Annals of Mathematics

The Multiplier Problem for the Ball
Author(s): Charles Fefferman
Source: Annals of Mathematics, Second Series, Vol. 94, No. 2 (Sep., 1971), pp. 330-336
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1970864
Accessed: 06/01/2014 11:23

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics.

The multiplier problem for the ball

By Charles Fefferman*

1. Introduction

Define an operator T on $L^{p}\left(\mathbf{R}^{n}\right)$ by the equation $\widehat{T f}(x)=\chi_{B}(x) \hat{f}(x)$, where χ_{B} is the characteristic function of the unit ball. This operator and its variants play the role of the Hilbert transform for a number of problems on multiple Fourier series and boundary behavior of analytic functions of several complex variables. (See [6], [7], for instance.) Therefore, one would like to know whether T is a bounded operator on $L^{p}\left(\mathbf{R}^{n}\right)$. For the analogue of T in which the ball is replaced by a cube, an affirmative answer has been known for many years: $T_{\text {cube }}$ is bounded on all $L^{p}(1<p<\infty)$. See [6]. However, T is essentially different from $T_{\text {cube }}$. One sees this almost immediately, by applying T, say, to the function

$$
f(x)= \begin{cases}1 & \text { if }|x|<1 / 10 \\ 0 & \text { otherwise }\end{cases}
$$

Tf dies too slowly at infinity to be a good function, and it follows that T cannot be bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for any p outside the range $2 n /(n+1)<p<$ $2 n /(n-1)$. The well-known "disc conjecture" asserts that T is bounded on all $L^{p}\left(\mathbf{R}^{n}\right)$ with $2 n /(n+1)<p<2 n /(n-1)$. Only the trivial case $p=2$ has ever been decided.

In [5] and [3], heartening progress was made on the disc conjecture. Instead of the difficult operator T, Stein and I dealt with the slightly less singular Bochner-Riesz spherical summation operators, defined by $\widehat{T_{\dot{\partial}}} f(x)=$ [max $\left.\left(1-|x|^{2}, 0\right)\right]^{\delta} \hat{f}(x)$. For each $\delta>0$, one expects T_{δ} to be bounded on a certain range of L^{p} 's, and [3] proves the analogue of the disc conjecture for all T_{i} with δ greater than a critical value δ_{c}.

It therefore comes as a surprise, at least to me, that the disc conjecture is false.

Theorem 1. T is bounded only on $L^{2}(n>1)$.
We shall prove this unfortunate fact in section 2 below. Note that it is enough to disprove L^{p}-boundedness of T on \mathbf{R}^{2} for $p>2$. For, L^{p}-boundedness of T on \mathbf{R}^{n} implies boundedness on \mathbf{R}^{n-1} by a theorem of de Leeuw; and

[^0]the case $p>2$ yields the case $p<2$ by duality. (See Jodeit [4] for an enlightening proof of de Leeuw's theorem.)

How badly does T fail to be bounded on $L^{p}\left(\mathbf{R}^{n}\right), 2 n /(n+1)<p<$ $2 n /(n-1)$? Just barely, at least in \mathbf{R}^{2}, according to the following result.

Theorem 2. $T_{\dot{\delta}}$ is bounded on $L^{p}\left(\mathbf{R}^{2}\right)$, for $\delta>0,4 / 3 \leqq p \leqq 4$.
L. Carleson and P. Sjölin proved Theorem 2 by means of Carleson's recent theory of "saddle-point" integrals. This news was a great psychological stimulus to the author as he was working his way through the disc problem. He is profoundly grateful for this.

With greatest pleasure, we acknowledge E. M. Stein's decisive contributions to this research. His remarkable "Restriction Theorem" on Fourier transforms was the key insight that opened up the disc problem to serious attack. He provided me with the moral and mathematical support without which that problem would today be as open as ever. Lastly, he simplified my proof of Theorem 1 to its present digestible form.

2. Disproof of the disc conjecture

Assume that $\|T f\|_{p} \leqq C\|f\|_{p}$, where $p>2$. From this would follow:
Lemma 1. (Y. Meyer.) Let v_{1}, v_{2}, \cdots be a sequence of unit vectors in \mathbf{R}^{2}, and let H_{j} be the half-plane $\left\{x \in \mathbf{R}^{2} \mid x \cdot v_{j} \geqq 0\right\}$. Define a sequence of operators T_{1}, T_{2}, \cdots on $L^{p}\left(\mathbf{R}^{2}\right)$ by setting $\widehat{T_{j} f}(x)=\chi_{H_{j}}(x) \hat{f}(x)$. Then for any sequence of functions f_{1}, f_{2}, \cdots, the following inequality holds:

$$
\begin{equation*}
\left\|\left(\sum_{j}\left|T_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq C\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{A}
\end{equation*}
$$

Proof. The idea is to replace T_{j} by an operator more closely related to the disc. Define T_{j}^{r} by the equation $\widehat{T_{j}^{r} f}(x)=\chi_{D_{j}^{r}}(x) \hat{f}(x)$, where D_{j}^{r} is the disc of radius r and center $r v_{j}$. D_{j}^{r} looks much like the half-plane H_{j} for enormous r, so that we might expect $T_{j} f(x)=\lim _{r \rightarrow \infty} T_{j}^{r} f(x)$ for $x \in \mathbf{R}^{2}$. Indeed, when $f \in C_{0}^{\infty}\left(\mathbf{R}^{2}\right)$, this is immediate from routine estimates on $\widehat{T_{j} f}-\widehat{T_{j}^{r f}}$. Fatou's Lemma now shows that

$$
\left\|\left(\sum_{j}\left|T_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq{\lim \inf _{r \rightarrow \infty}}\left\|\left(\sum_{j}\left|T_{j}^{r} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

So in order to prove (A), it is enough to prove

$$
\left\|\left(\sum_{j}\left|T_{j}^{r} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq C\left\|\left(\sum_{j} \mid f_{j}{ }^{2}\right)^{1 / 2}\right\|_{p}
$$

with C independent of r. By dilating \mathbf{R}^{2}, we may assume that $r=1$. However, $T_{j}^{1} f(x)=e^{i_{j} \cdot x} T\left(e^{-i v_{j} \cdot y} f(y)\right.$), so that the left-hand side of (A^{\prime}) is nothing but

$$
\begin{equation*}
\left.\|\left(\sum_{j} \mid T\left(e^{i_{j} \cdot v} f_{j}(y)\right)\right)^{2}\right)^{1 / 2} \|_{p} \tag{B}
\end{equation*}
$$

and our problem is to dominate (B) by $C\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}$.
We are assuming that $\|T f\|_{p} \leqq C\|f\|_{p}$ for all $f \in L^{p}\left(\mathbf{R}^{2}\right)$. An application of the Rademacher functions shows that the vector analogue

$$
\left\|\left(\sum_{j}\left|T f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq C\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

holds also (see [7, vol. 2, p. 224]). Therefore, the expression (B) is dominated by

$$
C\left\|\left(\sum_{j}\left|e^{v_{j} \cdot v} f_{j}(y)\right|^{2}\right)^{1 / 2}\right\|_{p}=C\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p},
$$

which is just what we had to prove.
Q.E.D.

To prove Theorem 1, we shall exhibit a counterexample to (A) for any $p>2$. Our example is based on a slight variant of (Schönberg's improvement of) Besicovitch's construction for the Kakeya needle problem.

Lemma 2. Fix a small number $\eta>0$. There is a set $E \subseteq \mathbf{R}^{2}$ and a collection $\mathscr{R}=\left\{R_{j}\right\}$ of pairwise disjoint rectangles, with the properties:
(1) At least one-tenth the area of each \widetilde{R}_{j} lies in E.
(2) $|E| \leqq \eta \sum_{j}\left|R_{j}\right|$.

Here, \widetilde{R}_{j} is the shaded region in Figure 1.

Figure 1
As soon as we know Lemma 2, we can immediately disprove (A) and thus establish Theorem 1. For, we simply set $f_{j}=\chi_{R_{j}}$, and let v_{j} be parallel to the longer sides of R_{j}, as in Figure 1. Direct computation shows that $\left|T_{j} f_{j}\right| \geqq 1 / 2$ on \widetilde{R}_{j}, so that

$$
\begin{align*}
\int_{E}\left(\sum_{j}\left|T_{j} f_{j}(x)\right|^{2}\right) d x & =\sum_{j} \int_{E}\left|T_{j} f_{j}(x)\right|^{2} d x \geqq \frac{1}{4} \sum_{j}\left|E \cap \widetilde{R}_{j}\right| \\
& \geqq \frac{1}{40} \sum_{j}\left|\widetilde{R}_{j}\right|=\frac{1}{20} \sum_{j}\left|R_{j}\right|, \tag{C}
\end{align*}
$$

(by (1)).

On the other hand, if (A) were true, Hölder's inequality would show that

$$
\begin{align*}
\int_{E}\left(\sum_{j}\left|T_{j} f_{j}(x)\right|^{2}\right) d x & \leqq|E|^{(p-2) / p}\left\|\left(\sum_{j}\left|T_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}^{2} \\
& \leqq C|E|^{\mid p-2) / p} \mid\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{2 / /} \|_{p}^{2} \tag{D}\\
& =C|E|^{\mid p-2) / p}\left(\sum_{j}\left|R_{j}\right|\right)^{2 / p} \leqq C \eta^{(p-2) / p} \sum\left|R_{j}\right|
\end{align*}
$$

(by (2)).
For small η, (C) contradicts (D), which disproves (A). Therefore, Theorem 1 follows from Lemma 2.

Proof of Lemma 2. We shall follow closely the excellent exposition in [2]. See also the classic paper of Busemann and Feller [1].

Consider the following process: We are given a triangle T as in Figure 2a, with horizontal base $a b$ and height h. Extend the lines $a c$ and $b c$ to points a^{\prime} and b^{\prime} of height $h^{\prime}>h$. Let d be the midpoint of $a b$. (See Figure 2b).

Figure 2a

Figure 2b

We say that the two triangles $T^{\prime}=a d a^{\prime}$ and $T^{\prime \prime}=b d b^{\prime}$ arise as T sprouts from height h to height h^{\prime}.

Now we can construct the Besicovitch set E. Begin with an equilateral triangle T° whose base is the interval $[0,1]$ on the x-axis, and pick an increasing sequence of numbers $h_{0}, h_{1}, h_{2}, \cdots, h_{k}$, where $h_{0}=\sqrt{3} / 2=\operatorname{height}\left(T^{\circ}\right)$. Sprout T° from height h_{0} to height h_{1}, to obtain two triangles, T^{\prime} and $T^{\prime \prime}$. Sprout both T^{\prime} and $T^{\prime \prime}$ from height h_{1} to height h_{2} to obtain four triangles $T^{1}, T^{2}, T^{3}, T^{4}$, all of height h_{2}. Continue sprouting, obtaining at stage $n, 2^{n}$ triangles of height h_{n} and base 2^{-n}. Finally, set E equal to the union of all 2^{k} triangles $T_{1}, T_{2}, \cdots, T_{2^{k}}$ arising at stage k.

For the case $h_{0}=\frac{\sqrt{3}}{2}, h_{1}=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right), h_{2}=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}+\frac{1}{3}\right), \cdots$, Busemann and Feller compute the area of E, and find it to be at most 17. (Actually, Busemann and Feller use a sprouting procedure slightly different from ours. However, since their sprouted triangles are strictly larger than ours, their estimates apply here.)

Now we have built the set E and found its measure. It remains to construct a collection \mathscr{R} of pairwise disjoint rectangles satisfying (1) and (2).

To do so, note that each dyadic interval $I \subset[0,1]$, of length 2^{-k}, is the base of exactly one T_{j}. Denote that T_{j} by $T(I)$, and call its upper vertex $P(I)$. Using $T(I)$, we construct the rectangle $R(I)$ as in Figure 3.

Figure 3

It doesn't matter how $R(I)$ is placed, as long as it stays inside triangle $P(I) B A$. Now define $\mathscr{R}=\{R(I) \mid I$ is a dyadic subinterval of $[0,1]$, of length $\left.2^{-k}\right\}$.

Let us check (1) and (2). (1) is obvious from Figure 3, since $T(I) \subseteq E$. To check (2), we note that each $R(I)$ has area $\sim(\log k) \cdot 2^{-k}$, and that there are $2^{k} R(I)$'s. So

$$
\sum_{I} R(I) \sim(\log k) \cdot 2^{-k} \cdot 2^{k}=\log k
$$

whereas we saw that the area of E is at most 17 . Thus, (2) holds if we take k so large that $\log k>17 / \eta$.

It remains only to show that the different $R(I)$ are pairwise disjoint. This is geometrically obvious from the following.

Lemma 3. Let I and I^{\prime} be two dyadic subintervals of $[0,1]$ of length 2^{-k}. If I lies to the left of I^{\prime}, then $P\left(I^{\prime}\right)$ lies to the left of $P(I)$.

Proof of Lemma 3. For any triangle T with horizontal base, define the region \widetilde{T} as in Figure 4.

Figure 4
We have:
(α) If $I_{1} \subseteq I_{2}$ then $\widetilde{T\left(I_{1}\right)} \subseteq \overparen{T\left(I_{2}\right)}$. This is clear by induction.
(β) Let I_{1} and I_{2} be two halves of the dyadic interval I. Say that I_{1} is to the left of I_{2}. Then $\overparen{T\left(I_{1}\right)}$ and $\overparen{T\left(I_{2}\right)}$ are disjoint, and $\overparen{T\left(I_{2}\right)}$ is to the left of $\overparen{T\left(I_{1}\right)}$. (See Figure 2b).

Therefore,

(γ) If I_{1} and I_{2} are disjoint dyadic subintervals of [0,1], and I_{1} lies to the left of I_{2}, then $\overparen{T\left(I_{1}\right)}$ and $\widetilde{T\left(I_{2}\right)}$ are pairwise disjoint and $\widetilde{T\left(I_{2}\right)}$ lies to the left of $\overparen{T\left(I_{1}\right)}$.
Lemma 3 follows at once from (γ), since $P(I) \in \widetilde{T(I)}$.
Q.E.D.

Lemma 3 is trivial, and its proof should not be taken too seriously. In any event, we now know that the rectangles of \mathcal{R} are pairwise disjoint. The proofs of Lemma 2 and Theorem 1 are complete.
Q.E.D.

We explain briefly how to construct explicit counterexamples to the disc conjecture in \mathbf{R}^{2}. By carrying out the construction of Lemma 2 and then dilating the plane, we obtain a set E^{\prime} and a collection of pairwise disjoint rectangles $\left\{R_{j}^{\prime}\right\}$ satisfying (1) and (2) above, with the further property that all the R_{j}^{\prime} have dimension roughly $N^{1 / 2} \times N$. Here N is as large as we please. Also, we may replace E^{\prime} by a slightly smaller set $E^{\prime \prime}$ which is a union of squares of length $N^{1 / 2}$, without destroying (1) and (2). As above, set v_{j} equal to a unit vector parallel to the longer sides of R_{j}^{\prime}. Then the function

$$
f(x)=\sum_{j} e^{i v_{j} \cdot k} \chi_{R_{j}^{\prime}}(x) \equiv \sum_{j} f_{j}(x)
$$

satisfies

$$
\|T f\|_{p}>C\|f\|_{p} \quad(p>2)
$$

provided we take $N=N(C, p)$ large enough. To prove this, one first computes $T f_{j}$ and verifies that for $j \neq j^{\prime}, T f_{j}$ and $T f_{j}$, are essentially orthogonal on every square of length $\geqq N^{1 / 2}$. (On each square of side $N^{1 / 2}, T f_{j}$ and $T f_{j}$,
turn out, more or less, to be plane waves travelling in different directions. It is helpful to look at $\widehat{T f_{j}}$ and $\widehat{T f_{j},}$.) Therefore,

$$
\int_{E}|T f(x)|^{2} d x=\int_{E}\left|\sum_{j} T f_{j}(x)\right|^{2} d x \approx \sum_{j} \int_{E}\left|T f_{j}(x)\right|^{2} d x
$$

As in the deduction of Theorem 1 from Lemma 2, the left-hand integral turns out to be so large that $\|T f\|_{p} \leqq C\|f\|_{p}$ is impossible.

University of Chicago, Chicago, Ill.

References

[1] H. Busemann and W. Feller, Differentiation der L-Integrale, Fundamenta Math. 22 (1934), 226-256.
[2] F. Cunningham Jr., The Kakeya problem for simply connected and star-shaped sets, Amer. Math. Monthly, 78 no. 2 (1971), 114-129.
[3] C. Fefferman, Inequalities for strongly singular integrals, Acta Math. 124 (1970), 9-36.
[4] M. Jodeit, Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 no. 2 (1971), 423-424.
[5] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
[6] , Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[7] A. Zygmund, Trigonometric Series, Cambridge 1959.
(Received March 8, 1971)

[^0]: * This work was supported by the Alfred P. Sloan Foundation.

