score of each of the possible paths on the
cube that has a vertex at the original corner. Next, using this information, we compute
the minimum score needed to reach from the original corner to the vertices of the
adjacent cubes through a valid path. This process is repeated until we calculate the
minimum score needed to reach the end corner, i.e., the optimal measure of a path in
L(S, , Su). If together with the optimal score of each vertex of the lattice we keep
in memory a pointer to mark, in each step of the recursion, the segment of minimal
contribution, then we can trace back through the pointers, constructing an optimal path.

It can be shown for sequences {S,..., S} of lengths {k,..., k}, that this
computation of 3’* takes on the order of 1-I N ki steps. We remark that the abovei=1

applies only to scoring rules for which the penalty associated to the transformations
that take place in a given position ofthe alignment is independent ofthe transformations
that have taken place at previous positions. See Gotoh [4], and Waterman [16] for
discussion of a similar procedure which applies to useful special cases of scoring rules
with memory, and also requires O(I] k) stepsi=!

6. Constraints on multiple alignments. We proceed now to make some observations
on the problem of determining y*(S,..., Su) where N>2, that will result in
significantly fewer computations. The essence of a multiple alignment of the sequences
S,. , SN is to create a collective pattern of comparison that allows us to measure
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MULTIPLE SEQUENCE ALIGNMENT 1077

simultaneously the similarity among them. In particular, a multiple alignment implies
(2) pairwise alignments of these sequences. On the other hand, (2) arbitrarily given
pairwise alignments do not determine a multiple alignment unless they satisfy a
compatibility condition that allows the simultaneous comparison of the N sequences.

A natural measure for the similarity of a set of sequences would be some non-
decreasing function of the sum of the measures of pairwise similarity (see Murata et
al. [8] and Gotoh [5]). To include the case in which the similarity of the pairs could
be considered in a nonuniform way in measuring the similarity of the N sequences,
we consider that the similarity between the sequences Si and S is given by the measure

/xj of two-dimensional paths in the lattice L(Si, S.i). Thus the measure M of an
N-dimensional path y is a nondecreasing function of

N

(1) y (p,..())

where p are the projections of y on the plane determined by the sequences S and
S/, i.e., M must be of the form

M( y) H ’, txo(p,j( y))
i<j

where H is a nondecreasing function. In particular, this condition is satisfied by any
N-dimensional measure that is related to a two-dimensional measure by

N

M(y)= E Fo(Ix(Po(Y)))
i<j

where Fo are nondecreasing functions.
In a specific application the scoring rules that have produced the measure in

consideration may have been designed such thatM y(S1, , SN )) measures similarity
between the sequences S1,’’’, SN or, alternatively, that M(y(S1,’’’, SN)) is the
sum of the edges of an evolutionary tree whose leaves correspond to the sequences of
interest (see Sankott [10] and Sankott et al. [12]). In the following discussion we will
assume that the measure is of the form expressed in (1); however, the approach
presented here may also be extended to the case of sequences related by an evolutionary
tree (Altschul and Lipman [2]).

Let us consider any N-dimensional path ye that will be called y-estimated. By
optimality,

M(Te)-M(T*)>--O,
and then

N N

2 txij(Pij(Te))-Z I-tij(Pij(T*)) 0.
<j <j

Let / denote an optimal path for the measure /xi; in the two-dimensional lattice
determined by the sequences S and Sj. Since/xij(p0(y*))_->/xj(y), we have that

N N

2 tZij(P6(Te)) 2 tZ6(T)kt(Pkt(T*))
<j <j

(i,j)(k, l)

Let us define Ukl as

N N

U! E t2,ij(PO(Te)) E
<.j <j

(i,.j)(k, 1)
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1078 H. CARRILLO AND D. LIPMAN

For each k, 1,. ., N, this positive number Ukt is an upper bound for the measure
of the projection of any N-dimensional optimal path into the plane determined by the
sequences & and &. Then, when looking for 3’* we need only consider those paths 3’
in L(S1,’’’, &v)that satisfy that i,(p,(3")) <- U,. We will call this set of paths XI.

Thus the paths 3’ in the set

N

X=nXu
i<j

are the only possible candidates to be an optimal path. To consider only paths in X
means having to apply the dynamic programming procedure to find 3’* only in some
subregion Y of L(S, , SN).

Let Y/ be the set of squares of L(&, S) whose end corners are traversed by some
path of measure smaller or equal to U,.-j. Let YT be the set of points x e L(&, , SN)
such that pi(x)e Yo, where Pi is the projection into the plane L(&, S). The set YT
contains all paths in Xo and the set

N

Y= I"1 yl
i<.j

contains all the paths in X. Y is a region of L(&,. ., Sv) that may not be connected
but the connected component of it that contains the original corner will contain all
the optimal paths. Generally Y is such that Po(Y) is a proper subset of Y0.

The above reasoning proves that it is unnecessary to apply the dynamic program-
ming method to the entire lattice L(&,..., &v), but it suffices to consider just the
subregion Y.

The regions Y,..j can be determined using a simple variation of the dynamic
programming method previously described. Recall that in that algorithm, we compute
recursively the optimal path scores of each sublattice of L which shares the original
corner of L. This recursion could be done in the opposite direction (end corner to
original corner), computing optimal path scores for each sublattice which shares the
end corner of L. Then, for any vertex in L, we know an optimal path from that vertex
to the original corner, and an optimal path to the end corner. Therefore we know the
optimal path score associated with each vertex of the lattice, which is exactly the
information we need to decide whether a particular point is an element of Ya. It can
be shown that, in this way, all regions Yj may be computed in O(Yv kk.,) steps,i<j

where k,..., kv are the lengths of the sequences &,..., &v. See Altschul and
Erickson [1] and Zuker [19] for a complete discussion of this method.

7. Estimated paths. The smaller the region Y, the smaller the amount of computa-
tion necessary to find an optimal path. To obtain a small region Y we would need to
produce an estimated path 3’e with measure close to the measure of an optimal path.
This is because the minimum upper bounds Uo occur when M(3’e) equals the measure
of an optimal path. One approach used to deal with this problem is based on the
following simple observation: If there is a path 3’ such that p(3’) 3’* for all i, j, where

3’ denotes an optimal path on the lattice L(&, S.), then 3’ is an optimal path for the
N-dimensional problem. Therefore, since M(3’) is a nondecreasing function of
/zu(pii(3’)) the idea is to construct 3’e in such a way that its projections ps(3’e) are
as close as possible to the optimal paths

Given () two-dimensional paths, it is not always possible to find an N-dimensional
path 3’ that will have them as projections. This is because, being part of an alignment
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MULTIPLE SEQUENCE ALIGNMENT 1079

ofN sequences, the alignment encoded in the two-dimensional paths Pik(T) and Pkj(7)
imply some restrictions on the alignment of the sequences Si and Sj encoded in p!j(y).
Therefore a given set of (J) two-dimensional optimal paths {y} is the set of projections
of an N-dimensional path only when the paths y/ are properly compatible. If N-1
two-dimensional paths are given, it can be guaranteed that there is at least one
N-dimensional path of which they are all projections if each of the N dimensions is
represented in at least one of the two-dimensional paths.

Because of the possible insertion of gaps, a set of N-1 paths y, chosen in a
compatible way do not necessarily determine a unique N-dimensional path that will
project into them. For instance, given the paths 1,2, it could be that for
k 2, , N, the regions Fl,k c L(S1," ", Su) with the property that

F1 k
-1--DI,k(’Y,k)-- {XC L(SI,"" ", SN)IPl,k(X)C

are such that the set

N

F= n F1,k
k=2

is not a path but contains an m-dimensional region with 1 < m < N. To determine a
convenient path through this lower-dimensional subregion of L(S1,’’’, SN), F,
another optimization problem must be solved. Note that this problem can, in turn, be
reduced in the same way that the original problem was to obtain a region of smaller
dimension. Repeating this procedure, the region where the optimization must be carried
out will eventually be two-dimensional. This method of producing an estimated path
is heuristic and there is no guarantee that the resulting path will always have a measure
close to that of an optimal path.

Another approach is to start with a guess of an estimated measure M which,
unlike M(ye), may not necessarily correspond to the measure of an actual y. We may
then determine all upper bounds using M and proceed to compute an "optimal" path
ye* derived from this initial estimate. It is then trivial to show that if M(y e*) <-_M e,
then ye* is a true optimal path. IfM (ye*) >M e, then M (ye*) can be used to determine
the upper bounds required in the computation of y*.

8. Discussion. We have demonstrated an important relationship between the align-
ment ofN sequences and the problem of aligning subsets of these sequences. Although
we examined the case where the lower dimension was two, our results may be
generalized for any dimension less than N. This relationship can be exploited to develop
multiple alignment algorithms with reduced computational requirements. Though we
have not proposed a detailed algorithm, it is clear that the computational requirements
of such an algorithm would be a function of the size of the subregion Y in the lattice
L(S1,..., SN) plus the number of computations necessary to generate it. The region
Y contains only those paths whose projections Pi have scores less than their respective
upper bounds Uo and is contained in the region

N

Y= N Y’,
,j

where {1,. ., N}. We can easily estimate the size of the region Y if we know the
average number of cubes in the j dimension of Y0. Here we consider the size of a
subregion R of L to be the number of hypercubes that it contains, and we denote it
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1080 H. CARRILLO AND D. LIPMAN

by JR[. Let us define f, the size of Y,.-j relative to the size of L(Si, S), as

where k, and kj are the lengths of the sequences S and S. (i.e., kgk ]L(Si, Sj)[). Then
the average number of cubes in the j dimension of Y,.-j is fk., and

N

Igl k

To determine the regions Y0 requires o(N kk) computations a figure which doesi<j

not grow exponentially with N. Given the regions Y0, the region Y can be generated
and the optimization can be carried out within in

steps; the memory requirements are of the same order. Since we are not using the
information from all the Y’s, the size of Y is an upper bound on the size of Y.
Whether it would be more efficient to carry out the optimization in the region Y or
in the region Y would depend on the particular application. Clearly there are a number
of strategies for using the information that the regions Y provide.

Complementary to the above reasoning, further computational improvements may
be achieved by noting that not all points in the subregion Y must be stored in the
computation of an optimal path y*. This is because, in performing the dynamic
programming recursion, if we can determine that the lower bound cost of any path
through some point in Y is greater than M(ye), then that point is not necessary in
the ongoing computation. For simplicity, let us consider the case where M(y)=

< ii(pj(y)). Recall that in the dynamic programming algorithm we recursively
compute the minimal path score from the original corner to each point in the subregion
Y. Recall also that in computing the Y0’s, we have determined a lower bound for the
cost of a projeced path from any point in the lattice to the end corner of the lattice.
Then a lower bound on the measure of the paths through a given point of Y is
calculated by adding the minimal path score from the original corner (which would
be computed at this step of the recursion) to the sum of the lower bounds of the
projected paths to the end corner. This approach would be expected to be particularly
useful when dealing with gap functions ofthe sort discussed by Gotoh [4] and Waterman
[16].

Ukkonen [15] has described a method for decreasing the computational cost of
pairwise alignments when the measure of distance is very simple (e.g., identities have
distance zero, all other transformations contribute a distance of one). It is based on
the observation that a priori M(y*)_>-0, and if M(y*)=0, the sequences are identical
and the location of 3/* is on the main diagonal of the plane. Therefore there is a
relation between the score of a sublattice end corner and its distance from the main
diagonal. In computing an optimal path, we proceed recursively through the two-
dimensional lattice, computing the scores of sublattice end corners on diagonals at
successively greater distance from the main diagonal only when they could potentially
lead to paths with better scores. This approach can be generalized to N dimensions.
Here the subregion of the lattice L(S,..., SN), considered in the optimization,
expands in a roughly symmetrical fashion around the a priori optimal path of measure
zero, until it contains all sublattice end corners with optimal path scores less then or
equal to M(y*).
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MULTIPLE SEQUENCE ALIGNMENT 1081

If the sequences to be compared differ by only a very few insertions, deletions,
and replacements, a generalized Ukkonen algorithm would have computational advan-
tages over an algorithm based on our observations. In comparisons where the sequences
are more divergent (which is generally the case in biological sequence comparisons),
we might consider using the Ukkonen algorithm, but only on those points which project
within the regions Y0. However, Ukkonen’s method becomes quite complicated and
less efficient with more realistic measures of distance.

We have described a method of efficiently determining an estimated path that,
however, is not guaranteed to always find paths close in measure to an optimal path.
Other methods of determining estimated paths have been described (Sobel and Martinez
[14], Johnson and Doolittle [6] and Waterman [18]) and may have advantages in some
cases. Clearly, the problem of computing good estimated paths requires further investi-
gation since this information can now be usefully applied to the problem of computing
an optimal path.

Our results lend themselves to a view of the N sequence multiple alignment
problem as one of finding an optimal set of pairwise alignments (or any dimension
less than N) which satisfy certain compatibility conditions. In other words, we must
find an n-dimensional path whose projections are optimal. This view suggests new
forms of the problem. For example, we may consider a nonuniform weighting of the
pairwise comparisons to force the multiple alignment such that some sequences are
closer to their pairwise optima than others. As another example, using pairwise distance
measures/z0 specific to certain subsets of sequences may be more appropriate when
doing interfamily sequence comparisons. Understanding the relationship between
higher- and lower-dimensional alignments can therefore lead to more efficient
algorithms, and to variants of the original problem which may have useful applications.
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