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ABSTRACT

A RANSAC based procedure is described for detecting in-

liers corresponding to multiple models in a given set of data

points. The algorithm we present in this paper (called mul-

tiRANSAC) on average performs better than traditional ap-

proaches based on the sequential application of a standard

RANSAC algorithm followed by the removal of the detected

set of inliers. We illustrate the effectiveness of our approach

on a synthetic example and apply it to the problem of iden-

tifying multiple world planes in pairs of images containing

dominant planar structures.

1 Introduction and Previous Work

Many image processing and computer vision tasks are car-

ried out by fitting a set of data to some suitable model. As an

example, starting from the detection of correspondent points

in an image pair it is possible to estimate the scene epipo-

lar geometry [1] and to register and fuse the image pair [2].

However the data available are usually noisy and rich of out-

liers (i.e. data that cannot be “explained” by the considered

model and by the associated set of parameters). Robust sta-

tistics can be used in situations where the number of outliers

does not exceed half of the data. An interesting application

of this approach is described by Black et al. [3] to compute

the optical flow. In situations where the number of outliers

is larger than half of the data, one of the most commonly

used approaches is RANSAC [4]. The basic idea proposed

by Fischler et al. is to estimate the model parameters us-

ing the minimum number of data possible and then to check

which of the remaining data points fit the model instanti-

ated with the estimated parameters. This approach has been

successfully applied to a wide variety of image processing

and computer vision tasks, such as estimating the epipolar

geometry of a scene, computing the camera matrices, regis-

tering image pairs and 3D data sets, etc. However this ap-

proach is limited by the assumption that a single model ac-

counts for all of the data inliers. To handle multiple models

(or different instances of the same model) it has been sug-

gested to sequentially apply RANSAC and to remove the

inliers from the data set as each model instance is detected

[5, 6] (sequential RANSAC). We believe that this approach

is non-optimal. In fact we have observed in practice that

inaccurate inlier detection for the initial (or subsequent) pa-

rameter estimation contributes heavily to the instability of

the estimates of the parameters for the remaining models.

Thus we feel that parallel rather than sequential multiple

model detection is the safest approach; this is analogous to

the related problem of data clustering in which standard it-

erative search methods such as Lloyd’s algorithm are based

on parallel cluster detection.

The goal of this paper is two-fold. First we extend the

RANSAC algorithm to deal simultaneously with multiple

models in a more principled way, and we provide a theoret-

ical analysis of the performance of the algorithm. Then we

justify our approach performing line fitting on an “ambigu-

ous” synthetic data set. Finally we validate the algorithm

identifying sets of image correspondences that belong to

distinct planar regions using real data sets. This is an impor-

tant preliminary task in many image processing and com-

puter vision applications, ranging from image registration

to view synthesis, from augmented reality to autonomous

navigation and so on so forth.

The paper is structured as follows: in Section 2 we will

introduce the multiRANSAC algorithm, we will derive a

suitable stopping criterion and we will analyze each build-

ing block of the algorithm. Section 3 will show how our ap-

proach performs on average better than sequential RANSAC

when dealing with “ambiguous” data sets. Furthermore we

will describe how multiRANSAC can be successfully used

to detect multiple planar homographies starting from the

point correspondences in an image pair. The conclusions

and some ideas for future work can be found in Section 4.

2 The multiRANSAC Algorithm

We first introduce the notation that will be used throughout

the rest of the paper. Let D = fx1; : : : ;xNg be the set

of all data (inliers and outliers). The set of all the inliersDI is generated by W different models, and has cardinalityNI = NI;1+: : :+NI;W . LetMw(�w) denote the manifold

of dimension kw of all points associated to the parameter



vector �w 2 Rkw for the specified model 1 � w � W . A

subset sw � D of kw elements is called minimal sample set

(MSS). We define the error for a point x with respect to a

manifoldMw(�w) to be the distance from x toMw(�w):e(x;Mw(�w)) def= minx02Mw(�w) d(x;x0)
where d(�; �) is an appropriate distance function. Using this

error metric we define the consensus set (CS) S(�w) to be

the subset of points in D such that their distance from the

manifoldMw(�w) is less or equal than a threshold Æ. The

notation fAwg indicates the collection of sets A1; : : : ; AW .

2.1 MultiRANSAC Search Procedure

Suppose we want to simultaneously estimate the parameters

of W models, each one represented by a kw-dimensional

parameter vector �w. At each iteration we draw a MSS and

then we calculate the corresponding CS. We then repeat the

same procedure W times after removing the inliers from

the data set D. The probability of picking W MSSs entirely

composed by inliers given that the size of the corresponding

CSs was respectively NI;1; : : : ; NI;W is given by:q = �NI;1k1 ��NI;2k2 � : : : �NI;WkW ��Nk1��N�NI;1k2 � : : : �N�PW�1w=1 NI;wkW � (1)

where
�nk� = n!k!(n�k)! indicates the binomial coefficient.

Note that this probability is minimized if the CSs are found

in increasing order of cardinality, i.e. NI;1 � : : : � NI;W .

The probability that a MSS does not have all its members

in the inlier set is 1 � q. If we select h MSSs at random

the probability that none of them consists entirely of inliers

is given by (1 � q)h. This value goes to 0 as h increases.

We would like to pick h large enough so that the probability

of failure (by which we mean that we do not find W MSSs

only composed by inliers) is less than some specified value". This is ensured if we require h to be large enough so

that (1 � q)h < ". However there is a problem: we do not

know q since a priori we do not know the true number of

inliers NI;w for each model. This problem can be solved

by observing that the cardinality of the CS associated to any

parameter vector �w is less or equal than the actual number

of inliers, i.e. j S(�w) j� NI;w (jAj denotes the cardinality

of the set A). Therefore, provided that NI;1 � : : : � NI;W ,

we can write1 q(�) � q and consequently 1�q � 1�q(�).
In other words, if h is large enough and (1 � q(�))h < ",

then (1 � q)h < " as well. Thus we can define an upper

bound to the maximum number of iterations using the sorted

cardinalities of the largest CSs found so far. In other words

the iteration threshold can be fixed to:T̂iter = � log "log (1� q(�))� (2)

1The parameter vector � denotes the concatenation of the parameter

vectors associated to each model.

2.2 MultiRANSAC Fusion Procedure

Even though the total number of inliers at iteration h is

smaller than the total number of inliers at iteration h � 1,

it may happen that the CSs obtained from two consecutive

iterations can be combined in a compatible way (i.e. with-

out intersections) to generate an increased number of inliers.

This observation can be stated more formally as follows.

Let S(h)w = S(h)(�w) be the CS associated to the wth model

at the hth iteration. The new collection of CSs S(h)(�) is

formed combining the CSs calculated at the (h � 1)th it-

eration with those obtained at the hth iteration using the

following greedy algorithm:

UPDATECS(nS(h�1)w o ;nS(h)w o)
1 Sall  nS(h�1)w o [ nS(h)w o
2 S(h)(�) ;
3 while w �W
4 do S�  GETMAXCARDINALTY(Sall)
5 if S� is disjoint from any set in S(h)(�)
6 then S(h)(�) S(h)(�) [ S�
7 Sall  Sall n S�
8 w  w + 1
9 return

nS(h)w o
The algorithm picks the largest CS among those calcu-

lated at the (h�1)th and hth iteration provided that such set

is disjoint from those already added to S(h)(�). The func-

tion GETMAXCARDINALTY returns the set with the maxi-

mum cardinality.

2.3 The MultiRANSAC Algorithm

The multiRANSAC procedure can be summarized as fol-

lows:

MULTIRANSAC(D;W; ")
1 h 0; T̂iter  1
2 while h � T̂iter
3 do h h+ 1
4 for w  1 to W
5 do (sw; �) GETMSS(D;W )
6 (Sw; �) GETCS(D; sw)
7 D  D n Sw
8

�fS(h)w g; �� UPDATECS(fSwg; fS(h�1)w g)
9 T̂iter  log "log(1�q(�))

10 return
�fS(h)w g; ��

The function GETMSS chooses a MSS from the data

set D. The function GETCS estimates the parameter vector�w and calculates the correspondent CS. Finally the maxi-

mum number of iterations T̂iter is updated according to the

criterion outlined in Section 2.1.
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Fig. 1. This figure is best viewed in color. (a) The stair data set is composed by four horizontal segments with 50 points each and 300 true

outliers. (b) An example of bad fit and (c) an example of good fit.

3 Experiments

3.1 Detecting Lines

The purpose of this subsection is to support experimentally

our claim that inaccurate inlier detection for the initial (or

subsequent) parameter estimation contributes heavily to the

instability of the estimates of the parameters for the remain-

ing models. Consider the stair data set in Figure 3.1(a).

The inliers are composed by 4 groups of 50 points (forming

4 horizontal segments) corrupted by Gaussian noise. The

final data set is obtained adding the “true” outliers: 300

points uniformly distributed in a square domain. This way

each model “sees” 150 pseudo-outliers and 300 true out-

liers. To compare the performance of the algorithms we

define the set of correctly detected inliers for the model w
as Cw def= D̂I;w \ DI;w where D̂I;w is the detected set of

inliers, and the percentage of correctly detected inliers as:
w def= jCwjjDI;wj100
Table 1 shows the results of the multiRANSAC approach

versus the sequential RANSAC approach averaged over 50

instances of the stair data set for varying values of the noise

standard deviation. The average value of 
 is given by:
av def= 50Xh=1 WXw=1 
(h)w
In general multiRANSAC performs better than sequential

RANSAC, especially when the standard deviation of the

noise that corrupts the inliers becomes larger. This happens

at the price of an increased computational complexity: ex-

pression (2) produces larger values than in the sequential

RANSAC case. To cope with this problem in our experi-

ments we stopped the iterations after the best CSs were left

unchanged for 5000 iterations.

3.2 Using multiRANSAC to Detect Homographies

In this section we will describe how the multiRANSAC al-

gorithm can be used to identify homographies between an

Table 1. multiRANSAC vs. Sequential RANSAC

multiRANSAC sequential RANSAC� 
av Niter 
av Niter
5.5�10�3 95.96% 7499 93.80% 2016

6.0�10�3 95.22% 7626 86.00% 2049

6.5�10�3 90.08% 8194 67.14% 2080

7.0�10�3 90.13% 8699 47.92% 2103

7.5�10�3 86.01% 8110 37.29% 2103

image pair. Related work can be found in [5, 6], where

the authors apply RANSAC sequentially to detect the ho-

mographies relating points in a pair of images. Consider

two images and a set of point correspondences xi $ x0i
for 1 � i � N . If two points belong to a planar region

then they are related by a linear projective transformation

called homography: x0i = Hxi, where H 2 R3�3 has 8

degrees of freedom (scale does not matter). Therefore any

homography can be estimated from 4 point correspondences

(provided that the configuration of the points is not singu-

lar), and therefore kw = 4. The parameter vector �w is

composed by the first 8 components of2 col(H). Following

[1] we define the manifold error to be the symmetric trans-

fer error e (z;Mw(�w)) = d(Hwx;x0)2 + d(x; H�1w x0)2
where z def= � xT x0T �T

. As suggested in [6], the MSSs

are formed in such a way that points that are neighbors are

selected with higher probability. More precisely, if a pointxi has been selected, then a point xj will be selected with

the following probability:P (xj jxi) = ( 1Z exp�d(xi;xj)2�2 if xi 6= xj ,0 if xi = xj .

where Z is a normalization constant. The value of � is cho-

sen so that the probability of selecting a point xj that has

distance �d from xi is equal to �P . Note that the denomina-

tor of (1) is constructed assuming that we sample uniformly

2For any matrixA the notation col(A) denotes the vector obtained from

the column scan of the matrix A.
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Fig. 2. This figure is best viewed in color. Markers with the same

color and shape indicate features that belong to the same planar re-

gion. The image pairs are: (a) House, (b) Merton and (c) Wadham.

over the entire data set. This is not true if we adopt the

sampling procedure described above. Therefore in (1) we

replace the value N with:N̂ def= 1 + 1N Xxi2D ������8<:xj 2 D :Xj P (xj jxi) � TP9=;������
where the points xj in the summation are sorted accord-

ing to their distance from xi (closer points have smaller in-

dices). Therefore N̂ is the average number of neighbors of

each point. In our experiments we choose TP = 0:95.

The results obtained using multiRANSAC to estimate

planar homographies are summarized in Table 2 and dis-

played in Figure 3.2. To estimate the homographies we used

Table 2. multiRANSAC vs. Sequential RANSAC

Image W multiRANSAC seq. RANSAC

pair NI Niter NI Niter
House 3 150 14361 149 1802

Merton 4 437 11604 448 2004

Wadham 3 280 10024 287 1503

the normalized DLT algorithm [1]; the noise standard devia-

tion was always set to one pixel. Qualitatively the grouping

of the point features is compliant with the planar structures

present in the image pairs. Note that sequential RANSAC

in two cases found a larger number of inliers: this however

does not necessarily mean that the quality of the homogra-

phy estimates is better.

4 Conclusions and Future Work

The classic RANSAC algorithm has been extended to the

problem of simultaneous parameter estimation of multiple

models in data sets with a high percentage of outliers. Ex-

perimental results on synthetic data seem to confirm that

a parallel approach produces more stable estimates than a

sequential approach. The algorithm has also been validated

estimating multiple planar homographies on real image pairs

(taken with non calibrated cameras).

Future research efforts will be focused on automatically

determining the optimal number of models W for a given

data set, on developing better strategies for the fusion of the

CSs and on the exploitation of parallel architectures (the es-

timation of the parameters of different models can be threaded

on different processors). We are also interested in propos-

ing stopping criteria that are tighter than the iteration bound

(2): for this purpose we are currently trying to stochastically

model the number of iterations between two updates of the

CSs.
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