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Coarse-grained �CG� models provide a computationally efficient method for rapidly investigating
the long time- and length-scale processes that play a critical role in many important biological and
soft matter processes. Recently, Izvekov and Voth introduced a new multiscale coarse-graining
�MS-CG� method �J. Phys. Chem. B 109, 2469 �2005�; J. Chem. Phys. 123, 134105 �2005�� for
determining the effective interactions between CG sites using information from simulations of
atomically detailed models. The present work develops a formal statistical mechanical framework
for the MS-CG method and demonstrates that the variational principle underlying the method may,
in principle, be employed to determine the many-body potential of mean force �PMF� that governs
the equilibrium distribution of positions of the CG sites for the MS-CG models. A CG model that
employs such a PMF as a “potential energy function” will generate an equilibrium probability
distribution of CG sites that is consistent with the atomically detailed model from which the PMF
is derived. Consequently, the MS-CG method provides a formal multiscale bridge rigorously
connecting the equilibrium ensembles generated with atomistic and CG models. The variational
principle also suggests a class of practical algorithms for calculating approximations to this
many-body PMF that are optimal. These algorithms use computer simulation data from the
atomically detailed model. Finally, important generalizations of the MS-CG method are introduced
for treating systems with rigid intramolecular constraints and for developing CG models whose
equilibrium momentum distribution is consistent with that of an atomically detailed model. © 2008
American Institute of Physics. �DOI: 10.1063/1.2938860�

I. INTRODUCTION

Atomistic molecular dynamics �MD� simulations1,2 have
contributed key insight into the structure, dynamics, and
function of many important biomolecular systems by provid-
ing a model of molecular motion with angstrom level detail
and femtosecond resolution.3 Enabled by the development of
increasingly powerful software4–8 and hardware,9,10 MD
simulations now routinely model the equilibrium fluctuations
of biomolecules, such as proteins,3,11–13 or bioassemblies,
such as lipid bilayers,14 for tens of nanoseconds across length
scales of several nanometers. As one example familiar to
us,15 the remodeling of the cellular plasma membrane has
recently been investigated by performing atomistic MD
simulations of the N-BAR protein domain16 interacting with
a physiologically relevant model membrane. This simulation
study, which combined some of the most powerful
software5,6 and hardware9,10 currently available for conven-
tional MD simulations, observed the N-BAR-induced mem-
brane bending process over tens of nanometers for on the
order of 100 ns. However, many important biological pro-

cesses such as protein folding,17,18 signal transduction,19,20

and the assembly of the HIV-1 viral capsid21 occur on the
microsecond time scale or longer. An extensive investigation
of the mechanisms involved in these slowly evolving pro-
cesses remains well beyond the capability of conventional
biomolecular MD simulation methodologies. Consequently,
there has been rapidly growing interest in the development of
coarse-grained �CG� models for investigating such long
time- and length-scale processes that cannot be adequately
studied with atomically detailed MD simulations.22,23

Many widely disparate CG models have been described
in the literature. The present work considers CG models that
consist of classical interacting mass points �CG sites� that
each correspond to one or more atoms in an atomically de-
tailed simulation of the same system. Because the CG repre-
sentation often has many fewer degrees of freedom, these
low resolution models are usually highly computationally
efficient.24 CG models, therefore, provide a powerful com-
putational tool for rapidly exploring the expansive conforma-
tional space relevant to complex biological processes evolv-
ing on very long time scales. Accordingly, considerable
effort has been expended in developing CG models for
studying a range of biological processes �see, for example,
Refs. 23–44�. Implicit in much of this work is the fundamen-
tal underlying assumption that the results observed with the
low resolution model are somehow consistent with those that
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would be observed using a more detailed and thus more
computationally expensive all-atom model. However, al-
though CG modeling may allow an exhaustive investigation
of the conformational space involved in long time- or length-
scale processes, the results may be misleading unless the
ensemble of low resolution structures observed with a CG
model is a low resolution representation of the ensemble that
would be observed using a more atomically detailed model.
Consequently, the development of a formal statistical me-
chanical theory for obtaining low resolution models that are
consistent with accurate high-resolution models will play a
critical role in achieving the full promise of CG modeling.

Izvekov and Voth recently introduced the multiscale
coarse-graining �MS-CG� method28,29 that determines a CG
interaction potential from atomistic force information
through a powerful variational minimization procedure. The
MS-CG method has already been applied to develop accurate
CG models for simple and ionic liquids,28,45–47 uniform and
mixed lipid bilayers,29,48 small peptides,49 carbon
nanoparticles,50 and mixed resolution models of transmem-
brane proteins.51 The present work develops a formal theo-
retic framework for the MS-CG method, expanding upon and
generalizing the foundations provided by previous work.28,29

Furthermore, the present analysis introduces a general statis-
tical mechanical theory for developing CG models that are
consistent with atomically detailed �or other high-resolution�
models. Moreover, it is demonstrated that the general
MS-CG method may, in principle, be employed to determine
a many-body potential of mean force �PMF� describing the
equilibrium distribution of CG sites observed in simulations
of atomically detailed models. The ensemble of structures
generated by CG models employing this PMF as an interac-
tion potential will be consistent with the ensemble of high
resolution structures generated by the atomistic model. The
MS-CG method thus provides a rigorous “multiscale bridge”
between atomistic and CG models.23

In investigating the statistical mechanical foundations of
the MS-CG method, it is convenient to introduce a precise
definition of consistent CG models. For the present discus-
sion, a CG model of a system is “consistent” with a particu-
lar atomistic model of the same system if �1� each CG coor-
dinate and momentum has been assigned a well defined
meaning as a linear combination of the coordinates and mo-
menta of a subset of the atoms in the atomistic model and if
�2� the equilibrium distribution of coordinates and momenta
of the CG model is equal to the distribution determined by
the equilibrium distribution function of the atomistic model.
Alternatively, a CG model is consistent in the CG configu-
ration space if each CG coordinate has been assigned a well
defined meaning as a linear combination of the coordinates
of a subset of the atoms in the atomistic model and the equi-
librium distribution of coordinates of the CG model is equal
to that implied by the atomistic equilibrium distribution. �In
this latter case, either the CG momenta are not explicitly
treated, as in Monte Carlo simulations of CG models,52 or
the CG momenta are employed in simulating the CG model,
but only the resulting equilibrium distribution of CG coordi-
nates is consistent with that implied by the atomistic model.�

The remaining sections of this paper are organized as

follows: In Sec. II, we consider a molecular system �e.g., a
biological structure� for which we have both an atomistic
model and a CG model such that we can specify the relation-
ship between the two descriptions in terms of a linear map-
ping operator that maps the atomistic coordinates �and, when
appropriate, momenta� onto the CG coordinates �and mo-
menta�. Then, we discuss the quantitative implications of the
assertion that the two models of the same system are consis-
tent in the sense discussed above. Sufficient conditions for
consistency are then derived. The analysis shows that under a
wide set of conditions the “potential energy function” �i.e.,
many-body PMF� of the CG model is completely determined
�except for an arbitrary additive constant� by the potential
energy function of the atomistic model and the mapping op-
erator if the two models are consistent. In Sec. III, the rela-
tionship between the two potential energy functions is ex-
pressed in terms of a variational principle. We show that this
principle suggests algorithms for calculating the CG poten-
tial function from computer simulations of the atomistic sys-
tem. In particular, Sec. III B demonstrates that this varia-
tional principle forms the fundamental basis of the MS-CG
method introduced in earlier work.28,29 Section IV provides
an overview and discussion of these results, including a sum-
mary of how to construct a CG model that is consistent with
a specific atomistic model. Section V provides concluding
remarks. Numerical aspects of implementing the construc-
tion of consistent CG models are discussed in Paper II.

II. “CONSISTENT” COARSE-GRAINED
MODELS

A. Atomistic and coarse-grained descriptions of a
system

The present work considers a high resolution and a low
resolution model for a given molecular system. The high
resolution model will be referred to as an atomistic model,
and the fundamental interacting particles for the atomistic
model will be referred to as “atoms.” The low resolution
model will be referred to as a CG model and the fundamental
interacting particles for the CG model will be referred to as
CG “sites.” However, the following framework applies quite
generally to relate high and low resolution particle-based
models of the same system and applies, e.g., when some of
the atoms are actually united atoms with light atoms associ-
ated with heavy atoms and/or when some of the sites corre-
spond to individual atoms. �For the moment, we restrict our
attention to models that have no rigid intramolecular con-
straints.�

The instantaneous dynamical state of the atomistic
model is specified by the values of the Cartesian coordinates
rn= �r1 , . . . ,rn� and momenta pn= �p1 , . . . ,pn� of the n atoms
of the atomistic model for the system. The atomistic Hamil-
tonian is

h�rn,pn� = �
i=1

n
1

2mi
pi

2 + u�rn� . �1�

The physical meaning of pi is miṙi. The equilibrium prob-
ability density of dynamical states in the canonical ensemble
is
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prp�rn,pn� = pr�rn�pp�pn� , �2�

where

pr�rn� � exp�− u�rn�/kBT� , �3�

pp�pn� � exp�− �
i=1

n

pi
2/2mikBT	 . �4�

Similarly, the instantaneous dynamical state of the CG
model is specified by the values of the Cartesian coordinates
RN= �R1 , . . . ,RN� and momenta PN= �P1 , . . . ,PN� of the N
CG sites of the CG model of the system. �To highlight the
similarities between the atomistic and CG models while
making the distinctions clear, atomistic phase variables and
their functions will be represented with lower case symbols,
while CG phase variables and functions will be represented
with capitalized symbols.� The CG Hamiltonian is

H�RN,PN� = �
I=1

N
1

2MI
PI

2 + U�RN� . �5�

The physical meaning of PI is MIṘI. The equilibrium prob-
ability density of dynamical states in the canonical ensemble
is

PRP�RN,PN� = PR�RN�PP�PN� , �6�

where

PR�RN� � exp�− U�RN�/kBT� , �7�

PP�PN� � exp�− �
I=1

N

PI
2/2MIkBT	 . �8�

If the CG dynamics does not involve momenta �e.g.,
Monte Carlo dynamics or Smoluchowski dynamics�, the
state is specified by the positions only. In this case, the equi-
librium probability density of dynamical states is given by
Eq. �7� where U�RN� is the appropriate CG potential energy
function.

The CG dynamical model regards the sites as structure-
less mass points. We assume that the model has been con-
structed so that each CG coordinate has a well defined physi-
cal meaning in terms of the coordinates of the atomistic
model. For example, one specific CG site might correspond
to the center of mass of a specific set of atoms on a molecule,
another specific CG site might correspond to the center of
mass of a specific molecule, and another specific site might
correspond to the position of a single atom. The physical
meaning of the positions of the CG sites is specified by a
linear mapping operator MR

N�rn�= �MR1�rn� , . . . ,MRN�rn�� of
the form

MRI�rn� = �
i=1

n

cIiri for I = 1, . . . ,N . �9�

Thus, the physical meaning of RI in terms of the atomistic
model is MRI�rn�. For CG models that use momentum, it
follows that the physical meaning of the CG momentum PI is

MPI�pn� = MI�
i=1

n

cIipi/mi for I = 1, . . . ,N . �10�

The collection of these N functions is a linear mapping op-
erator denoted by MP

N�pn�.

B. Definition of a consistent CG model

Following the definition given in the Introduction, we
say that the CG model is consistent with the atomistic model
in phase space if the equilibrium joint probability density of
CG coordinates and momenta, as given by Eq. �6�, is equal
to that implied by the atomistic probability density �Eq. �2��
together with the mapping operators Eqs. �9� and �10�. Also,
a CG model is consistent with the atomistic model in con-
figuration space if the equilibrium probability density of CG
coordinates in Eq. �7� is equal to that implied by the atom-
istic distribution �Eq. �3�� together with Eq. �9�.

We are concerned with understanding the conditions un-
der which a CG model for a physical system is consistent
with an atomistic model for the same physical system. It
should be intuitively clear that in order for a specific CG
model to be consistent with a specific atomistic model, there
must be a relationship between the CG potential U�RN� and
the atomistic potential u�rn�. As we shall see, u�rn� and the
mapping operator MR

N�rn� determine U�RN� for a consistent
CG model uniquely, except for an additive constant. It is less
obvious, but in fact true, that consistency is obtained only if
the mapping operator satisfies certain restrictions. Moreover,
for CG models that are consistent in phase space, the CG
masses are determined by the atomic masses and the map-
ping operator.

In this paper, we will derive sufficient conditions for a
specific CG model to be consistent with a specific atomistic
model of the same system. We shall proceed by evaluating
the equilibrium probability density of CG coordinates and
momenta as determined by the equilibrium probability den-
sity of atomistic variables and the mapping operator, and by
showing that under a well chosen set of conditions the CG
model has the same equilibrium probability density.

C. Comments on the mapping operator

Any reasonable mapping must satisfy the condition that
if all the atoms in an atomistic system are translated by the
same vector displacement r, then all the CG sites are simi-
larly translated by the same displacement. Hence, we impose
the condition that

�
i=1

n

cIi = 1 for all I . �11�

It is convenient at this point to define two special sets of
atoms for each of the N CG sites. For each site I, a set of
involved atoms, II, and a set of specific atoms, SI, may be
defined,

II = �i
cIi � 0� , �12�
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SI = �i
cIi � 0 and cJi = 0 for all J � I� . �13�

An atom i in the atomistic model is involved in a CG site I if
and only if the atom provides a nonzero contribution to the
sum in Eq. �9�. Similarly, the atom i is specific to site I if and
only if the atom is involved in site I and is not involved in
the definition of any other site.

D. The consistency conditions

The atomistic equilibrium probability density in Eq. �2�
and the mapping operators in Eqs. �9� and �10� imply the
following equilibrium probability density for the CG vari-
ables:

pRP�RN,PN� =� drn� dpnprp�rn,pn�

� ��MR
N�rn� − RN���MP

N�pn� − PN� �14�

=pR�RN�pP�PN� �15�

where

pR�RN� =� drnpr�rn���MR
N�rn� − RN� ,

pP�PN� =� dpnpp�pn���MP
N�pn� − PN� , �16�

and

��MR
N�rn� − RN� � 

I=1

N

��MRI�rn� − RI� ,

��MP
N�pn� − PN� � 

I=1

N

��MPI�pn� − PI� .

The CG model will be consistent with the atomistic
model in phase space if and only if PRP in Eq. �6� is equal to
pRP in Eq. �14�, i.e.,

PRP�RN,PN� = pRP�RN,PN� . �17�

Since both expressions factorize into position and momen-
tum dependent parts, the CG model will be consistent with
the atomistic model in phase space if and only if the two
following relationships hold:

PR�RN� = pR�RN� , �18�

PP�PN� = pP�PN� . �19�

These are equivalent to the following equations:

exp�− U�RN�/kBT� �� drn exp�− u�rn�/kBT�

���MR
N�rn� − RN� �20�

exp�− �
I=1

N

PI
2/2MIkBT	 �� dpn exp�− �

i=1

n

pi
2/2mikBT	

� ��MP
N�pn� − PN� . �21�

Equations �20� and �21� are sufficient conditions for the CG
model to be consistent with the atomistic model in phase
space. Similarly, the CG model will be consistent with the
atomistic model in configuration space if and only if Eq. �18�
holds. This equation is equivalent to Eq. �20�. Thus, Eq. �20�
is a sufficient condition for the CG model to be consistent
with the atomistic model in configuration space.

Equation �20� implies that the CG potential for a consis-
tent CG model is a many-body PMF that is completely de-
termined �except for an undetermined additive constant� by
the atomistic potential and the mapping operator. The many-
body PMF is, in fact, a conditioned free energy surface in the
coordinate space of the CG variable. This may be referred to
as a CG “potential energy function,” but the distinction from
the atomistic potential energy function is clear from Eq. �20�.
Equation �20� also leads to a practical algorithm for evaluat-
ing U�RN� from simulations of the atomistic model. This is
discussed in Sec. III.

If a CG model is to be consistent in phase space, Eq.
�21� must also be satisfied. This equation can be satisfied
only for certain choices of mapping operators. Moreover, this
equation imposes some conditions on the CG masses MI.
This is discussed in Sec. II F.

E. The coarse-grained force field

Equation �20� determines the CG potential U�RN� for a
consistent model in terms of the atomistic potential,

U�RN� = − kBT ln z�RN� + �const� ,

where

z�RN� � � drn exp�− u�rn�/kBT���MR
N�rn� − RN� .

The gradients of this U�RN� determine the “force field” for a
consistent CG model. The present subsection derives an ex-
pression for this CG force field as a certain type of equilib-
rium average of linear combinations of the atomistic forces.

The CG force field is given by

FI�RN� = −
�U�RN�

�RI

=
kBT

z�RN�
�z�RN�

�RI

=
kBT

z�RN� � drn exp�− u�rn�/kBT�

� 
J��I�

��MRJ�rn� − RJ�
�

�RI
���

i�II

cIiri − RI	 .

�22�

This may be expressed in terms of atomistic forces by ex-
pressing the partial derivative in Eq. �22� as a linear combi-
nation of partial derivatives with regard to atomistic coordi-
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nates, � /�ri, and integrating by parts, so that the derivatives
are now acting on u�rn� in the Boltzmann factor. It is
straightforward to see that the identity

�

�RI
���

i�II

cIiri − RI	 = −
1

cIk

�

�rk
���

i�II

cIiri − RI	 �23�

holds for any k�II because cIk�0 by the definition in Eq.
�12�. Although this identity may be employed in Eq. �22�, if
the atom k is involved in the definition of any other CG site,
J� I, then subsequent integration by parts will be compli-
cated by the dependence of the remaining N−1 mapping
operators on rk. This complication may be avoided by defin-
ing a set of constant coefficients �dIi� such that dIi�0 only if
atom i is specific to CG site I and such that

�
j�SI

dIj = 1 for all I . �24�

It is then easily verified that

�

�RI
���

i�II

cIiri − RI	 = − �
j�SI

dIj

cIj

�

�r j
���

i�II

cIiri − RI	 .

�25�

In order to obtain such an equation for each I, we assume
that for each CG site there is at least one atom that is specific
to the site. Because the partial derivative � /�RI in Eq. �22�
has been expressed in terms of partial derivatives with regard
to the positions of atoms that are not involved in the defini-
tion of any other site, the integration by parts may now be
performed without further complication. The result is

FI�RN� = �FI�rn��RN, �26�

where

FI�rn� = �
j�SI

dIj

cIj
f j�rn� , �27�

f j�rn�=−�u�rn� /�r j, and the angular brackets denote an aver-
age of the form

�g�rn��RN �
�drn exp�− u�rn�/kBT���MR

N�rn� − RN�g�rn�
�drn exp�− u�rn�/kBT���MR

N�rn� − RN�

�28�

for any continuous function g�rn� of the atomistic coordi-
nates. The CG force field F�RN� in Eq. �26� can be regarded
as a conditional expectation value of F for an atomistic sys-
tem, given that the atomistic system is in a configuration
such that MR

N�rn�=RN.
Equation �26� is a major result of this subsection. It ex-

presses the force on CG site I in terms of a certain type of
equilibrium average, for the atomistic model, of FI�rn�,
which is a linear combination of the atomistic forces acting
on the atoms that are specific to CG site I. It was derived
from Eq. �20� using only one assumption, namely, that every
CG site has at least one atom that is specific to it. It provides
the basis for a variational principle and a practical algorithm
for calculating the many-body PMF �potential� from simula-
tions of the atomistic system, as discussed below in Sec. III.

In addition, the logic of the discussion can be reversed to
show that Eq. �26�, plus the assumption that every CG site
has at least one atom that is specific to it, implies Eq. �20�.
However, Eq. �20� is precisely the condition for consistency
in configuration space and is one of the two conditions for
consistency in phase space. Thus, we have the basis for stat-
ing sufficient conditions for consistency of a CG model with
an atomistic model. A CG model will be consistent in con-
figuration space with a given atomistic model if there is at
least one atom specific to each site and if the force on each
CG site I in a given CG configuration RN is given by Eq.
�26�. A complete set of sufficient conditions is summarized
below in Sec. II G.

F. Consistency in momentum space

For CG models that include momenta, Eq. �21� gives the
consistency condition in momentum space. The left side of
this equation is a product of separate factors, each of which
depends on only one PI. In order for the right side to have
this property, it is necessary and sufficient that no atom i be
involved in the definition of more than one CG site.

If this condition is satisfied, then it is straightforward to
show that the factor on the right associated with site I has a
Gaussian form with zero mean, as does the corresponding
factor on the left. If the second moments of the factors on left
and right are equal, then the CG masses satisfy

MI = ��
i�II

cIi
2

mi
	−1

for all I . �29�

Equation �29� is a major result of this subsection. It ex-
presses the mass of each CG site in terms of the atomistic
masses and the coefficients in the mapping function. It was
derived from Eq. �21�, which is one of the two necessary
requirements for consistency in phase space, using only one
assumption, namely, that no atom is involved in the defini-
tion of more than one site. In addition, the logic of the deri-
vation can be reversed to show that Eq. �29� plus this as-
sumption imply Eq. �21�, which is also one of the two
sufficient conditions for consistency in phase space. Conse-
quently, a CG model will generate an equilibrium distribu-
tion of momenta that is consistent with a given atomistic
model if no atom is involved in the definition of more than
one CG site and if the mass of each site is defined by Eq.
�29�. In conjunction with the result of Sec. II E, this allows
us to construct a complete set of sufficient conditions for
consistency of the CG model with the atomistic model.

G. Summary of sufficient conditions for consistency

We can now summarize a set of sufficient conditions that
imply that a particular CG model is consistent with a particu-
lar atomistic model. These conditions are sufficient for ato-
mistic models that have no rigid intramolecular constraints.

�1� The physical meaning of the location of each CG site in
terms of the locations of the atoms is expressed in lin-
ear equations of the form of Eq. �9�.

�2� Each CG site has at least one atom that is specific to
that site.

244114-5 The multiscale coarse-graining method. I J. Chem. Phys. 128, 244114 �2008�



�3� The CG forces satisfy Eq. �26�, which relates them to
equilibrium averages in the atomistic canonical
ensemble.
These three are a set of sufficient conditions for consis-
tency in configuration space. For consistency in phase
space, we have additional conditions:

�4� No atom is involved in the definition of more than one
CG site.

�5� The CG masses satisfy Eq. �29�.

H. The effect of rigid intramolecular constraints on
the problem of consistency

The previous discussion applies only to the case in
which the atomistic model has no rigid intramolecular con-
straints. In this situation, each Cartesian coordinate of each
atom corresponds to a mechanical degree of freedom of the
system. Atomically detailed molecular models frequently
employ rigid mechanical constraints between atoms to in-
crease the efficiency of MD simulations.53 The presence of
such constraints has a significant impact upon the equilib-
rium statistical mechanics of a model because the number of
mechanical degrees of freedom is less than the number of
Cartesian coordinates.53–60 As a result, there are additional
considerations that arise in specifying sufficient conditions
for a CG model to be consistent with an atomistic model.
Here, we will just summarize the results for a case that is
likely to be appropriate for most instances in which CG mod-
els are used. The analysis follows the work of Ciccotti and
co-workers,53,59,60 which shows how to use Cartesian coordi-
nates of an atomistic system with rigid constraints in describ-
ing the mechanics and statistical mechanics of the system. A
detailed discussion of other cases will be presented in a sub-
sequent paper.

Suppose the atomistic model has l translationally invari-
ant holonomic constraints,55 each enforcing a fixed relative
geometry among constrained atoms within a single molecule,

�t�rn� = 0, �30�

where t labels the constraint. In order for each constraint to
be satisfied at all times, the velocities of the constrained at-
oms must satisfy the condition

�̇t�rn,pn� = 0. �31�

The set of l constraints, each of which affects only a particu-
lar set of atoms, allows us to partition the atoms into nonin-
tersecting “constrained sets,” such that �1� no constraints ex-
ist between atoms in distinct constrained sets and �2� the
atoms within a constrained set are all either directly or indi-
rectly connected by constraints. It will be convenient if we
specify that any atom that is not constrained by other atoms
is regarded as a constrained set containing one atom. Given
this partitioning of the atoms, the equilibrium probability
density for the coordinates and momenta of the atomistic
model is

prp
c �rn,pn� � exp�− h�rn,pn�/kBT�

�=1

nc

P��r��,�p��;R�� .

�32�

Here, � is a label that denotes constrained sets, nc is the
number of constrained sets, �r�� and �p�� denote the coordi-
nates and momenta of the atoms in constrained set C�, and
R� stands for the particular set of constraints that act on the
constrained set C�. Here, h�rn ,pn� is of the usual form
�Eq. �1�� for unconstrained systems and P��r�� , �p�� ;R�� de-
scribes the correlations among the atoms in constrained set
C� that are induced by the constraints. For constrained sets
that have only one atom, P is, of course, equal to unity. An
explicit formula for P for nontrivial constrained sets involv-
ing more than one atom can be obtained from the work of
Ciccotti and Ryckaert.53 The detailed form depends on the
number and nature of the various constraints acting on the
constrained set of atoms.

We consider the case in which the atomistic model has
rigid intramolecular constraints while the CG model has
none. In this situation, the statistical mechanics of the CG
system is described by the same equations as in the previous
discussion, but that of the atomistic system is more compli-
cated as discussed just above.

For this case, however, the derivation of Eq. �26�, which
is associated with consistency in configuration space, pro-
ceeds as in the case without constraints, and the same result
is obtained, provided that condition �6� holds. This condition
allows the integration by parts to get the analog of Eq. �26�
despite the additional factors in the integrand derived from
the P functions. That is,

�6� if a member i of a constrained set C� of atoms is spe-
cific to site I and dIi�0, then all members of the con-
strained set are specific to site I, and dIi /cIi has the
same value for all i�C�.

Condition �6� implies that if the atomistic force FI as-
sociated with site I contains a contribution from the atomistic
force on any member of a constrained set, then FI contains
contributions from every member of the constrained set, and
the sum of all these contributions is equal to a numerical
factor times the sum of all the atomistic forces on the con-
strained set that is derived from gradients of the atomistic
potential u �see Eq. �27��. In the atomistic model, there are
also fluctuating constraint forces acting among the members
of the constrained set, but their sum is always zero because
of momentum conservation. Thus, when condition �6� is sat-
isfied, the atomistic force FI associated with site I depends
on the forces on the atoms in the constrained set only as a
function of the total force on the atoms in the constrained set.

To prove consistency in momentum space, it is necessary
to show that the analog of Eq. �15� holds, i.e., that pRP for the
situation with constraints factorizes into position and mo-
mentum dependent factors and that the analog of Eq. �21�
holds. �The analogs of both Eqs. �15� and �21� contain fac-
tors resulting from the P functions and hence are more com-
plicated than Eqs. �15� and �21�, respectively.� This can be
proven if the following conditions holds:
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�7� If one member of a constrained set C� of atoms is in-
volved with site I, then all members of the constrained
set are involved with the same site, and cIi /mi has the
same value for all i�C�.

Condition �7� implies that if atoms in a constrained set
are involved in a particular CG site, the mapping operator for
that site depends on the coordinates of the atoms in the con-
strained set only as a function of the center of mass of the
constrained set.

Thus, a sufficient set of conditions for consistency in
phase space, in the case that the atomistic model has rigid
intramolecular constraints while the CG model has none, is
conditions �1�–�5� from Sec. II G plus conditions �6� and �7�
above. A sufficient set of conditions for consistency in con-
figuration space is conditions �1�–�3� plus condition �6�.
More complicated constraint scenarios required additional
analysis and conditions. These will be the focus of future
research.

III. VARIATIONAL PRINCIPLE FOR MULTISCALE
COARSE-GRAINING

The analysis of the previous section identified sufficient
conditions for a particular CG model to be consistent with a
particular atomistic model. In a consistent model, the CG
potential energy function, U�RN�, is a many-body PMF de-
termined by the atomistic interaction potential, u�rn�, accord-
ing to Eq. �20�. The CG force field determined by gradients
of the PMF is then related to the atomistic force field accord-
ing to Eq. �26�. The present section discusses the MS-CG
variational principle for determining this CG force field and
demonstrates that this variational principle forms the funda-
mental basis for the MS-CG method orginally introduced by
Izvekov and Voth.28,29 Therefore, the MS-CG method may be
used, in principle, for systematically developing CG models
that will be consistent with a given atomistic model.

A. Variational principle for the many-body PMF

A CG force field is a set of real continuous functions,
GI�RN�, of the CG configuration, RN, for each site,
I=1, . . . ,N. It will be convenient in the following discussion
to consider this set as a single function whose arguments
include both I and RN, in which case a CG force field can be
denoted as G. We consider the vector space of real functions
of this type, which we shall refer to as the vector space of
CG force fields. This space includes the �atomistically con-
sistent� CG force field F that is determined by Eq. �22�, as
well as all possible approximations to this force field.

For an arbitrary member G in this vector space of CG
force fields, we define the functional

�2�G� =
1

3N��
I=1

N


FI�rn� − GI�MR
N�rn��
2� , �33�

where the angular brackets denote an equilibrium canonical
ensemble average for the atomistic model. Then, defining
�=G−F, it follows that

�2�G� = �2�F� +
1

3N��
I=1

N


�I�MR
N�rn��
2�

−
2

3N��
I=1

N

�I�MR
N�rn�� · �FI�rn� − FI�MR

N�rn����
= �2�F� +

1

3N��
I=1

N


�I�MR
N�rn��
2� � �2�F� . �34�

The third term on the right hand side of the first equality
vanishes as a result of the lemmas proved in the Appendix.
The � in Eq. �34� holds as an equality if and only if
GI�RN�=FI�RN� for all I and RN.

This analysis provides the theoretical basis for the fol-
lowing variational principle: The global minimum of the
functional �2�G� for G in the vector space of CG force fields
is achieved when G is F, i.e., the appropriate CG force field
for a consistent model, and the global minimum is unique.

Equation �34� suggests a physically relevant definition of
a norm in the vector space of CG force fields. For any vector
G in the space,

�G� � ��
I=1

N


GI�MR
N�rn��
2�1/2

= �� dRN�
I=1

N


GI�RN�
2pR�RN�	1/2

, �35�

where pR�RN�, given in Eq. �16�, is the equilibrium probabil-
ity density of CG coordinates that is implied by the equilib-
rium properties of the atomistic model. The norm �G� can be
regarded as the length of the vector G. With this definition,
Eq. �34� becomes

�2�G� = �2�F� +
1

3N
�G − F�2. �36�

Suppose that we identify a finite set of ND linearly inde-
pendent vectors in the vector space of CG force fields, GD

for D=1, . . . ,ND. This set of vectors forms a finite, and
hence incomplete, basis set �GD� for the vector space. We
consider the subspace spanned by this basis, and we find the
vector in that subspace that minimizes �2�G�. Using the
same reasoning that led to Eq. �34�, it is straightforward to
show that the minimum exists and is unique. Moreover, from
Eq. �36� it is clear that the force field G in the given vector
subspace that minimizes �2 is also the force field in the sub-
space that minimizes �G−F�; i.e., it is the member of the
subspace that minimizes the distance �as defined by Eq. �35��
from the CG force field F determined by the exact many-
body PMF. Consequently, this variational principle can be
used to construct the following practical algorithm for calcu-
lating approximations to the PMF, U�RN�, from simulations
of an atomistic model:

�1� Choose a finite set of ND linearly independent force
field vectors GD for D=1, . . . ,ND, defining a vector
subspace of functions GI�RN�. Each force field vector
GI;D�RN� should be of the form
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GI;D�RN� = −
�UD�RN�

�RI
, �37�

where UD�RN� should be a scalar function that is dif-
ferentiable with regard to all its arguments.

�2� Consider

GI�RN� = �
D=1

ND

�DGI;D�RN� . �38�

Calculate �2�G� by approximating the ensemble aver-
age in Eq. �33� by an appropriate average over com-
puter simulation trajectories of the atomistic model de-
signed to sample from a canonical ensemble.

�3� Find the set of coefficients ��
D
*� that minimize �2.

Then, Eq. �38� with those coefficients is an approxima-
tion to the CG force field F determined by the many-
body PMF, and

U*�RN� = �
D=1

ND

�
D
*UD�RN� �39�

is an approximation to the atomistically consistent
many-body PMF, U�RN�.

In the limit that the set of ND basis functions is suffi-
ciently complete, an accurate numerical approximation to the
many-body force field F, which is determined by gradients
of the many-body PMF, can be obtained using this varia-
tional principle, provided that the simulation data are suffi-
ciently accurate to evaluate ensemble averages with suffi-
ciently small statistical error. In practice, the basis set will
not be complete and the data will have some statistical error.
As discussed in the previous paragraph, within the subspace
of CG force fields spanned by any incomplete but linearly
independent set of force field basis vectors �GD�, there exists
a unique CG force field G of the form given by
Eq. �38� that minimizes �2�G� in Eq. �33� among all force
fields in that subspace. In practice, for any incomplete basis
set, the G of the form of Eq. �38� that minimizes an approxi-
mate �2�G� calculated by averaging over computer simula-
tion trajectories will also be unique if there are enough simu-
lation data, and sufficient data should be used so that this is
the case for the basis set chosen. Then, the combination of
basis set and simulation data set determines a unique ap-
proximation to the CG force field. Moreover, as a result of
the way the basis set is constructed, the force field calculated
from applying the variational principle will be the gradient of
a potential energy function and hence suitable for use in
computer simulations with the CG model. Finally, the force
field determined by applying this variational principle within
the subspace of CG force fields spanned by the given basis
set will be the member of the subspace whose “distance” is
the smallest from F, subject, of course, to the effect of sta-
tistical error. In this sense, the result of the variational calcu-
lation represents an optimal approximation to the many-body
CG force field derived from the PMF, given the basis set
chosen and the simulation data set. A systematic improve-
ment to this approximation can be made by improving the
basis set and/or the data set. Paper II �Ref. 61� demonstrates

the numerical implementation of the MS-CG variational al-
gorithm and discusses the practical treatment of incomplete
basis sets, imperfect sampling, and statistical noise within
the method.

B. Previous development of the MS-CG method

The MS-CG method previously developed by Izvekov
and Voth28,29 determined a CG force field through an exten-
sion of a force-matching method originally introduced for
constructing potential energy functions from ab initio MD
data.62 In early applications of the MS-CG method, the CG
force field was determined by variationally minimizing the
residual,30

�MS
2 �FMS� =

1

3ntN
�
t=1

nt

�
I=1

N


fI�rt
n� − FI

MS�MR
N�rt

n��
2 �40�

=
1

3N��
I=1

N


fI�rt
n� − FI

MS�MR
N�rt

n��
2�
t

. �41�

In Eqs. �40� and �41�, the index t denotes one of nt configu-
rations sampled during the course of simulations of the ato-
mistic model, rt

n indicates the tth sampled atomistic configu-
ration, and the angular brackets labeled by t represent an
average over the sampled configurations. FI

MS�RN� is the
MS-CG force on CG site I as a function of the CG site
positions. The quantity fI�rt

n� is the “atomistic force” on CG
site I determined by the forces on the atoms used to define
the CG site I according to the atomically detailed interaction
potential, u�rn�. A comparison of Eqs. �33� and �41� indicates
that �MS

2 =�2 and that the original MS-CG variational mini-
mization method is a numerical implementation of the gen-
eral MS-CG variational principle discussed in Sec. III A if
FI�rn�= fI�rn�.

In previous applications of the MS-CG
method,28,29,45–51,63 CG sites have frequently been defined as
the centers of mass for disjoint subsets of atoms, and the
atomistic force on the CG site has been defined as

fI�rn� = �
i�II

fi�rn� . �42�

Clearly, this definition is consistent with the mapping cIi

=dIi=mi /MI for i�II=SI and MI=�i�II
mi, as long as no

rigid intramolecular constraints connect atoms involved in
distinct CG sites. In this case, FI�rn�= fI�rn�. Consequently,
the variational calculation employed in these previous appli-
cations of the MS-CG method29 is a specific case of the
general MS-CG algorithm described in Sec. III A for deter-
mining an optimal approximation to the many-body PMF.

IV. DISCUSSION

CG models are becoming an increasingly important tool
for studying complex long time- and long length-scale pro-
cesses that cannot be adequately investigated with more ato-
mistically detailed models. A fundamental assumption im-
plicit in much CG modeling is that an investigation of the
CG model would lead to the same conclusions as an inves-
tigation of a more detailed model if the latter investigation
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were feasible. In other words, it is assumed that the CG
model is consistent with a high resolution model. Previous
studies have implicitly employed various notions of consis-
tency of CG models. Quite commonly, the assessment of
consistency has focused on reproducing either particular
thermodynamic properties24,44,64 or local structural informa-
tion reported in pair distribution functions.27,32,38,41 The
present work proposes and investigates an explicit definition
of consistency: a CG model is consistent with a particular
atomistic model if the equilibrium distribution of CG struc-
tures �and, when appropriate, also momenta� generated by
the CG model is equal to the distribution determined by the
specified CG mapping and the equilibrium atomistic configu-
ration space �or phase space� distribution function. This defi-
nition is highly restrictive but allows the present analysis and
is sufficient to ensure that the ensemble of low resolution
structures sampled with a consistent CG model is structurally
equivalent to the ensemble of structures obtained by coarse-
graining the ensemble of structures sampled with the high-
resolution model. Moreover, Eq. �26� indicates that such con-
sistent CG models certainly exist, regardless of the technical
difficulty in developing such models.

The analysis of the present work suggests the following
prescription for constructing a CG model that is consistent
with a given atomistic model. This prescription is applicable
if the CG model has no rigid intramolecular constraints. The
first four steps are sufficient to guarantee consistency of the
CG model with the atomistic model in configuration space.
The last three steps should also be included if consistency in
phase space is desired. They are as follows:

�1� For each molecule in the atomistic model, the number
of CG sites describing the molecule and the atoms in-
volved in the definition of each site must be chosen. An
atom is specific to a site if it is involved in the defini-
tion of that site and is not involved in the definition of
any other site. There must be at least one atom that is
specific to each site.

�2� The cIi coefficients must be chosen subject to the
simple normalization condition in Eq. �11�. A coeffi-
cient cIi may be nonzero only if atom i is involved in
the definition of site I.

�3� The set of dIi coefficients must be chosen subject to the
normalization condition in Eq. �24�. A coefficient dIi

may be nonzero only if the atom i is specific to site I.
The dIi coefficients for atoms i that are members of a
constrained set must satisfy condition �6� in Sec. II H.

�4� The potential U �many-body PMF� of the CG model
can be calculated from simulation data for the atomistic
system using the variational principle in Sec. III A.
�Note that the calculation of the CG potential and
forces requires only configuration data for equilibrium
systems, not momentum data, so it can be obtained
from either MD simulations or Monte Carlo simula-
tions.� The MS-CG method provides a practical nu-
merical implementation of this variational calculation.

�5� A mass MI must be assigned to each CG site according
to Eq. �29�.

�6� Each atom may be involved in the definition of at most
one site.

�7� If one or more members of constrained sets are in-
volved in the definition of sites, condition �7� in Sec.
II H must be satisfied.

In principle, if these conditions are satisfied, a complete
set of basis functions is used in the variational calculation,
and the atomistic simulation data used in the calculations
have sufficiently small statistical error, the resulting CG
model will be consistent with the atomistic model, in the
sense defined at the beginning of this paper.

From the above discussion, it is clear that consistent CG
models may be developed for a remarkably diverse set of CG
mappings. Consistent CG models may associate sites with
the center of mass, center of geometry, or other normalized
mappings for groups of atoms, as long as the �cIi� and �dIi�
coefficients are appropriately chosen. Consistent CG models
may be developed in which some atoms in the atomistic
model are not involved in the definition of any CG sites. For
example, consistent solvent-free CG models38,39,65 may be
systematically developed in which the solvent molecules
have been integrated out of the model, but their effect is
incorporated into the many-body PMF for the remaining CG
sites. Similarly, consistent mixed resolution models51,66 may
be developed in which certain parts of the system are mod-
eled in complete atomistic detail �i.e., in some parts of the
system, every atom corresponds to a separate site�, while the
remainder of the system is modeled in reduced CG detail
�i.e., in other parts of the system, every site corresponds to
more than one atom�. Furthermore, CG models generating a
consistent configuration space distribution may be developed
in which one or more atoms are involved in the definition of
multiple sites. However, as mentioned above, no atom can be
involved in the definition of more than one site for a model
that is consistent in phase space.

The analysis of Sec. III B demonstrated that the varia-
tional principle discussed in Sec. III A forms the fundamen-
tal basis for the MS-CG method originally developed in pre-
vious work.28,29 The MS-CG method employs force
information determined from atomically detailed MD simu-
lations to calculate an effective interaction potential for
simulations of a CG model of the same system. If the CG
mapping is in accord with the development of Sec. II, if the
atomistic simulations have adequately sampled the canonical
distribution function for the atomically detailed model, and if
the variational calculation is performed using a basis set that
spans the space of all possible CG force fields, then the
MS-CG method determines the exact many-body PMF for
the given atomistic model. Simulations of the MS-CG model
employing this PMF as a potential energy function will be
consistent in configuration space with the given atomistic
model. Even more significantly, though, if the variational
MS-CG method is employed within the vector subspace
spanned by an incomplete set of force field basis vectors,
then the MS-CG method will determine the CG force field
within that subspace that is closest to the force field deter-
mined by the exact many-body PMF. In other words, if the
CG force field is assumed to be of a certain form, then the
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MS-CG method determines the CG force field of the as-
sumed form that is the optimal approximation to the exact
many-body force field, subject to any statistical noise in the
data sampled in the atomistic simulations. Moreover, the
MS-CG variational principle provides a systematic method-
ology for improving an approximation to the exact many-
body PMF by expanding the space of trial force fields, e.g.,
by explicitly including basis functions that describe three-
body interactions between CG sites.34,36 The variational prin-
ciple discussed in Sec. III ensures that as the space of trial
CG force fields is expanded by introducing additional basis
functions, the optimized MS-CG force field becomes an in-
creasingly accurate approximation to the exact many-body
PMF.

Previous applications of the MS-CG method have em-
ployed pairwise additive potentials for modeling nonbonded
interactions between CG sites.28,29,45–51,63 This can be re-
garded as a particular, physically motivated, choice of the
type of basis function to be used for the variational calcula-
tion. Since basis sets of this type are not complete, the cal-
culated MS-CG force field is not an exact representation of
the many-body CG force field F that is given by the gradi-
ents of the many-body PMF. Instead, the MS-CG method
determines the force field within the space of functions
spanned by the basis set used that is closest to this many-
body CG force field, in the sense defined in Sec. III A. How-
ever, despite the fact that basis sets that employ pairwise
additive potentials are not complete, previous applications of
the MS-CG method have been shown to determine accurate
CG models for a number of complex systems when com-
pared with the results of atomistic MD
simulations.28,29,45–51,63 This suggests that nonbonded inter-
actions between CG sites are often well represented, at least
to a good first approximation, as pairwise additive. A recent
analysis30 has also demonstrated that the MS-CG equations
for these pair potentials are related to well-known exact ki-
netic equations for the liquid state67 and systematically in-
corporate critical three-body correlations present in the un-
derlying atomistic model, which may be a key feature in the
previous successes of the MS-CG method.

Paper II �Ref. 61� discusses the numerical implementa-
tion of the MS-CG method and some examples.

V. CONCLUDING REMARKS

The present work introduces a procedure for developing
a CG model that is consistent with a more detailed atomistic
model of the same system. A precise definition of consis-
tency is given, one that is based on a mapping operator that
maps each point in the atomistic phase space onto a corre-
sponding point in the CG phase space. The present analysis
identifies conditions that are sufficient for proving that a CG
model and an atomistic model are consistent. On this basis, it
is clear how to construct a CG model that is consistent with
a given atomistic model of interest. A crucial step in this
construction is the calculation of the appropriate CG poten-
tial U�RN�, which is, in fact, a many-body PMF for the CG
sites that incorporates both energetic and entropic effects
from the atomistic model. The MS-CG variational principle

provides the basis for calculating this PMF using equilibrium
simulations of the atomistic system. Consequently, the
MS-CG method may be employed, in principle, to develop a
CG model that is consistent with a given atomistic model of
the same system. Assuming adequate sampling of the atom-
istic configuration space, the MS-CG variational principle
determines an optimal approximation to the exact many-
body PMF when employed to parametrize a CG potential
that is not completely flexible. The numerical aspects of
implementing the MS-CG method are discussed in Paper II.
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APPENDIX: DERIVATION OF EQUATION „34…

Equation �28� defines a certain type of average �g�rn��RN

of any function g�rn�. The following lemmas may be imme-
diately derived from this definition and may be used to ob-
tain Eq. �34�.

Lemma 1. If g�rn� and G�RN� are functions of the atom-
istic and CG coordinates, respectively, and if

g�rn� = G�MR
N�rn�� , �A1�

then

�g�rn��RN = G�RN� for all RN. �A2�

Lemma 2. If g�rn� is a function that satisfies �g�RN =0 for
all RN, then �g�=0.

Lemma 3. If g�rn� is a function that satisfies �g�RN =0 for
all RN and J�RN� is an arbitrary function of the site positions,
then

�g�rn�J�MR
N�rn���RN = 0 for all RN. �A3�

Hence

�g�rn�J�MR
N�rn��� = 0. �A4�

It is easily shown that the same lemmas hold for the case
of an atomistic system with intramolecular constraints if the
CG model does not have any constraints.
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