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Abstract— A new multimodal biometric database designed
and acquired within the framework of the European BioSecure
Network of Excellence is presented. It comprises more than 600
individuals acquired simultaneously in three scenarios: i) over the
Internet, ii) in an office environment with desktop PC, and iii)
in indoor/outdoor environments with mobile portable hardware.
The three scenarios include a common part of audio/video data.
Also, signature and fingerprint data has been acquired both
with desktop PC and mobile portable hardware. Additionally,
hand and iris data was acquired in the second scenario using
desktop PC. Acquisition has been conducted by 11 European
institutions. Additional features of the BioSecure Multimodal
Database (BMDB) are: two acquisition sessions, several sensors
in certain modalities, balanced gender and age distributions,
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multimodal realistic scenarios with simple and quick tasks per
modality, cross-European diversity, availability of demographic
data and compatibility with other multimodal databases. The
novel acquisition conditions of the BMDB allow to perform new
challenging research and evaluation of either monomodal or mul-
timodal biometric systems, as in the recent BioSecure Multimodal
Evaluation campaign1. A description of this campaign including
baseline results of individual modalities from the new database is
also given. The database is expected to be available for research
purposes through the BioSecure Association2 during 2008.

Index Terms— Multimodal, biometrics, database, evaluation,
performance, benchmark, face, voice, speaker, signature, finger-
print, hand, iris.

I. INTRODUCTION

B IOMETRICS is defined as the use of anatomical and/or

behavioral traits of individuals for recognition purposes [1].

Advances in the field would not be possible without suitable

biometric data in order to assess systems’ performance through

benchmarks and evaluations. In past years, it was common

to evaluate biometric products on small custom or proprietary

datasets [2] and therefore, experiments were not repeatable and a

comparative assessment could not be accomplished. As biometric

systems are being deployed, joint efforts have been conducted to

perform common experimental protocols and technology bench-

marks. Several evaluation procedures [3], databases and com-

petitions have been established in recent years, e.g. the NIST

Speaker Recognition Evaluations [4], the FERET and FRVT Face

Recognition Evaluations [5], the series of Fingerprint Verification

Competitions (FVC) [6], the Iris Challenge Evaluation (ICE) [7]

or the Signature Verification Competition (SVC) [8]. Biometric

data gathered for these competitions along with experimental pro-

tocols are made publicly available and in many cases, they have

become a de facto standard, so that data and protocols utilized in

these competitions are used by the biometric community to report

subsequent research work.

However, evaluation of biometric systems has been done to

date in a fragmented way, modality by modality, without any

1http://biometrics.it-sudparis.eu/BMEC2007
2http://biosecure.it-sudparis.eu/AB
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Year Ref. Users Sessions Traits 2Fa 3Fa Fp Ha Hw Ir Ks Sg Sp
971 (DS1, Internet scenario) 2 2 X X

BioSecure 2008 - 667 (DS2, Desktop scenario) 2 6 X X X X X X
713 (DS3, Mobile scenario) 2 4 X X X X

BiosecurID 2007 [13] 400 4 8 X X X X X X X X

BioSec 2007 [14] 250 4 4 X X X X

MyIDEA 2005 [15] 104 (approx.) 3 6 X X X X X X

BIOMET 2003 [16] 91 3 6 X X X X X X

MBioID 2007 [17] 120 (approx.) 2 6 X X X X X X

M3 2006 [18] 32 3 3 X X X

FRGC 2006 [19] 741 variable 2 X X

MCYT 2003 [20] 330 1 2 X X

BANCA 2003 [21] 208 12 2 X X

Smartkom 2002 [22] 96 variable 4 X X X X

XM2VTS 1999 [23] 295 4 2 X X

M2VTS 1998 [24] 37 5 2 X X

BT-DAVID 1999 [25] 124 5 2 X X

TABLE I

MOST RELEVANT FEATURES OF EXISTING MULTIMODAL DATABASES. THE NOMENCLATURE IS AS FOLLOWS: 2FA STANDS FOR FACE 2D, 3FA FOR FACE

3D, FP FOR FINGERPRINT, HA FOR HAND, HW FOR HANDWRITING, IR FOR IRIS, KS FOR KEYSTROKES, SG FOR HANDWRITTEN SIGNATURE AND SP

FOR SPEECH.

common framework. Some efforts in the past have been made re-

garding multimodal research and applications. Several multimodal

databases are available today, typically as a result of collaborative

European or national projects, but most of them include just a

few modalities. Biometric database collection is a challenging

task [2]. The desirability of large databases with presence of

variability (multi-session, multi-sensor, multi-scenario etc.) makes

the acquisition a time- and resource-consuming process, which in

the case of multimodal databases, requires important additional

efforts. A number of pre-acquisition and post-acquisition tasks

are also needed: training of acquisition operators, recruitment of

donors, supervision of acquired data, annotation, error correction,

labeling, documentation, etc. Furthermore, legal and operational

issues surround the donor’s consent and storage and distribution

process. Usually, a license agreement has to be signed between

the distributor and the licensee, and the size of new databases

(from gigabytes to terabytes) complicates their distribution.

This paper presents the recently acquired BioSecure Multi-

modal Database, which has been collected between November

2006 and June 2007. An important integrative effort has been

done in the design and collection of this database, involving 11

European institutions of the BioSecure Network of Excellence

[9]. The new database includes new features not present in

existing databases. More than 600 individuals have been acquired

simultaneously in three different scenarios (over the Internet, in

an office environment with a desktop PC, and in indoor/outdoor

environments using mobile devices) over two acquisition sessions

and with different sensors for certain modalities. New challenging

acquisition conditions that will allow the evaluation of realistic

scenarios are included, such as Internet transactions using face

and voice acquired with commercial webcams, or fingerprint and

handwritten signature on modern mobile platforms. An exam-

ple of such an evaluation is the recently conducted BioSecure

Multimodal Evaluation Campaign (BMEC) [10], where several

tasks were defined using data extracted from the BioSecure Mul-

timodal Database. Being the largest publicly available multimodal

database, it will allow novel research like: subpopulation effects,

only attainable by having a large population; large scale multi-

scenario/multi-sensor interoperability tests; etc. Furthermore, the

width of the database gives us the ability to have very tight

confidence intervals on results.

The contributions of the present paper can be summarized as:

1) overview of existing resources for research on multimodal

biometrics, and 2) detailed description of the most comprehensive

multimodal biometric database available to date, including aspects

such as: relation with other existing databases, acquisition design,

post-processing tasks, legal issues regarding distribution of bio-

metric data, and a core experimental framework with baseline

results that can be used as a reference when using the database.

From these baseline results, some novel experimental findings

can also be observed in topics of practical importance such as

biometric recognition using mismatched devices, and multiple

acquisition environments.

The rest of this paper is organized as follows. Section II

summarizes previous work done in the domain of multimodal

biometric database design and acquisition. The BioSecure Mul-

timodal Database (BMDB) is described in Section III, and its

compatibility with existing databases is given in Section IV.

A brief description of the BioSecure Multimodal Evaluation

Campaign, together with baseline results of individual modalities

from the database, is done in Section V. Some research directions

that can be followed with the new databases are pointed out in

Section VI and finally, legal and distribution issues are discussed

in Section VII.
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INSTITUTION COUNTRY DS1 DS2 DS3

Universidad de Vigo Spain 101 (△) 101 -

Bogazici University Turkey 98 - 95

Ecole Polytechnique Switzerland 77 - 48
Federale de Lausanne

Groupe des Ecoles France 117 117 117 (△)
des Telecommunications

Joanneum Research Graz Austria 70 70 -

University of Fribourg Switzerland 70 - 70

University of Kent UK 80 80 80

University of Surrey UK 104 104 104

University of Sassari Italy 55 55 -

Pompeu Fabra University Spain 59 - 59

Universidad Politecnica Spain 140 140 (△) 140
de Madrid (*)

971 667 713

TABLE II

INSTITUTIONS PARTICIPATING IN THE ACQUISITION, INCLUDING

INVOLVEMENT IN THE THREE ACQUIRED DATASETS. FOR EACH DATASET,

THERE WAS AN INSTITUTION - MARKED WITH (△) - IN CHARGE OF

COORDINATING ITS ACQUISITION.

(*) THE OVERALL ACQUISITION PROCESS WAS COORDINATED BY

UNIVERSIDAD POLITECNICA DE MADRID (UPM) THROUGH THE

ATVS/BIOMETRIC RECOGNITION GROUP. THE ATVS GROUP, FORMERLY

AT UNIVERSIDAD POLITECNICA DE MADRID (UPM), IS CURRENTLY AT

UNIVERSIDAD AUTONOMA DE MADRID (UAM).

THE GROUPE DES ECOLES DES TELECOMMUNICATIONS (GET) HAS

CHANGED ITS NAME TO INSTITUT TELECOM.

II. RELATED WORKS

Multimodal biometric research was first supported by

“chimeric” multimodal databases containing synthetic subjects

[11]. These synthetic subjects were constructed by combining

biometric data from different databases (e.g. fingerprint images

from one subject in one database, face images from another

subject in another database, etc.) to produce data sets which not

represent real multimodal samples. As multibiometric data may be

necessarily correlated [12], the use of chimeric databases should

be avoided. But collecting multimodal databases has important

issues: more acquisition time is generally required, subjects may

react negatively to the longer acquisition sessions needed, size

of the database and acquisition cost are considerably higher, and

in general, the management of such a task is exponentially more

complex. Fortunately, in recent years efforts have been directed to

collecting real multimodal databases involving various biometric

traits and hundreds of users.

First efforts were focused on the acquisition of monomodal or

bimodal databases (one or two biometric traits sensed), e.g.: the

MCYT database [20], including signatures and fingerprint images

of 330 subjects; the M2TVS [24], XM2VTS [23], and BANCA

[21] databases, with face and voice data of 37, 295, and 208

subjects, respectively; or the FRGC database [19], which includes

2D and 3D face images of 741 subjects; and the BT-DAVID

database [25], with audio-visual data from 124 individuals.

There are also several multimodal biometric databases with

multiple traits available today, or in the process of completion,

mainly as a result of collaborative national or international

projects. Some examples include: the SmartKom [22], M3 [18]

and MBioID [17] databases, and the following ones (which we

present in some more detail because of their relation to the

BioSecure multimodal database):

• BiosecurID database [13]. The BiosecurID database was

collected in 6 Spanish institutions in the framework of

the BiosecurID project funded by the Spanish Ministry of

Education and Science. It has been collected in an office-

like uncontrolled environment (in order to simulate a realistic

scenario), and was designed to comply with the following

characteristics: 400 subjects, 8 different traits (speech, iris,

face still and talking face, signature, handwriting, fingerprint,

hand and keystroking) and 4 acquisition sessions distributed

in a 4 month time span.

• BioSec database [14]. BioSec was an Integrated Project (IP)

of the 6th European Framework Programme [26] which

involved over 20 partners from 9 European countries. One

of the activities within BioSec was the acquisition of a

multimodal database. This database was acquired at four

different European sites and includes face, speech (both with

a webcam and a headset), fingerprint (with three different

sensors) and iris recordings. The baseline corpus [14] com-

prises 200 subjects with 2 acquisition sessions per subject.

The extended version of the BioSec database comprises 250

subjects with 4 sessions per subject (about 1 month between

sessions). A subset of this database was used in the last

International Fingerprint Verification Competition [6] held

in 2006.

• MyIDEA database [15], which includes face, audio, fin-

gerprint, signature, handwriting and hand geometry of 104

subjects. Synchronized face-voice and handwriting-voice

were also acquired. Sensors of different quality and various

scenarios with different levels of control were considered in

the acquisition.

• BIOMET database [16], which offers 5 different modalities:

audio, face images (2D and 3D), hand images, fingerprint

(with an optical and a capacitive sensor) and signature. The

database consists of three different acquisition sessions (with

8 months between the first and the third) and comprises 91

subjects who completed the three sessions.

In Table I the most relevant features of the existing multimodal

databases are summarized. The current paper presents the recently

acquired BioSecure Multimodal Database. It is designed to com-

ply with several characteristics that, as can be observed in Table I,

make it unique, namely: hundreds of users and several biometric

modalities acquired under several scenarios.

III. THE BIOSECURE MULTIMODAL DATABASE (BMDB)

A. General description

The acquisition of the BioSecure Multimodal Database

(BMDB) was jointly conducted by 11 European institutions

participating in the BioSecure Network of Excellence [9], see

Table II. The institution in charge of coordinating the acquisition

process was Universidad Politecnica de Madrid (UPM), from

Spain, through the ATVS/Biometric Recognition Group (marked

with (*) in Table II). BMDB is comprised of three different

datasets, with an institution in charge of coordinating the acqui-

sition of each dataset (marked with (△) in Table II). The three

datasets are:

• Data Set 1 (DS1), acquired over the Internet under unsuper-

vised conditions (i.e. connecting to an URL and following

the instructions provided on the screen).
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Fig. 1. Age distribution of the three datasets of the BioSecure Multimodal
Database.

DS1 DS2 DS3

Age distribution 43% / 25% / 41% / 21% / 42% / 25% /
(18-25/25-35/35-50/>50) 19% / 23% 21% / 17% 17% / 16%

Gender distribution
(male / female) 58% / 42% 56% / 44% 56% / 44%

Handedness
(righthanded / lefthanded) 94% / 6% 94% / 6% 94% / 6%

Manual workers (yes / no) 2% / 98% 3% / 97% 2% / 98%

Vision aids
(glasses, contact lenses / none) 42% / 58% 42% / 58% 43% / 57%

TABLE III

STATISTICS OF THE THREE DATASETS OF THE BIOSECURE MULTIMODAL

DATABASE.

• Data Set 2 (DS2), acquired in an office environment

(desktop) using a standard PC and a number of commercial

sensors under the guidance of a human acquisition supervi-

sor.

• Data Set 3 (DS3), acquired using mobile portable hardware

under two acquisition conditions: indoor and outdoor. Indoor

acquisitions were done in a quiet room, whereas outdoor

acquisitions were recorded in noisy environments (office

corridors, the street, etc.), allowing the donor to move and

to change his/her position.

The BMDB has been designed to be representative of the

population that would make possible use of biometric systems.

As a result of the acquisition process, about 40% of the subjects

are between 18 and 25 years old, 20-25% are between 25 and 35

years old, 20% of the subjects are between 35 and 50 years old,

and the remaining 15-20% are above 50 years old, see Table III. In

addition, the gender distribution was designed to be as balanced

as possible, with no more than 10% difference between male

and female sets. Metadata associated with each subject was also

collected to allow experiments regarding specific groups. The

available information includes: age, gender, handedness, manual

worker (yes/no), visual aids (glasses or contact lenses/none) and

English proficiency. In Table III and Figure 1, the actual statistics

of the three datasets of the BioSecure Multimodal Database are

shown. Other features are as follows:

• Two acquisition sessions in order to consider time variability

(separated between 1 and 3 months).

Modality Samples # Samples

Face still 2 still frontal face images 2 image files

AV 4 digits PIN code, 2 repetitions∗ from a set 2 video files
of 100 different codes, in English

AV 4 digits PIN code, 2 repetitions∗ from a set 2 video files
of 10 different codes, in national language

AV Digits from 0 to 9 in English 1 video file

AV 2 different phonetically rich sentences∗∗ in English 2 video files

AV 2 different phonetically rich sentences∗∗ 2 video files
in national language

11
∗ The same PIN code between datasets and sessions.
∗∗ Different sentences between datasets and sessions.

TABLE IV

COMMON CONTENTS OF AUDIO AND VIDEO IN THE THREE DATASETS.

• Multimodal data representative of realistic scenarios, with

simple and quick tasks per modality (e.g. utterances of PINs

or short sentences, still face images, handwritten signatures,

hand images using a camera, etc.) instead of long tasks

that are not appropriate in a real multimodal scenario (e.g.

handwriting, hand images using a document scanner, etc.).

• Several biometric samples per session.

• Homogeneous number of samples and sessions per subject.

• Cross-European diversity (language, face, etc.) and site

variability, achieved through the acquisition across different

European institutions.

• Acquisition of the same trait with different biometric sensors

in order to consider sensor variability.

The three datasets of BMDB include a common part of audio

and video data, described in Table IV, which comprises still face

images and talking face videos. Also, signature and fingerprint

data has been acquired both in DS2 and DS3. Additionally,

hand and iris data was acquired in DS2. All this information

is summarized in Table V, which is further detailed in the

subsections dedicated to each dataset.

B. Data Set 1 (DS1) - Internet

The purpose of DS1 is to acquire material over the Internet

without human supervision. For DS1, the acquisition protocol

consisted of the common part described in Table IV. Therefore,

the modalities included in DS1 are: voice and face. The first

session was acquired using a PC provided by the acquisition

center, with some guidance to let donors to become familiar

with the acquisition and to correctly perform it, whereas the

second session was allowed to take place over an uncontrolled

scenario (at donor’s home or office using appropriate hardware).

In most of the cases both sessions were acquired with the provided

PC. Note that the speech information acquired enables both

text-dependent (PINs) and text-independent speaker recognition

experiments [27]. Digits are the same between sessions, enabling

text-dependent speaker recognition based on digits. On the other

hand, speakers utter also various sentences, being the sentences

different in each session (see Table IV), enabling also text-

independent speaker recognition.

The acquisition of DS1 was performed by connecting to an

URL using an Internet browser and following the instructions

provided on the screen. The acquisition was performed using a
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General features of the database
DATA SET 1 (DS1) DATA SET 2 (DS2) DATA SET 3 (DS3)

Subjects 971 667 713
Sessions 2 2 2
Supervisor No Yes Yes
Conditions Over the Internet Standard office (desktop) Mobile indoor and outdoor
Hardware PC, webcam, microphone PC, commercial sensors Portable devices

Biometric data for each user and for each session in the database
MODALITY DATA SET 1 (DS1) DATA SET 2 (DS2) DATA SET 3 (DS3) # SAMPLES

Common AV - indoor 11 samples 11 samples 11 samples 33
- Audio-video 4 PIN 4 PIN 4 PIN

4 sentences 4 sentences 4 sentences
1 digits sequence 1 digits sequence 1 digits sequence

- Face still (webcam) 2 frontal face images 2 frontal face images 2 frontal face images

Common AV - outdoor - - 11 samples 11
- Audio-video 4 PIN

4 sentences
1 digits sequence

- Face still (webcam) 2 frontal face images

Signature - 25 samples 25 samples 50
15 genuine 15 genuine
10 imitations 10 imitations

Fingerprint - thermal - 12 samples (3 × 2 × 2) 12 samples (3 × 2 × 2) 24

Fingerprint - optical - 12 samples (3 × 2 × 2) - 12

Iris - 4 samples (2 × 2) - 4

Hand - digital camera - 8 samples (2 × 4) - 8

Face still - digital camera - 4 samples (2 + 2) - 4

# SAMPLES 11 76 59 146

TABLE V

GENERAL FEATURES OF THE DATABASE AND MODALITIES ACQUIRED IN EACH DATASET.

(a) (b) (c)

Fig. 2. Graphical user interface of the acquisition application for DS1.

standard webcam with microphone. In order to achieve realistic

conditions, the use of no specific webcam was imposed. The

appearance of the graphical user interface of the application

for the acquisition is shown in Figure 2. Figure 2(a) represents

the user interface prepared for the acquisition of an audiovisual

sample. The left panel shows the instructions to the donor while

the right panel shows the webcam stream. Figure 2(b) shows the

graphical user interface just after an audiovisual sample has been

acquired. The sample is presented to the donor in order to be

validated before it is sent to the server. In Figure 2(c), a frontal

still image has just been acquired. The donor has to adjust the

position of his face to fit the overlaid “virtual glasses and chin”

mask in order to normalize the pose.

C. Data Set 2 (DS2) - Desktop

The scenario considered for the acquisition of DS2 was a

standard office environment. The acquisition was carried out

using a desktop PC and a number of sensors connected to the
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Modality Sensor Samples # Samples

Signature Tablet 5 genuine signatures of donor n 5 text files
5 dynamic imitations of donor n-1 (n-3 in session 2) 5 text files
5 genuine signatures of donor n 5 text files
5 dynamic imitations of donor n-2 (n-4 in session 2) 5 text files
5 genuine signatures of donor n 5 text files

Face Still Webcam Common still frontal face images (see Table IV) 2 image files
AV Webcam+headset Common audio-video part (see Table IV) 9 video files

Iris image Iris camera (Right eye, Left eye) × 2 4 image files

Fingerprint Optical ( (Thumb → index → middle) × 2 hands {right → left} ) × 2 12 image files
Thermal ( (Thumb → index → middle) × 2 hands {right → left} ) × 2 12 image files

Hand Digital camera (Right hand → Left hand) × 2 without flash 4 image files
(Right hand → Left hand) × 2 with flash 4 image files

Face Still Digital camera 2 photos without flash → 2 photos with flash 4 image files
76 files

TABLE VI

ACQUISITION PROTOCOL OF DS2.

PC via the USB or Bluetooth interface. Acquisition is managed

by a supervisor, who is in charge of the following activities:

i) training of the contributor in case of difficulties in using

a particular sensor; ii) validation of every acquired biometric

sample, allowing a sample to be acquired again if it has not been

properly acquired (e.g. wrong finger in the case of fingerprint

acquisition or wrong utterance in the case of speech acquisition);

and iii) guidance of the acquisition process by remembering

the steps of the acquisition protocol and pointing out the sensor

involved.

The modalities included in DS2 are: voice, face, signature,

fingerprint, hand and iris. Hardware used for the acquisition

included a Windows-based PC with a USB hub, and the biometric

sensors specified in Figure 3. An example of the setup used by

UPM is shown in Figure 4, and the data acquired in DS2 is

described in Table VI.

A specific application was developed for the acquisition of

DS2, aiming to provide a common and homogeneous working

interface for all the sites participating in the acquisition. This

software tool allowed the recapture of samples until they exhibited

satisfactory quality, the correction of invalid or missing samples,

and the inclusion of new users or sessions at any point of the

acquisition process. In Figure 5, the screen captures of the main

module and the different modules of the DS2 acquisition software

are shown.

D. Data Set 3 (DS3) - Mobile

The aim of DS3 is to capture several modalities on mobile

platforms. The modalities acquired in DS3 are: face, voice, fin-

gerprint and signature. For the common audio-video recordings,

each session is comprised of 2 acquisition conditions, indoor

and outdoor, performed during the same day. Hardware devices

used for the acquisition include the biometric sensors specified in

Figure 6, and the data acquired in DS3 is described in Table VII.

A supervisor was in charge of managing each acquisition session,

providing appropriate training to the contributors in case of

difficulties with a sensor, validating every acquired biometric

sample, and allowing reacquisition in case of a sample has not

been properly acquired.

The two acquisition conditions considered for audio-video

recordings are intended to comprise different sources of vari-

ability. “Indoor” acquisitions were done in a quiet room, just

changing the position between each audio-video sequence. “Out-

door” acquisitions were recorded in noisy environments such as

building corridors, the street, etc., allowing the donor to move

and to change position during and between each audio-video

sequence. For signature and fingerprint, only indoor data was

acquired, which can be considered as degraded with respect to

DS2, as signatures and fingerprints were acquired while standing

and holding the PDA.

The acquisition with Samsung Q1 was carried out using the

same application used for DS2, adapted and limited to the audio-

video acquisition task. For the acquisition of data with PDA,

a specific software tool was developed. In Figure 7, screen

captures of the main module and the different modules of the

DS3 acquisition software for PDA are shown.

E. Acquisition guidelines and validation of acquired data

A data validation step was carried out to detect invalid samples

within the three datasets. We should distinguish between valid

low quality samples and invalid samples. Low-quality samples are

acceptable, as long as the acquisition protocol is strictly followed,

and the different biometric sensors are correctly used (e.g. blurred

iris images, dry or wet fingerprint images, etc.). These samples

were not removed from the database since they represent real-

world samples that can be found in the normal use of a biometric

system. On the other hand, invalid samples are those that do not

comply with the specifications given for the database (e.g. wrong

PIN, forgery of a wrong signature, donor’s head or hand out of

frame, etc.).

The first stage of the validation process was carried out during

the acquisition itself. A human supervisor was in charge of

validating every acquired biometric sample, being recaptured if it

did not meet the specified quality standards. After completion of

the acquisition, a second validation step of the three datasets was
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Modality Sensor Condition Samples # Samples

Signature PDA Indoor 5 genuine signatures of donor n 5
5 dynamic forgeries of donor n-1 (n-3 in session 2) 5
5 genuine signatures of donor n 5
5 dynamic forgeries of donor n-2 (n-4 in session 2) 5
5 genuine signatures of donor n 5

Fingerprint PDA (thermal) Indoor ( (Thumb → index → middle) × 2 hands {right → left} ) × 2 12

Face Still Q1+ Indoor Common still frontal face images (see Table IV) 2
AV webcam Indoor Common audio-video part (see Table IV) 9

Face Still Q1+ Outdoor Common still frontal face images (see Table IV) 2
AV webcam Outdoor Common audio-video part (see Table IV) 9

59

TABLE VII

ACQUISITION PROTOCOL OF DS3.

Canon EOS 30D
Digital camera

8.3 Mpixels, jpg 3504x2336

valid invalid

Philips SPC900NC Webcam
Video avi 720x480

Photo bmp 640x480

valid invalid

Biometrika FX2000
Optical fingerprint sensor

bmp 296x560 pixels, 569 dpi

valid invalid

Biometrika FX2000
Optical fingerprint sensor

bmp 296x560 pixels, 569 dpi

valid invalid

Atmel Yubee
Thermal fingerprint sensor

bmp 400x500 pixels, 500 dpi

valid invalid

Plantronics Voyager 510
Bluetooth Audio Headset

Audio 44 kHz, 16 bits, mono

Plantronics Voyager 510
Bluetooth Audio Headset

Audio 44 kHz, 16 bits, mono

Wacom Intuos 3 A6
Digitizing tablet

Dynamic data at 100 Hz

LG Iris Access EOU3000
Infrared sensor

bmp 640x480 pixels

valid invalid

LG Iris Access EOU3000
Infrared sensor

bmp 640x480 pixels

valid invalid

Fig. 3. Hardware devices used in the acquisition of DS2 together with
acquisition samples.

carried out again manually by a human expert. The following

validation criteria and acquisition guidelines were given to the

supervisors in charge of validation of the data:

• Face acquisition (both face still and video): donor pose

should be frontal (looking straight into the camera) and

with neutral expression, and donor’s head should not be out

of frame. In video files, audio and video fields should be

synchronized. Blurred images are not discarded, unless the

face is clearly non-visible.

• Iris acquisition: glasses (if any) should be removed before

acquisition, but contact lenses are acceptable. A part of

donor’s eye falling out of frame or eye closed are not

 

General view

Hand and face

grey cloth

Fig. 4. Example of the setup used by UPM for the acquisition of DS2.

allowed.

• Hand acquisition: the hand pose is with wide open fingers.

Fingers too close together or part of the hand out of frame

are not allowed.

• Fingerprint acquisition with the optical sensor: the contact

surface of the device should be cleaned after each donor ses-

sion. For fingerprint acquisition with the thermal sensor, as it

is difficult to be used correctly, the donor was allowed to try

multiple times before the first acquisition. Very low quality

fingerprints or very small size images due to improper use

of the sensor are not allowed.

• Signature acquisition: donors were asked to sign naturally

(i.e. without breaks or slowdowns). For impostor realizations,

signature to be imitated could be replayed on the screen

with the dynamic process and the donor was allowed to train

before forging.

F. Problems encountered during the acquisition

A list of problems encountered has been gathered during the

acquisition of the database thanks to the feedback provided by

the donors and/or the different acquisition sites. Concerning to

the usability, the most relevant are:

• The Yubee thermal fingerprint sensor was difficult to use,

requiring many trials to get a reasonably good fingerprint

capture. This sensor also caused annoyance in some users

due to Failure to Enroll error.

• The auto-focusing function of the iris camera was not always

working, needing several trials to get a reasonably sharp

iris image capture. Focus on iris scanner sometimes did not

always correspond to the acquisition instant.

• Lightning had influence on the quality of acquired iris

images in some cases, requiring to reduce the overall il-

lumination of the room.
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Main module

Signature

Session dialog Iris

Audio-Video Fingerprint - Optical Fingerprint - Thermal

Fig. 5. Screen captures of the main module (top left) and the different modules of the DS2 acquisition software.

• For some volunteers doing the face pictures, there were too

many reflections on their glasses.

• During swiping the finger on the fingerprint sensor of the

PDA, there was a risk of touching the screen or the button

just below the sensor. This could end the capture mode of

the software, requiring a new acquisition.

IV. COMPATIBILITY OF THE BIOSECURE MULTIMODAL

DATABASE WITH OTHER DATABASES

Several BioSecure partners have considerable experience in

biometric database collection (e.g. MCYT [20], XM2VTS [23],

BIOMET [16], MyIDEA [15], MBioID [17], BioSec [14] or BT-

DAVID [25]). In recent years, various multimodal databases have

been collected, mainly in academic environments. As a result,

permanent staff members and some students have participated in

the biometric data acquisition for these databases over several

years. The existence of this data enables the number of sessions

for a subset of such donors to be increased, therefore allowing

studies of long term variability. Specifically, the BioSecure MDB

shares individuals with:

• The BioSec database, which comprises 250 subjects. The

two databases have in common the following traits:

optical/thermal fingerprint, face, speech and iris. Both

databases have in common 25 subjects, separated by about

2 years.

• The BiosecurID database, which comprises 400 subjects.

The two databases have in common the following traits:

optical/thermal fingerprint, face, hand, signature, speech and

iris. Both databases have in common 31 subjects, separated

by about 1 year.

It should also be noted that the devices and protocol of some

of the traits acquired in the BioSecure MDB are compatible with

other existing databases, so it can be combined with portions

of them to increase the number of available subjects, specifically:

the above mentioned BioSec and BiosecurID, the MCYT database

(signature) and the MyIDEA database (signature and fingerprint).

Samsung Q1 + 

Philips SPC900NC Webcam
Video avi 720x480

Photo bmp 640x480

valid invalid

HP iPAQ hx2790 PDA
Fingerprint thermal sensor

Dynamic signature data at 100 Hz

valid

invalid

Fig. 6. Hardware devices used in the acquisition of DS3 together with
acquisition samples.

Main module Signature Fingerprint

Fig. 7. Screen captures of the main module (left) and the different modules
of the DS3 acquisition software for PDA.

V. BIOSECURE MULTIMODAL EVALUATION CAMPAIGN

The BioSecure Multimodal Evaluation Campaign (BMEC)

[10] has been conducted during 2007 as a continuation of the

BioSecure Multimodal Database acquisition. At the time the

evaluation was done, the database was not fully completed.

Therefore, the BMEC was done on a selected subset of the

database in order to show its consistency and value. Two different

scenarios were defined for the Evaluation: an Access Control

scenario on DS2 data and a degraded Mobile scenario on data

from DS3. For these scenarios, different multimodal experiments

were carried out using matching scores generated by several
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reference monomodal systems [28], in order to compare different

fusion schemes both by BioSecure partners and by external

researchers who responded to a public call for participation. In

addition, monomodal evaluations on four modalities from DS3

were also performed. Since it is not within the purposes of this

paper to describe in detail the BioSecure Multimodal Evaluation

Campaign or their results, we will give only a brief outline of

the experimental protocols used in these evaluations, together

with some selected results, so the reader can have a reference

experimental framework as well as baseline results.

A. Access Control scenario evaluation

The aim of the DS2 Evaluation (Access Control scenario

evaluation) was to compare multimodal biometric fusion algo-

rithms assuming that the environment is well controlled and

the users are supervised, using data from BMDB DS2 (desktop

dataset). Three biometric traits were employed: still face images,

fingerprint and iris. Together with the scores computed using the

reference systems, a set of quality measures were also extracted

from the biometric samples. A LDA-based face verifier using

Fisher Linear Discriminant projection [29] was used as the face

reference system, with correlation as similarity measure (between

two projected features). Different face quality measures were

computed using the Omniperception proprietary Affinity SDK3,

including measures like contrast, brightness, etc. For the finger-

print modality, the NIST minutiae-based fingerprint system was

used [30], whereas the quality measure was based on averaging

local gradients [31]. Minutiae are detected using binarization and

thinning operations, and for each minutiae, its position, direction,

type and quality is computed. Matching is done by looking

correspondences between two pairs of minutia, one pair from

the template fingerprint and one pair from the test fingerprint.

The fingerprint matcher is rotation and translation invariant. As

iris reference system, a variant of the Libor Masek’s system was

used [32] and three different iris quality measures were computed:

texture richness, difference between iris and pupil diameters, and

proportion of iris used for matching. Masek’s system employs

the circular Hough transform for iris boundaries detection, and

the Daugmans rubber sheet [33] model for normalization of the

iris region. Feature encoding is implemented by using 1D Log-

Gabor wavelets and phase quantization to four levels using the

Daugman method [33]. For matching, the Hamming distance is

chosen as a metric for recognition.

For this scenario, data from 333 individuals of DS2 has been

used. Two sets of scores are computed, one for development

and another for testing. There are 51 individuals in the de-

velopment set (provided to the evaluation participants to tune

their algorithms), 156 individuals in the test set (sequestered

and only used by the evaluation organizers on the already tuned

algorithms), and 126 individuals set as an external population of

zero-effort impostors. For each person, four samples per modality

are available (two per session, see Table VI). The first sample

of the first session is used as template. Remaining samples are

considered as query data (the other from Session 1 and the two

from Session 2). The evaluated fusion algorithms were tested

using only the query samples of Session 2. This testing was done

using as impostors the external population of 126 individuals set

as zero-effort impostors. This external population was not used

3http://www.omniperception.com

elsewhere. In this way, a fusion algorithm will not have already

“seen” the impostors during its training stage (for which data from

Session 1 can be used), avoiding optimistic performance bias.

Two types of evaluations were proposed in this scenario:

• Quality-based evaluation, aimed to test the capability of

fusion algorithms to cope with template and query biometric

signals acquired with different devices, by exploiting quality

information in the information fusion process [34]. Face

and fingerprint modalities are considered in this case. Face

images collected with the webcam (referred to as low quality

data) and the digital camera (high quality data) are denoted

as fa1 and fnf1 streams, respectively. Fingerprint data include

images from the two sensors used in DS2. They are denoted

as fo (optical) and ft (thermal). The case where templates

and query images are acquired with different devices is

also considered. For the face modality, this is denoted as

xfa1 stream, i.e. the templates acquired with fnf1 (digital

camera) and the queries with fa1 (webcam). Similarly, for

the fingerprint modality, the cross-device stream is denoted

as xft, i.e. the templates acquired with fo (optical) and the

queries with ft (thermal). It should be noted that the purpose

of these cross-device experiments were just to evaluate the

effect of matching biometric signals coming from different

devices, without any special adjustment of the pre-processing

or matching steps to deal with this issue. Therefore in this

case, the order of the samples (template, query) has not

relevant impact.

• Cost-based evaluation, aimed to achieve the best perfor-

mance with a minimal cost of acquiring and processing

biometric information. The use of each biometric trait is

associated with a given cost. Only face images from the

webcam (fa1) and fingerprint images from the thermal sensor

(ft) are used, together with iris images (denoted as ir1). No

cross-device experiments are conducted in this case. In the

evaluation, for each modality used in the fusion, 1 cost unit

is charged.

B. Mobile scenario evaluation

The DS3 Evaluation (Mobile scenario evaluation) was aimed to

compare biometric recognition algorithms assuming that the data

is acquired using mobile devices and the users are not supervised,

using data from BMDB DS3 (mobile dataset). For multimodal

experiments, 2D face video, fingerprint and signature data was

used. Monomodal experiments on 2D face video, fingerprint,

signature and talking face data were also carried out. 2D face

video scores for the multimodal evaluation were generated using

an eigenface-based approach developed by Bogazici University

[35]. It uses the standard eigenface approach to represent faces

in a lower dimensional subspace. All the images used by the

system are firstly normalized. The face space is built using a

separate training set and the dimensionality of the reduced space

is selected such as the 99 per cent of the variance is explained by

the Principal Component Analysis. After that, all the target and

test images are projected onto the face space. Then, the L1 norm

is used to measure the distance between the projected vectors

of the test and target images. For the fingerprint modality, the

NIST fingerprint system was used [30]. The signature reference

system was developed by GET-INT (currently TELECOM &

Management SudParis) and is based on Hidden Markov Models
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Fig. 8. Access control scenario evaluation (BMDB DS2, desktop dataset). Baseline results of the face, fingerprint and iris modalities.
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Fig. 9. Mobile scenario evaluation (BMDB DS3, mobile dataset). Baseline results of the face, fingerprint and signature modalities.

[36], [37], [38]. Twenty five dynamic features are extracted at each

point of the signature. Signatures are modeled by a continuous

left-to-right HMM [39], by using in each state a continuous

multivariate Gaussian mixture density. The number of states in the

HMM modeling the signatures of a given person is determined

individually according to the total number of all the sampled

points available when summing all the genuine signatures that are

used to train the corresponding HMM. Matching is done using

the Viterbi algorithm [39].

For this scenario, 480 individuals from DS3 were considered.

A set of 50 individuals was used for development, whereas the

remaining 430 were used for testing. Two different experiments

were carried out in the multimodal evaluation of this scenario,

one using random signature forgeries and the other using skilled

signature forgeries. For the 2D face modality, two indoor video

samples of the first session were used as templates, whereas two

outdoor video samples of the second session were used as query

data. For the fingerprint modality, two samples of the first session

were used as template data and two samples of the second session

as query data. Signature templates were generated using five

genuine signatures of the first session. As query data, genuine

signatures of the second session and forgeries acquired during

both sessions are used.

C. Baseline results

We plot in Figures 8 and 9 the verification results using the

scores generated for the DS2 and DS3 multimodal evaluations.

For the DS2 evaluation, results are shown using only query

samples of the Session 2, as testing of the algorithms is done

only using query samples of this session.

By looking at Figure 8, it is observed that the performance of

the face modality is degraded when using the webcam, both if

we match two images from the webcam and if we mismatch one

webcam and one digital camera image. This is not true for the

fingerprint modality, where a significant degradation is observed

in the xft stream. As revealed in previous studies [40], [41],

matching fingerprint images coming from different sensors has

severe impact on the recognition rates due to variations introduced

by the sensors (e.g. see fingerprint images of Figures 3 or 5).

Regarding the results on DS3 data shown in Figure 9, it is

remarkable the degradation of performance of the face modality

with respect to the fa1 stream of DS2, in which the same webcam

is used for the acquisition. The more challenging environment

of DS3, including outdoor acquisitions in noisy ambience, has

clear impact on the performance of the face modality (e.g. see

Figure 10). The face reference system is based on the PCA

approach which is not adequate to cope with the huge illumination

variability. Worth noting, this is not observed in the fingerprint

modality, where no degradation is observed with respect to the
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ft fingerprint stream of DS2. Being the two sensors based on the

same (thermal) technology, quality of fingerprint images is not

affected by the differences in the acquisition conditions between

DS2 and DS3.

The demographic statistics of the development and test sets

used in the Mobile scenario evaluation are quite similar in terms

of gender, age and handedness of the donors. The main difference

is found in the visual aids. As there are more people wearing

glasses in the test database, we can suppose that the 2D face test

database is “more difficult” than the corresponding development

database. This is mirrored in the results of Figure 9. For the

other modalities (fingerprint and signature), performance results

are observed to be very close on both sets.

VI. RESEARCH AND DEVELOPMENT USING THE BIOSECURE

MULTIMODAL DATABASE

Some of the research and development directions that can

be followed using the database have been already put forward

through this paper. In this section, we summarize these directions.

It has to be emphasized that the BioSecure Multimodal Database

includes new challenging scenarios not considered in existing

biometric databases. This new database is unique in that it

includes hundred of users acquired simultaneously under different

environmental conditions and using multiple sensors for the same

modality. It allows uses such as:

• Novel research in the available modalities or in multibiomet-

ric systems, with very tight confidence intervals on results

thanks to the size of the database.

• Evaluation of multibiometric algorithms using a common

framework and real multimodal data. We should remark the

high error rates of the baseline results presented in Section V-

C (between 5 and 10% EER for the best cases), leaving a lot

of room for improvement, either with individual modalities

or with multibiometric approaches.

• Evaluation of sensor interoperability on a large scale in traits

acquired with several devices (face, fingerprint, speech and

signature) [42], [43] thanks to the amount of available data,

as done in the BioSecure Multimodal Evaluation Campaign

(BMEC) [10].

• Study of differences in system performance due to environ-

mental variations: over the Internet, in an office environ-

ment with a desktop PC, or with mobile platforms in an

indoor/outdoor environment.

• Evaluation of several multibiometric realistic scenarios, e.g.

bimodal passport using face and fingerprint, Internet-based

access using face and voice, mobile-based access with face

and fingerprint, etc.

• Study of time variability in biometric systems and template

update techniques [44]. Research can be done on the short

term (considering data from the same session), on the

medium term (considering data from the different sessions),

or on the long term (considering common data from other

databases, as mentioned in Section IV).

• Evaluation of potential attacks to monomodal or multimodal

systems [45].

• Effect of the different acquisition scenarios/devices on the

quality of acquired samples and its impact on the recognition

performance [46], [47].

• Biometric studies depending on demographic information

such as age [48], gender [49], handedness, state of the hand

(manual workers), or visual aids.

• Cross-European diversity and site variability studies in terms

of language (speech), appearance (face), etc.

Fig. 10. Variability between face samples acquired with different sensors and
in different environments. Face images are plotted for i) indoor digital camera
(from DS2, left, resized at 20%), ii) indoor webcam (from DS2, medium),
and iii) outdoor webcam (from DS3, right).

VII. LEGAL ISSUES AND DISTRIBUTION

The Directive 95/46/EC of the European Parliament and the

Council of 24 October 1995 sets the European requirements on the

protection of individuals with regard to the processing of personal

data and on the free movement of such data. According to this

Directive, biometric data is considered as “personal data”. Based

on this regulation, donors were asked to read and sign a consent

agreement before starting the acquisition process, which included

comprehensive information about the motivation and planed used

of the biometric data, with pointers to the security measures

applied to protect these data.

Other personal data were acquired and stored securely and

independently of the biometric data, including: name, contact

details, age, gender, handedness, manual worker, vision aids, and

English proficiency. These non-biometric data are managed by

the BioSecure partner involved in the acquisition of the donor at

hand (also referred to as “controller” in the Directive 95/46/EC).

In any subsequent use or transfer of data, only the raw biometric

data plus the fields {age, gender, handedness, visual aids, manual

worker and English proficiency} are considered, without any link

to identities of the donors (i.e. name and contact details).

The BioSecure Multimodal Database will be distributed during

2008. The distribution will be managed by the recently cre-

ated BioSecure Association4. This Association is concerned with

the use and dissemination of the results generated within the

BioSecure Network of Excellence involving Intellectual Property

Rights.

VIII. CONCLUSION

The existence of evaluation procedures and databases is crucial

for the development of biometric recognition systems. It is often

the existence of datasets with new challenging conditions which

drives research forward. Public biometric databases allow the

creation of common and repeatable benchmarks and algorithms,

so that new developments can be compared with existing ones.

However, biometric database collection is a time- and resource-

consuming process, specially in the case of multimodal databases.

As a result, most of the existing biometric databases typically

include only one or two modalities. Fortunately, in recent years

important efforts have been directed to collecting real multimodal

databases, mainly in the framework of collaborative national or

international projects, resulting in a number of databases available

or in the process of completion.

4More information to be found in http://biosecure.it-sudparis.eu/AB
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In this contribution, the recently acquired BioSecure Multi-

modal Database is presented, together with a brief description of

previous work in the domain of multimodal biometric database ac-

quisition. This database is the result of an important collaborative

effort of 11 European partners of the BioSecure NoE. It includes

new challenging acquisition conditions and features not present

in existing databases. It is comprised of three different datasets

with more than 600 common individuals captured in 2 sessions:

i) one dataset acquired over the Internet, ii) another one acquired

in an office environment with a desktop PC, and iii) the last one

acquired with mobile devices in indoor/outdoor environments.

The three datasets include a common part of audio and video

data which comprises still images of frontal face and talking face

videos acquired with a webcam. Additionally, the second dataset

includes still face (with a digital camera), signature, fingerprint

(with two different sensors), hand and iris data, and the third one

also includes signature and fingerprint data. Also worth noting, the

BioSecure Multimodal Database shares a number of individuals

with other multimodal databases acquired across several years,

allowing studies of long term variability.

The new challenging acquisition conditions of this database

will allow the evaluation of realistic multimodal scenarios, as

done in the recently conducted BioSecure Multimodal Evalua-

tion Campaign (BMEC). A brief description of this evaluation

together with baseline results of individual modalities from the

database was also provided in this paper, from which a number

of experimental findings related to biometric recognition using

mismatched devices and heterogeneous acquisition conditions

have been highlighted.
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