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Modular protein interaction domains form the building blocks of eukaryotic signaling pathways.

Many of them, known as peptide recognition domains, mediate protein interactions by recognizing

short, linear amino acid stretches on the surface of their cognate partners with high specificity.

Residues in these stretches are usually assumed to contribute independently to binding, which

has led to a simplified understanding of protein interactions. Conversely, we observe in large

binding peptide data sets that different residue positions display highly significant correlations

for many domains in three distinct families (PDZ, SH3 and WW). These correlation patterns

reveal a widespread occurrence of multiple binding specificities and give novel structural

insights into protein interactions. For example, we predict a new binding mode of PDZ

domains and structurally rationalize it for DLG1 PDZ1. We show that multiple specificity more

accurately predicts protein interactions and experimentally validate some of the predictions

for the human proteins DLG1 and SCRIB. Overall, our results reveal a rich specificity landscape in

peptide recognition domains, suggesting new ways of encoding specificity in protein interaction

networks.
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Introduction

Modular peptide recognition domains are a widespread class

of protein domains that mediate important protein interactions

in cell signaling pathways and are involved in the assembly

of many protein complexes (Pawson and Nash, 2003). Some of

the largest families of these domains, including PDZ (Doyle

et al, 1996; Harris and Lim, 2001), WW (Hu et al, 2004), SH3

(Mayer, 2001) and kinases (Hutti et al, 2004; Miller et al, 2008),

bind selectively to short linear motifs (Gould et al, 2010) often

found in disordered regions on the surface of proteins. These

interactions are usually sufficiently specific so that a detailed

knowledge of the binding preferences of a given domain allows

for accurate prediction of its interactions (Tonikian et al, 2009).

Many high-throughput experimental techniques have been

developed to characterize the binding specificity of modular

peptide recognition domains. Microarrays (Stiffler et al, 2007)

and synthetic peptide array technology (SPOT; Wiedemann

et al, 2004) have been used tomeasure the binding of hundreds

of selected peptides with different domains. Kinase specificity

has been studied using different methods, such as oriented

peptide libraries (Hutti et al, 2004) or quantitative phospho-

proteomics (Olsen et al, 2010). Phage display provides an

accurate and unbiasedway of studying in vitro the specificity of

modular peptide recognition domains (Tong et al, 2002;

Tonikian et al, 2008). This technology uses bacteriophage to

express libraries of up to 10 billion random peptides as genetic

fusions to phage coat proteins (Tonikian et al, 2007). After

repeatedly incubating the phage particles with a domain, and

washing away non-interacting phage, a specificity profile
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consisting of a set of strongly interacting peptides can be

retrieved by sequencing the phage-encapsulated DNA.

For protein domains interacting with unstructured peptides

found on the surface of proteins, it is often assumed that each

residue contributes independently to the binding affinity.

In other words, the presence of a given residue at some

position does not significantly influence the amino acid

preference at another position along the interacting peptide.

This assumption of uncorrelated positions is underlying

several computational models of binding specificity (Chen

et al, 2008; Tonikian et al, 2008). One such popular model is

the position weight matrix (PWM, sometimes called position-

specific scoring matrix; Obenauer et al, 2003), which can be

visualized as a sequence logo. Disregarding correlations when

modeling specificity implicitly assumes that domains are

characterized by a single class of binding peptides, all

following the same binding mode.

Using large data sets derived from phage display experi-

ments for human and worm PDZ domains (Tonikian et al,

2008), yeast SH3 domains (Tonikian et al, 2009) and human

WW domains, we show that highly significant positional

correlations are found for almost half of the domains analyzed

here. Moreover, we observe that most correlation patterns can

be captured by clustering the peptides into a small number of

clusters. This result prompted us to represent domain-binding

specificity with a mixture model that makes use of multiple

PWMs, instead of a single one, and our results reveal a

widespread occurrence of multiple specificity. Other machine

learning algorithms, such as hidden Markov models (HMMs;

Noguchi et al, 2002), artificial neural networks (ANNs; Brusic

et al, 1998; Blom et al, 1999; Nielsen et al, 1999; Emanuelsson

et al, 2000; Miller et al, 2008) or support vector machines

(Hui and Bader, 2010; Shao et al, 2010) have been used

previously in different contexts to account for positional

correlations. Our work suggests that the full complexity and

nonlinearity of these models may not be required to accurately

model the specificity of protein domains binding to short linear

peptides. Moreover, thanks to simple visualization (which,

mathematically speaking, can be related to linear approxi-

mations of HMMs or ANNs) and direct interpretation, the

multiple specificity model gives new structural insights into

binding modes of modular peptide recognition domains and

predicts new protein interactions within signaling pathways

mediated by these domains.

Results

Positional correlations are widespread in known

specificity profiles

Positional correlations reflect the influence of an amino acid at

one position in a set of interacting peptides over the amino acid

preferences at other positions. For instance, in peptides bind-

ing to the first DLG1 PDZ domain, I and L are both observed

seven times at position"1 (Figure 1A). However,Wat position

0 is always found together with I at position"1 and never with

L. To measure correlations among pairs of residue positions,

we used mutual information. Taking a P-value threshold of

0.001 to define significant correlations (see Materials and

methods), we observe that roughly a third of all tested

domains have at least one pair of significantly correlated

positions in their specificity profile. Specifically, 24 out of 82

PDZ domains, 13 out of 24 SH3 domains and the 3 WW

domains display positional correlations. For instance, peptides

interacting with DLG1 PDZ1 display many correlated posi-

tions, and significant P-values are observed among most

of the last five residues (red edges in Figure 1A). The profiles

displaying strong positional correlations do not conform

to the assumptions of positional independence of a single

PWM model and hence cannot be accurately modeled in

this way.

Positional correlations originate from multiple

specificity

To explore possible causes of these correlations and their

relationship with the biophysical characteristics of protein

interactions, we first applied a clustering algorithm on each set

of binding peptides using the percentage of sequence identity

as a similarity measure (see Figure 1B and Materials and

methods). If correlations result from structural constraints,

such as the presence of different binding modes, we expect to

see clusters of related peptides with much less positional

correlation within each cluster. Figure 1B shows how, in the

case of DLG1 PDZ1, two clusters are sufficient to remove

significant correlations for any position, suggesting two

classes of specificity for this domain that can be accurately

modeled with two PWMs (Figure 1C). Overall, we observe that

a limited number of clusters (most often two or three, except

for some WW domains) are necessary to significantly remove

positional correlations. Figure 2 summarizes the number

of domains with correlated positions before the clustering

procedure (by construction, no domain displays correlated

positions after clustering). The average number of clusters

required to remove correlations is indicated in parenthesis

for each domain family. Randomly grouping the peptides

into clusters of the same size, as the ones identified by our

algorithm, clearly leaves several correlated positions (blue bar

in Figure 2, see Materials and methods), which highlights the

relevance of the identified clusters. This observation led us to

model the binding specificity of the domains with multiple

PWMs rather than a single one. Toward this goal, we used the

machine learning framework of mixture of PWMs (Bailey and

Elkan, 1994; Barash et al, 2003; Hannenhalli and Wang, 2005)

that provides a general and computationally efficient way

of solving this problem (see Materials and methods and

Supplementary information). The main idea of this approach

is to fit K different PWMs to the aligned peptides, where

K is chosen here as the number of clusters found to remove

positional correlations. The parameters of the multiple PWMs,

as well as their weights, are directly learned from the data

using a maximum likelihood (ML) approach (Bailey and

Elkan, 1994; Bishop, 2006). Within this model, the specificity

of each domain can be visualized as K different sequence

logos. For instance, Figure 1C shows both the single PWM and

the multiple PWM results for DLG1 PDZ1. Importantly, this

result shows that predictions based on the single PWM can be

misleading; for instance, a peptide ending with ETIW appears

to match fairly well with a single PWM, whereas it is clearly
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excluded in the multiple PWM model and it was never found

in the phage data.

The results of the multiple PWMmodel for PDZ domains dis-

playing multiple specificity are shown in Figure 3. As correla-

tions are significantly reduced within each cluster, the multiple

logos provide a more accurate description of the specificity of

these domains. Interestingly, we observe that PWMs can be as

drastically different as corresponding to different specificity

classes (e.g., SCRIB#1).We note that multiple specificity in PDZ

domains is found both in worms and humans, which are

separated by over 800million years of evolution, indicating that

this is likely a general feature of the PDZ domain family. The

results for the yeast SH3 domains and humanWWdomains are

displayed in Supplementary Figure S1. It is also interesting to

observe that clustering the peptides leads to a much enhanced

specificity, with an average entropy over all positions and all

domains of 0.52 before clustering and of 0.42 after clustering

(Po10"4, see Supplementary information and Supplementary

Figure S2). In particular, multiple PWMs reveal interesting

specificities that tend to be smoothed out in a single PWM (see

for instance MLLT4#1 or HTRA2#1 in Figure 3).
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Figure 1 Positional correlations are present in peptides binding to modular peptide recognition domains. (A) Phage peptides binding to the first PDZ domain of the
human protein DLG1, aligned from the C terminus. The last five positions (red box) display positional correlations. Pairs of significantly correlated positions (P-value
o0.001) are connected with a red edge, others with a black edge. An example of correlation can be found between the two last columns: W or L at position 0 always
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between the binding peptides based on correlated positions (see Materials and methods). The two main clusters (orange dashed line) are the ones identified by
our method. Positional correlations are successfully removed within the two clusters (black edges). (C) Sequence logos for a single PWM (left) and the multiple
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Multiple PWMs more accurately model binding

specificity

To validate the multiple PWMs model, we first assessed

its ability to predict protein interactions using 10-fold cross-

validation. We compared the multiple PWMs with single

PWMs using the method of Sharon et al (2008) (see

Supplementary information). For 80% of the domains

displaying correlations in their binding peptides, multiple

PWMs give better performance than a single PWM (see

Supplementary Figure S3). We then used receiver operating

characteristic (ROC) curves to compare the multiple PWMs

model with ANNs (Brusic et al, 1998; Blom et al, 1999; Nielsen

et al, 1999; Miller et al, 2008) and HMMs (Noguchi et al, 2002),

which are known to also accurately model positional correla-

tions (see Supplementary information). Overall, the results of

Figure 3 The multiple specificity tree of PDZ domains. For all profiles displaying multiple specificities, the single PWMs and the total number of phage peptides are
shown at the end of the brown branches. For each domain, the multiple PWMs are shown at the end of the green branches together with their weights in the multiple
PWM model. Worm PDZ domains are highlighted in yellow. The red rectangles show PDZ domains whose multiple PWMs are most different from each other. For
visualization purposes, the tree was built using average linkage hierarchical clustering with Euclidean distance between the single PWM of each domain. ‘#’ after the
protein name indicates the domain number.
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the different models are very good and quite similar, with an

average area under ROC curve (AROC) of 0.98 for multiple

PWMs and HMMs and 0.99 for ANNs (See Supplementary

Table S1 for the full list of AROC).

We then benchmarked the multiple PWM model on several

independent data sets (see Supplementary information). We

first used a large interaction data set of 12 yeast SH3 domains

and 2 human PDZ domains generated by the SPOT technique,

which provides a measure of affinity between domains and

peptides (Wiedemann et al, 2004; Tonikian et al, 2009). For all

available domains, the correlation between the score of the

multiple PWMs model and the SPOTsignal is higher than that

with a single PWM (see Supplementary Table S2). On average,

multiple PWMs also give slightly better correlations than

HMMs, although the trend is not the same for all domains (as

ANNs are not probabilistic models, correlation values cannot

be directly compared).We carried out another validation using

yeast two-hybrid (Y2H) data (Tonikian et al, 2009). We again

found that better predictions are obtained using the multiple

PWMs compared with the single PWMs, while performance

is similar with HMMs (see Supplementary Figure S4). In this

case, ANNs did not perform as well (see Supplementary

information). We finally retrieved all experimentally deter-

mined interactions from the PDZbase interaction database

(Beuming et al, 2005) to build an independent benchmarking

data set (see Supplementary Table S3). When tested on this

data set, both multiple PWMs and HMMs give an average

AROC of 0.86, whereas ANNs give an average AROC of 0.85

(see Supplementary Table S4 for the full list of AROC and

P-values).

Taken together, the multiple PWMs outperform single

PWMs when used to predict domain–peptide interactions.

Comparing with more complex machine learning frameworks,

such as HMMs or ANNs, we observe similar performance,

as expected, as different but mathematically related methods

trained on the same data, in general, provide similar results

(Nielsen et al, 1999). Having the added advantage of intuitive

interpretation and visualization, multiple PWMs provide a

particularly suitable framework to study the specificity of

modular peptide recognition domains.

Multiple specificity corresponds to known binding

modes of SH3 domains

Having found that a limited number of PWMs accurately

represent the binding specificity of modular peptide recogni-

tion domains, we then sought to gain structural insights from

these multiple specificities. In particular, we assume that

domains with clearly different PWMs may display interesting

structural features in order to accommodate such diversity

among their interacting peptides. To explore this issue, we first

examined our results with SH3 domains. SH3 domains bind

proline-rich regions, in particular, PxxP motifs. Early studies

identified two specificity classes: class I domains bind to

[R/K]xxPxxP motifs, whereas class II domains bind to

PxxPx[R/K] motifs (Mayer, 2001). These two classes corre-

spond to different orientations of the peptide in the binding

pocket (Lim et al, 1994). Some SH3 domains have been found

to display a dual specificity, accommodating both class I and

class II ligands, as illustrated in the two structures of Figure 4A

for the SRC SH3 domain (Feng et al, 1994). Three of the yeast

SH3 domains (Rvs167p, Lsb1p and Pin3p) are particularly

interesting in this regard. Our completely automated analysis

reveals that the specificity of these domains is best modeled

with two PWMs for Rvs167p and Lsb1p, and three PWMs for

Pin3p (see Figure 4B). In all three cases, the Arg is positioned

either on the left or on the right of the proline-rich region in the

multiple PWM model, which is the hallmark of SH3 domains

accommodating both class I and class II ligands. This result

shows that the multiple PWMs can predict different binding

modes of modular peptide recognition domains, even in the
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Figure 4 Multiple specificity in SH3 domains. (A) Solution structures of the bi-specific chicken SRC SH3 domain in complex with class I (PDB: 1PRL) and class II
(PDB: 1RLP) ligands. (B) Comparison between the single PWM (first column) and the multiple PWMs of three yeast SH3 domains. The total number of interacting
peptides is indicated in parenthesis. The weight of each component in the multiple PWM model is indicated below the sequence logo. Here, the multiple PWMs reveal
distinct binding modes of SH3 domains predicted to correspond to different binding orientations of the peptides on the surface of the domain, as illustrated in A.

Peptide recognition domain multiple specificity

D Gfeller et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 5



absence of crystal structures for a specific domain. For other

SH3 domains with correlated residues (see Supplementary

Figure S1), the interpretation of multiple specificity is not as

clear as for the ones in Figure 4. Some of these cases may

correspond to more detailed structural features of the mole-

cular recognition events taking place at the SH3-binding site.

Multiple specificity predicts new binding modes of

PDZ domains

We next examine PDZ domains, which have fewer recognized

binding modes than SH3 domains. Most PDZ domains bind to

the C terminus of their ligands,with a binding site that contacts

up to seven ligand residues (Doyle et al, 1996). A few PDZ

domains have also been observed to act as internal binders

(Brenman et al, 1996; Hillier et al, 1999; Penkert et al, 2004)

or to display non-canonical binding modes in recent crystal

structures (Elkins et al, 2010). The multiple specificity of DLG1

PDZ1 in Figure 1 provides an interesting example to analyze.

DLG1 is part of a cluster of four close paralogs (DLG1–4), each

containing three PDZ domains, and the binding site of the first

PDZ domain of these proteins is 100% conserved. The first of

the multiple PWMs (Figure 1C) corresponds to the canonical

binding mode of PDZ domains with a hydrophobic residue

(here Val0) at the C terminus. This well-known binding mode

is illustrated in Figure 5A by a crystal structure of DLG3 PDZ1

in complex with a peptide EETSV (PDB: 2I1N; Elkins et al,

2007). To interpret the second specificity predicted by the

multiple PWMs, we first notice that the two logos of Figure 1C

align well if the second one is shifted by one position. This

suggests the presence of another residue (Trp in the phage

data) at the C terminus. The crystal structure of Figure 5A

clearly shows that an additional residue cannot be accom-

modated without a significant displacement of the carboxy-

late-binding loop. Interestingly, the C-alpha atoms in this loop

display much larger B-factors (between 35 and 40) than the

ones found elsewhere in the PDZ-binding pocket (between 27

and 32), suggesting higher flexibility. A new crystal structure

of DLG2 PDZ1 was recently released, in which the domain

crystallized as a trimer with the C terminally extended

sequences RRRPIL binding to the peptide-binding site of

adjacent PDZ molecules (Figure 5B, PDB: 2WL7; Fiorentini

et al, 2009). In this structure, Ile"1 is found at the same spatial

position as Val0 in Figure 5A. Moreover, the binding is

accompanied by a large displacement of the carboxylate-

binding loop, with only minor changes elsewhere. This recent

structure already confirms our interpretation, even if only the

last three residues (PIL) are in contact with the PDZ-binding

site. To go one step further, we used the Rosetta modeling

software (Wang et al, 2007) to generate a model of the new

structure bound to a peptide built according to the non-

canonical specificity observed in phage (EETDIW). We then

used the FoldX force field (Schymkowitz et al, 2005) to

optimize the side-chain positions and compute the predicted

binding energy of this peptide (see Materials and methods).

Figure 5C shows the final result of the docking and side-

chain remodeling. The binding energy predicted by FoldX

for the extended ligand EETDIW ("12.7 kcal/mol) compares

favorably with the one computed for the short ligand in the

original DLG3 PDZ1 (2I1N) structure ("7.3 kcal/mol). The

new position of the loop accommodates the additional Trp,

preserving one of the two usual hydrogen bonds between the

C terminal residue and the PDZ backbone. In the canonical

binding mode of PDZ domains, the carboxyl group forms

a salt bridge mediated by a water molecule to a conserved

Arg/Lys (R229 in Figure 5; Doyle et al, 1996). In our case, the

carboxyl group of Trp can directly form a salt bridge with

this Arg. We then explored the amino acid preferences at

each ligand position in silico (see Materials and methods). The

results shown in Figure 5D agree well with experimental data.

In particular, FoldX predicts a clear preference for Trp (as well

as Phe or Tyr) at the C terminal position.

Overall, both phage display data and the structural analysis

predict that DLG1 PDZ1 has two distinct binding modes,

one following the canonical C terminal PDZ-binding mode

and another unexpected one allowing for an additional

residue at the C terminus. As all residues involved in the

non-canonical binding of DLG1 PDZ1 are exactly conserved

in the other three DLG proteins (DLG2–4), we predict that

this new binding mode applies to the first PDZ domain of

all four DLG proteins. Interestingly, a similar multiple speci-

ficity is also observed for the tenth PDZ domain of MPDZ

(see Figure 3), suggesting a similar binding mode. To gain

insights into the generality of the carboxylate-binding loop

remodeling observed for DLG1 PDZ1, we surveyed all PDZ

domains from the PDB database and found five other crystal

structures with a displaced loop (see Supplementary Figure

S5). One pertains to Par-6 binding internally to Pals (Penkert

et al, 2004), two come from the second PDZ domain of DLG1

(Haq et al, 2010) and DLG3, which are known to act as internal

binders (Brenman et al, 1996), one from SYNJ2BP and one

from MAGI1 PDZ4. The latter shares 63% identity and a very

similar carboxylate-binding loop (ETGFG versus ESGFG)

with MAGI3 PDZ4, which has phage display data available

and exhibits multiple specificity (see Figure 3). Overall, it

appears that remodeling of the carboxylate-binding loop is

often associated with non-canonical binding modes of PDZ

domains, some of which can be predicted by our analysis of

phage display data, as shown in detail for DLG1 PDZ1.

The agreement between phage data and structural calcula-

tions for DLG1 PDZ1 prompted us to test whether some of the

different binding specificities could be structurally predicted

for other PDZ domains. We focused on DLG2 PDZ3, SCRIB

PDZ1 and MPDZ PDZ10, which display interesting multiple

specificity and for which structural data are available. Using

FoldX, we scanned all residue positions of the ligand (see

Supplementary information). The canonical specificity could

be approximately retrieved, in agreement with previous work

(Smith and Kortemme, 2010; see Supplementary Figure S6).

In particular, the Thr/Ser at "2 is given a good score for the

three domains, which is a hallmark of canonical PDZ binding.

On the contrary, the structural analysis failed to predict the

non-canonical specificities, most likely because the back-

bone conformation of the existing structures correspond to

canonical ligands and does not accommodate other binding

modes. As such, multiple PWMs provide an unbiased way of

extracting new features from high-throughput data that are not

easily predicted, unless different structures corresponding to

distinct binding modes already exist.
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Protein interaction predictions

For human PDZ domains exhibiting multiple specificity, we

used the multiple PWM model to scan the human proteome

and predict protein interactions. To test some of the predicted

interactions, we manually chose conservative thresholds on

multiple PWM scores, leading to a low false-positive rate. The

resulting network is displayed in Supplementary Figure S7.

Out of 31 predicted interactions, 8 are known from previous

studies. To test whether some of the unknown interactions
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could be confirmed experimentally, we used the membrane

Y2H system (Deribe et al, 2009; Snider et al, 2010) and tested

three interactions of DLG1 and SCRIB, that were not previously

described, with integral membrane proteins. These interac-

tions could be confirmed experimentally: DLG1 was shown to

bind to ANO9 and CYSLTR2, while SCRIB was shown to

interact with SLC6A12 (see Figure 6). CYSLTR2 is a G-protein-

coupled receptor. Binding of cysteinyl leukotrienes such as

LTC4 to CYSLTR2 has been shown to activate chemokine

production through induction of NF-kB and AP-1 transcription

factors, although the molecular mechanism of this signaling is

still poorly understood (Thompson et al, 2008). Our results

suggest a role for DLG1 within this pathway, possibly acting as

a scaffolding protein, as is often the case for multi-domain

proteins. SLC6A12 is an integralmembrane protein involved in

GABA transport and linked to aspirin-intolerant asthma

(Pasaje et al, 2010). Interestingly, a GABAergic system with a

crucial role for mucus production in asthma has been recently

found in airway epithelium (Xiang et al, 2007), which is

consistent with the expression of SCRIB in epithelial cells.

Discussion

Efficient computational strategies are crucial to retrieve themost

relevant information encoded in large protein interaction data

sets, which leads to better understanding of the many signaling

pathways mediated by participating proteins. Here, we have

addressed at a large scale the issue of positional dependencies

within short linear stretches of residues targeted by modular

peptide recognition domains. For the domains analyzed in this

work, we have found cases of positional correlations for more

than 25% of PDZ domains, more than 50% of SH3 domains

and all three WW domains. Moreover, we have shown that

most correlations can be resolved by clustering the peptides

into a few groups corresponding to different specificity. This

clearly shows that multiple specificity is a common phenom-

enon. From a computational point of view, the multiple PWMs

give similar performance as other machine learning algo-

rithms. We suggests that, because of the structural constraints

underlying short peptide-binding events, a simple decomposi-

tion into multiple PWMs is sufficient to handle correlations,

while more complex problems, such as predicting subcellular

localization from protein sequence (Emanuelsson et al, 2000),

may require more advanced machine learning algorithms.

We can distinguish different categories of multiple specifi-

city from our analysis. For some domains, the multiple PWMs

are very different from each other (some examples are

highlighted in red in Figure 3). In these cases, significant

structural changes are likely to take place at the level of the

domain–peptide interface, and our analysis of SH3 domains

and of DLG1 PDZ1 confirm that multiple PWMs provide a

very useful computational tool to guide structural analysis. For

other domains, the differences between the PWMs are less

dramatic and mostly depend on two or three positions located

close to each other. In general, we do not expect such cases to

correspond to large structural remodeling of the binding sites,

but rather to side-chain–side-chain interactions within the

peptide. One potential example is the PDZ domain of worm

shn-1, which appears to prefer either R at"3 orK at"4, but not

both together, suggesting that one single charged residue at

these positions is more favorable for peptides binding to this

domain. A possible way to automatically distinguish between

the two kinds of multiple specificity is to compute the residue

preference similarity between correlated positions. On the

basis of our results, we suggest that if clear differences are

found at three or fewer correlated positions, and all of them

are within four residues, then the correlations most likely

correspond to interactions between ligand residues. Conver-

sely, if all correlated positions are different (e.g., DLG1#1) or if

correlated positions are far away from each other (e.g., SH3

domains in Figure 4), multiple specificity more likely
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corresponds to distinct binding modes of the domain. Finally,

not all domains appear to display positional correlations. This

may be due to the availability of a limited number of binding

peptides, which prevents us from observing slightly less

favorable binding specificities, or some domains may be

optimized to accommodate only one specific kind of peptide.

An obvious question to ask is whether multiple specificity

can still be observed using other experimental data sets. To

observe statistically significant correlated positions and

automatically detect multiple specificity, at least a dozen

interacting peptides are required (e.g., for two clusters of six

identical peptides each, the mutual information P-value is

E0.002), which partly explains why this feature has not often

been observed in previous work. For instance, a recent study

(Stiffler et al, 2007) used 217 peptides derived from Mouse

natural C termini to probe the specificity of PDZ domains in a

protein-chip experiment. This screen yielded o10 interacting

peptides formost domains.Moreover, the set of initial peptides

is highly biased toward canonical PDZ-binding motifs. As a

result, we observed significant positional correlations for

only one domain in this dataset. However, with future

technological advances, this may change. High-throughput

experimental techniques such as phosphoproteomic methods

to study kinase specificity (Olsen et al, 2010) or ribosome

display (Hanes and Pluckthun, 1997), are increasingly

becoming available to generate large and unbiased sets of

interacting peptides. Moreover, new sequencing technologies

are currently revolutionizing phage display experiments by

allowing rapid sequencing of hundred of thousands of peptides

or proteins that have passed the selection runs (Ernst et al,

2010; Fowler et al, 2010). Hence, such data are likely to become

available in the near future for many natural domains, offering

new opportunities to enhance both our biophysical under-

standing of molecular recognition events and the accuracy of

computational protein interaction predictions. In the field of

protein–DNA interactions, very large data sets are available

to map the specificity of transcription factors, and multiple

specificity has also been recently observed (Badis et al, 2009).

It is likely that similar approaches, as the one presented in

this work, will yield new insights into modular peptide recog-

nition domains or transcription factors studied with these

other experimental techniques. For other kinds of protein

interactions, such as those involving larger binding interface

or non-peptide substrates, sequence-based approaches are

more difficult to apply. As such, the multiple PWM model is

especially suited for proteins interacting with small ligands

made out of a limited number of building blocks (e.g., amino

acids or nucleotides) and adopting a few different binding

modes on their targets.

At a system-wide level, the multiple specificity observed in

modular peptide recognition domains, such as PDZ, SH3 or

WW, has several interesting consequences. First, it enables

additional potential crosstalk in signaling pathways, where

domains displaying multiple specificity could act as linkers

between different pathways. Second, multiple specificity

enables optimization of a domain to interact in a highly

specific manner with a few very different ligands. This

binding-site plasticity yields interesting evolutionary advan-

tages: it may provide a greater repertoire to build on the

pathway topologies required to sustain cell activity using only

a limited number of components. In addition, it allows for the

emergence of new specificities without necessarily altering the

initial one. As such, the evolution of specificity does not

necessarily need to follow a gradual process, but could rather

consist in exploration of novel binding specificities that do not

perturb the existing protein interactions and are retained only

when conferring an advantage to the organism. Such neutral

evolutionary pathways are critical to enable innovation in a

system while preserving its robustness (Ciliberti et al, 2007),

and our results suggest that multiple specificity may act as a

key factor in this process.

Materials and methods

Phage display data

The experimental data sets used in this work come from large-scale
phage display experiments (Tonikian et al, 2007). For PDZ domains, all
phage display peptides found in Tonikian et al (2008) for wild-type
domains in humans and worms were used in our analysis. For each
domain, the peptides were aligned from the C terminus. Owing to the
presence of STOP codons in the phage library, some peptides are
shorter than seven amino acids (missing residues are labeled with X).
For yeast SH3 domains, the phage peptides from Tonikian et al (2009)
were automatically aligned with the MUSCLE alignment software
(Edgar, 2004) using settings that prevented internal gaps. The newdata
for the three WW domains come from a recent phage display
experiment run with similar protocols as for the PDZ and SH3
domains (see Supplementary Table S5 for the raw data). Because of the
amplification step in phage display, the frequency of the peptides
pulled out experimentally is difficult to interpret in terms of binding
strength. For this reason, peptides retrieved multiple times were
treated as unique throughout our analysis.

Identifying correlated positions in peptide

alignments

To identify correlated positions in peptide alignments, we used mutual
information for all possible position pairs. Mutual information is
computed as:

MI ¼
X20

i¼1

X20

j¼1

Pði; jÞ log
Pði; jÞ

P1ðiÞP2ðjÞ

! "

;

where P(i,j) stands for the probability of having amino acid i
at one position together with amino acid j at the other position
in a peptide. P1(i) is the probability of having amino acid i at
one position and P2(j) the probability of having amino acid j at
the other position. MI¼0 corresponds to independence of the two
positions, whereas larger values indicate that knowing which amino
acids are found at one position gives some information about which
ones are expected at the other position. One limitation of mutual
information is that non-zero values are often expected to be present
by chance, even for randomly generated peptides. We therefore
used the mutual information P-value as a filter (other statistical
measures such as the Z-scores could also be used). All P-values have
been computed by randomly shuffling the amino acids within the
alignment columns. A threshold of 0.001 has been used to define
correlated positions.

Clustering domain-binding peptides

For each domain displaying correlated positions, the peptides were
clustered using the average linkage hierarchical clustering algorithm
implemented in R. The similarity measure between two peptides was
computed as the ratio of identical amino acids, including only
positions that are correlated with at least one other position. Although
other measures of similarity, such as BLOSUM62 or biochemical
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similarity, may be used, we did not observe any improvement when
using them. The final clusters were defined by following the branches
of the dendrogram from its root and stopping whenever no more
correlated positions are present within a cluster according to our
mutual information P-value cutoff (see Figure 1B). Although larger
P-values are always expected for smaller peptide sets, the absence
of significant positional correlations within the clusters does not
originate from this scaling effect, since random clusters of the same
size do not remove correlations, as shown in Figure 2. Clusters
containing less than two peptides most often correspond to false-
positives in phage and were filtered out in subsequent analyses.

Mixture of PWMs

A mixture of K PWMs is described by the model parameters yli
k, which

correspond to the probability of having amino acid i and position l
according to the kth PWM, and the mixing coefficients pk quantifying

the weight of each PWM ð
PK

k¼1 p
k ¼ 1Þ (Bailey and Elkan, 1994;

Bishop, 2006). The score of a peptide X¼(x1yxL) of length L is then
given by the equation:

PðXjy1; :::; yk;pÞ ¼
XK

k¼1

pkPðXjykÞ ¼
XK

k¼1

pk
YL

l¼1

yklxl

Given a data set of N interacting peptides, the different parameters of
the mixture of PWMs are directly learned from the data using standard
maximum likelihood algorithms (see Supplementary information).
Choosing the best value for K (i.e., number of PWMs) is a difficult
machine learning problem that does not have a general solution.
In practice, one can either test different values and choose the most
meaningful one or design heuristic strategies to estimate a reasonable
value of K. Here, we chose K as the number of clusters found to remove
all positional correlations. However, we stress that the mixture model
provides a general framework that can be used with any other method
of choosing K. In particular, the method can also be used as a fast
exploration tool by probing different values of K (i.e., different number
of PWMs) and manually identifying the most meaningful one, without
performing the initial clustering step.

Molecular modeling

The Rosetta software (Wang et al, 2007) was used to dock the ligand
EETDIW to DLG1 PDZ1, using the recent PDB structure 2WL7 for the
PDZ domain. Ligand position was optimized with Rosetta2.3 allowing
for backbone flexibility, and the highest scoring trajectory out of 100
optimization runs was used in our model. Binding energies and
residue preferences in the peptides were analyzed with FoldX
(Schymkowitz et al, 2005; see Supplementary information). All
structures were visualized with Pymol (http://www.pymol.org).

Protein interaction predictions

The C-termini of all human proteins were scanned with the multiple
PWM model and fairly stringent thresholds were used to generate the
network of Supplementary Figure S7. As DLG1 and DLG2 share480%
sequence identity, the two proteins were merged in the network of
predicted interactions. To experimentally test some of the predicted
interactions, we filtered away the ones already known from literature
and databases and the non-membrane proteins to comply with the
requirements of themembrane Y2H system.Wemanually selected three
proteins (ANO9 and CYSLTR2 predicted to bind to DLG1 and SLC6A12
predicted to bind to SCRIB) from the network in Supplementary Figure S7.
All three proteins were tested with both DLG1 and SCRIB.

Experimental testing of protein interactions

Membrane Y2H constructs
Full-length human ANO9, CYSLTR2 and SLC6A12 cDNAs, as well as
the controls EPHA2 and SLC6A5, were amplified by PCR and
subcloned by homologous recombination in yeast into bait vectors

pBT3-N and pTLB-1 (DualSystems Biotech) conferring the C terminal
ubiquitin (Cub) moiety and LexA-VP16 transcription factor at the
bait N terminus (except for CYSLTR2 and EPHA2 in which the
Cub-LexA-VP16 tag was fused to the C terminus of the bait
protein). Similarly, full-length human DLG1 and SCRIB cDNA were
subcloned into prey vector pPR3N (DualSystems Biotech), which
confers the N terminal ubiquitin (Nub) moiety to the N terminus of the
prey protein.

Membrane Y2H assay
Yeast reporter strain THY.AP40 (MATa trp1 leu2 his3 LYS2::lexA-HIS3
URA3::lexA-lacZ) was transformedwith the indicated LexA-VP16-Cub-
BAIT constructs by the lithium acetate protocol. Self-activation and
membrane localization were assessed by the Fur4-NubI/Fur4-NubG
and Ost-NubI/Ost-NubG tests, as previously described (Deribe et al,
2009; Snider et al, 2010). On passing the NubG/I test, pPR3N-DLG1/
SCRIB preys were transformed into bait-containing yeast and
transformants were selected on SD-Trp-Leu. Three colonies for each
transformationwere spotted on selective media containing 5-bromo-4-
chloro-3-indolyl-b-D-galactopyranoside (X-GAL), which turns blue in
the presence of b-galactosidase, indicating activation of the reporter
system. Figure 6 displays the results for these three independent
experiments for each interaction. The protein interactions from this
publication have been submitted to the IMEx (http://imex.sf.net)
consortium through IntAct (Aranda et al, 2010) and assigned the
identifier IM-15347.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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