
 Open access  Proceedings Article  DOI:10.1109/ITW.2005.1531856

The multivariate merit factor of a Boolean function — Source link 

T.A. Gulliver, Matthew G. Parker

Institutions: Victoria University, Australia, University of Bergen

Published on: 14 Nov 2005 - Information Theory Workshop

Topics: Univariate, Parity function, Boolean expression, Boolean function and Maximum satisfiability problem

Related papers:

 On the Linear Structures of Cryptographic Rotation Symmetric Boolean Functions

 Connections between nonlinearity and restrictions, terms and hypergraphs of Boolean functions

 On the algebraic thickness and non-normality of Boolean functions

 On the correlations between a combining function and functions of fewer variables

 Equivalence Classes of Boolean Functions for First-Order Correlation

Share this paper:    

View more about this paper here: https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-
dcxcra1zqu

https://typeset.io/
https://www.doi.org/10.1109/ITW.2005.1531856
https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu
https://typeset.io/authors/t-a-gulliver-2civzdpzi0
https://typeset.io/authors/matthew-g-parker-3vhax1mz2j
https://typeset.io/institutions/victoria-university-australia-2ennm99m
https://typeset.io/institutions/university-of-bergen-x6z0ga7h
https://typeset.io/conferences/information-theory-workshop-2dyd3db6
https://typeset.io/topics/univariate-122rc91e
https://typeset.io/topics/parity-function-axw2u554
https://typeset.io/topics/boolean-expression-e3mcs294
https://typeset.io/topics/boolean-function-1eelulrq
https://typeset.io/topics/maximum-satisfiability-problem-vfipo5np
https://typeset.io/papers/on-the-linear-structures-of-cryptographic-rotation-symmetric-2m2o39xhsj
https://typeset.io/papers/connections-between-nonlinearity-and-restrictions-terms-and-4k5akna7ml
https://typeset.io/papers/on-the-algebraic-thickness-and-non-normality-of-boolean-2w4x3m8jyi
https://typeset.io/papers/on-the-correlations-between-a-combining-function-and-96hmroghai
https://typeset.io/papers/equivalence-classes-of-boolean-functions-for-first-order-4r9feoxb2q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu
https://twitter.com/intent/tweet?text=The%20multivariate%20merit%20factor%20of%20a%20Boolean%20function&url=https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu
https://typeset.io/papers/the-multivariate-merit-factor-of-a-boolean-function-dcxcra1zqu


The Multivariate Merit Factor of a Boolean

Function

T. Aaron Gulliver

Dept. of Electrical and Computer Eng.

University of Victoria

P.O. Box 3055, STN CSC

Victoria, B.C., Canada V8W 3P6

Email: agullive@ece.uvic.ca

Matthew G. Parker

Selmer Centre, Inst. for Informatikk

Høyteknologisenteret i Bergen

University of Bergen

Bergen 5020, Norway

Email: matthew@ii.uib.no,

Web: http://www.ii.uib.no/˜matthew/

Abstract— A new metric, the multivariate merit factor (MMF )
of a Boolean function, is presented, and various infinite recursive
quadratic sequence constructions are given for which both uni-
variate and multivariate merit factors can be computed exactly.
In some cases these constructions lead to merit factors with
non-vanishing asymptotes. A formula for the average value of

1
MMF is derived and a characterisation of the MMF in terms
of cryptographic differentials is discussed.

I. INTRODUCTION

We introduce the multivariate aperiodic merit factor

(MMF) metric of a Boolean function and provide infinite

constructions for which the MMF can be computed ex-

actly (Table II). Unlike MMF , the univariate merit factor

(MF) has a long history [8], as sequences with high MF
have applications in telecommunications, information theory,

and physics. However they are difficult to find and/or con-

struct for long sequence lengths. 1
MF evaluates the squared-

difference between the continuous Fourier power spectrum

of the sequence and the normalised flat power spectrum.

Similarly, 1
MMF evaluates the squared-difference between

the continuous multivariate Fourier power spectrum of a

Boolean function and the normalised flat multivariate Fourier

power spectrum. The goal is to construct Boolean functions

which maximise MMF . The MMF is a generalisation

of a metric proposed in [14] and is computed via the sum

of squares, σ, of the multivariate aperiodic autocorrelation

coefficients of the Boolean function, (’sum-of-squares’ by

convention), where σ is small if the coefficients are small.

In the context of cryptography this autocorrelation relates to

generalised Boolean differentials which are maximised if the

autocorrelation coefficients are large [2], [21]; if the MMF
of the Boolean function, p, is large then the average of the

squares of the generalised differentials of p is small and the

likelihood of success for a joint differential attack on the

cryptosystem is small. This metric generalises the periodic

sum-of-squares which is a known measure of cryptographic

strength for Boolean functions [24].

MMF also has meaning for quantum systems. Certain

pure multipartite quantum systems can be represented by

Boolean functions [19], and in [2] it was argued that, if one

computes aperiodic autocorrelations of all subspace Boolean

functions obtained from a function p(x) by fixing zero or more

of the Boolean variables xi ∈ x, then if these autocorrelation

coefficients are small in magnitude, the associated quantum

system is highly entangled. [2] focussed on the so-called

aperiodic propagation criteria of p(x), thereby establishing

a link with quantum codes [4], [6]. It is also clear that high

entanglement is indicated by a small sum-of-squares over the

joint autocorrelation coefficients, and this can be characterised

by the average 1
MMF computed over all subspaces of p(x)

obtained by fixing. Finally, although constructions for Golay

complementary sequence sets [7] are usually constrained by

their univariate aperiodic autocorrelation, they are more nat-

urally constrained by their multivariate aperiodic autocorrela-

tion [20]. For length N = 2n, Golay-Rudin-Shapiro sequences

(GRS) [23], [22] are the only known examples of Golay

complementary pairs [7], and their interpretation as certain

Reed-Muller, RM(1,m), cosets within RM(2,m) has recently

been exploited in [5]. This was generalised in [20], which

demonstrated the fundamentally multivariate nature of the

complementary construction. [11] showed that the MF of

the canonical GRS sequence can be computed exactly for

any length N = 2n via the recursion γn = 2γn−1 + 8γn−2,

where γn is the sum-of-squares for a sequence of length 2n,

leading to an asymptotic MF of 3 for large n. This recur-

sion suggests that other sequence constructions obey similar

recursive formulas, both for their univariate and multivariate

sum-of-squares, and here we identify many such constructions

(see Tables III and IV). Another implicit aim of this work is

to exploit the link between quadratic Boolean functions and

undirected graphs, [19], by interpreting the asymptotic MMF
of a quadratic Boolean function as a large-scale property of a

graph. This has statistical meaning for both low-density parity

check codes associated with the graph [12], [19] and for graph-

based quantum computers [18], [19], [6], [10]. For many of

the constructions proposed herein, the MMF asymptotes are

constants. The highest asymptotic MF known is ≃ 6.34 [15],

[1], but we have not yet found a Boolean construction with

asymptotic MMF greater than 3.0.

In Section II we characterise the MF and MMF . Section

III considers the MMF in light of the results obtained, and

the asymptotic MMF of a typical Boolean function. Section



IV summarises our constructions.

II. CHARACTERISATIONS FOR UNIVARIATE AND

MULTIVARIATE MERIT FACTORS

A. The univariate case

The univariate aperiodic autocorrelation of s ∈ CN is

uk =
N−1
∑

j=0

sjs
∗
j+k, − N < k < N, (1)

where sj ∈ C, sj = 0 for j < 0 and j ≥ N , and ∗ means

complex conjugate.

The sum-of-squares, γ, of s, is defined by

2γ =
N−1
∑

k=1−N,k 6=0

|uk|
2. (2)

The univariate merit factor is

MF =
N2

2γ
. (3)

The aperiodic autocorrelation of s = s(z) =
∑

j sjz
j can be

computed as a polynomial multiplication

u(z) = s(z)s(z−1)∗, (4)

where u(z) =
∑N−1

j=1−N ujz
j .

Finding the MF is equivalent to finding the Lα-norm,

‖s‖α, at α = 4 [16], where

‖s‖α =

(

1

2π

∫ 2π

0

|s(eiθ)|αdθ

)1/α

, (5)

and i2 = −1. Thus

1

MF(s)
=

‖s‖4
4 − ‖s‖4

2

‖s‖4
2

, (6)

where ‖s‖4
2 = N2.

Let sA ∈ CN be generated by some arbitrary Construction

A. Define the asymptotic merit factor of sA by

F(sA) = limN→∞MF(sA).

B. Univariate representation using Boolean functions

We define s as bipolar if sj ∈ {1,−1}, in which case, if

the length of s is N = 2n, we can describe s by the Boolean

function, p(x) : Fn
2 → F2, where s = s(x) = (−1)p(x), so

that sj = (−1)p(xi=ji),where j =
∑n−1

i=0 ji2
i, ji ∈ {0, 1}, i.e.

we order the truth table of p lexicographically. When we refer

to the MF or sum-of-squares of the Boolean function, p(x),
we mean MF(s) or γ(s), respectively.

C. The multivariate case

The multivariate aperiodic autocorrelation of s ∈ (C2)n is

uk =
∑

j∈{0,1}n

sjs
∗
j+k, k ∈ {−1, 0, 1}n, (7)

where sj ∈ C, sj = 0 for j 6∈ {0, 1}n.

The multivariate sum-of-squares, σ, of s, is defined by

2σ =
∑

k∈{−1,0,1},k6=0

|uk|
2. (8)

The multivariate merit factor is

MMF =
4n

2σ
. (9)

The multivariate aperiodic autocorrelation of s = s(z) =
∑

j∈{0,1}n sjz
j can be computed as a polynomial multiplica-

tion

u(z0, z1, . . . , zn−1) = s(z0, z1, . . . , zn−1)s(z
−1
0 , z−1

1 , . . . , z−1
n−1)

∗.
(10)

Finding the MMF is equivalent to finding the multivariate

Ln,α-norm, ‖s‖n,α, at α = 4, where

‖s‖n,α =
(

1
(2π)n

∫ 2π

0
. . .

∫ 2π

0
|s(eiθ0 , . . . , eiθn−1)|αdθ0 . . . dθn−1

)1/α

,

(11)

so that
1

MMF(s)
=

‖s‖4
n,4 − ‖s‖4

n,2

‖s‖4
n,2

, (12)

where ‖s‖4
n,2 = 4n.

Let sA ∈ (C2)n be generated by some arbitrary construction

A. Define the asymptotic multivariate merit factor of sA by,

FM(sA) = limn→∞MMF(sA).

D. Multivariate representation using Boolean functions

We define s as bipolar if sj ∈ {1,−1}, in which case we can

describe s by the Boolean function, p(x) : Fn
2 → F2, where

s = s(x) = (−1)p(x), so that sj = (−1)p(x=j). When we

refer to the MMF or sum-of-squares of the Boolean function,

p(x), we mean MMF(s) or σ(s), respectively.

E. Multivariate symmetries

Lemma 1: Let s = (−1)p(x) and s′ = (−1)p′(x), for p, p′ :
Fn

2 → F2, with

p′(x) = p(x̃π(0), x̃π(1), . . . , x̃π(n−1)) + (
n−1
∑

i=0

cixi) + d,

where x̃ ∈ {x, x + 1}, π : Zn → Zn permutes the integers,

mod n, and ci, d ∈ Z2. Then

MMF(s′) = MMF(s).



F. Tensor product of sequence (function)

For s0 ∈ CN0 , s1 ∈ CN1 (or s0 ∈ (C2)n0 , s1 ∈ (C2)n1),

with sum-of-squares values γ0, γ1 resp. (or σ0, σ1 resp.), let

s = s0 ⊗ s1, where ‘⊗’ means tensor product. Therefore s ∈
CN0N1 (or s ∈ (C2)n0+n1), and

γ(s) = 2γ0γ1 + N2
0 γ1 + N2

1 γ0,
(or σ(s) = 2σ0σ1 + 22n0σ1 + 22n1σ0).

(13)

In this paper we focus on sequences and functions which

cannot be written either fully or partially as tensor products.

G. Relationship between the multivariate aperiodic autocor-

relation and Boolean differentials

Define the aperiodic Boolean differential as follows

v(x,a,b) = [p(x) + p(x + a)]↓xj=bj ,∀j|aj=1 , (14)

where p : Fn
2 → F2, v : F

n−wt(a)
2 → F2, x,a,b ∈ Fn

2 ,

where ‘↓ xj = bj ,∀j|aj = 1’ means that xj is fixed to bj

whenever aj = 1. It follows that we need only consider b
such that b � a, where ‘b � a’ means that bj ≤ aj ,∀j. wt(a)
means the Hamming weight of a. The aperiodic autocorrelation

coefficients of s = (−1)p(x) can then be written as

uk = ua,b = 2n−wt(a) − 2wt(v(x,a,b)). (15)

where kj = aj(−1)bj , ∀j. Equation (15) demonstrates that

Boolean differentials of the form (14) are summarised by

multivariate aperiodic autocorrelation coefficients. A function

g : Fn
2 → F2 is balanced if wt(g) = 2n−1. The function

p(x) can be considered cryptographically weak if v(x,a,b)
is strongly unbalanced for any choice of a and b [2], [21].

One can envisage attack scenarios which exploit all possible

differentials of the form (14), in which case a suitable crypto-

graphic measure is the MMF , this being the inverse of the

sum-of-squares of the set of differential imbalances. In this

paper, we focus primarily on p(x) of algebraic degree ≤ 2
(quadratics). For such p(x), one can simplify the computation

of σ, specifically

deg(p(x)) ≤ 2 ⇒ deg(v(x,a,b)) ≤ 1
⇒ |ua,b| = |ua,b′ |,∀b,b′ � a

⇒ |uk| = |uh|,

where hj = |kj |, ∀j. Therefore we need only evaluate uk for

k ∈ {0, 1}n as opposed to k ∈ {−1, 0, 1}n, in order to

compute σ, a saving of O(2n/3n).
There are other ways to compute σ. Let P be the Walsh-

Hadamard Transform (WHT) of p. Then

P (r) = 2−
n
2

∑

x∈Fn
2

(−1)p(x)+r·x, (16)

where r · x =
∑

j rjxj , and r ∈ Fn
2 . Another way of writing

(16) is by using polynomial notation, such that

P (r) = 2−
n
2 s((−1)r0 , (−1)r1 , . . . , (−1)rn−1) (17)

Yet another way of writing (16) is by using matrix notation

P = (H ⊗ H ⊗ . . . ⊗ H)(−1)p,

where H = 1√
2

(

1 1

1 −1

)

. We can evaluate the power spectra

of the WHT of p by exploiting the polynomial notation of

(10). Thus, by the Wiener-Kinchine theorem

|P (r)|2 = 2−nu((−1)r0 , (−1)r1 , . . . , (−1)rn−1), (18)

which shows that, for the WHT, we embed u mod
∏

j(zj −
1)(zj +1) =

∏

j(z
2
j −1), and then evaluate u at the residues 1

and −1 over every variable, zj . This is a periodic embedding.

Equation (10) can further be embedded in a modulus large

enough so that the modulus has no effect on the result - an

aperiodic embedding. Specifically
(

∏n−1
j=0 zj

)

u(z0, . . . , zn−1)

=
(

∏n−1
j=0 zj

)

s(z0, . . . , zn−1)s(z
−1
0 , . . . , z−1

n−1)
∗,

mod
∏n−1

j=0 (z4
j − 1).

(19)

Using the fact that (z4
j −1) = (zj −1)(zj +1)(zj − i)(zj + i),

where i2 = −1, we can then define Q such that

Q(r) = 2−
n
2 s(ir0 , ir1 , . . . , irn−1) (20)

where r ∈ Zn
4 . It follows that

∑

r∈Zn
4

|Q(r)|4 = 2−2n
∑

r∈Zn
4

|u(ir0 , ir1 , . . . , irn−1)|2 (21)

where i2 = −1 and, from (19) and (21),

2σ =
∑

r∈Zn
4

|Q(r)|4 − 4n (22)

Equation (22) is just a re-statement of the multivariate Ln,4-

norm, as specified by (9) and (12). Specifically,

‖s‖4
n,4 =

∑

r∈Zn
4

|Q(r)|4 (23)

As stated above, the evaluation of u at the residues zj = ±1,

∀j, can be implemented using the WHT. Similarly, evaluation

of u at the residues zj = ±i, ∀j, can be implemented by using

the Negahadamard Transform (NHT) and is an embedding

mod z2
j + 1, ∀j - a negaperiodic embedding. The NHT uses

tensor products of the transform kernel N = 1√
2

(

1 i

1 −i

)

. To

compute Q one must evaluate u at the residues zj ∈ {±1,±i},

∀j and, in matrix terms, this translates to evaluating spectra

over the set of 2n transforms formed by all possible n-fold

tensor products of H and N . We denote this transform set by

{H,N}n.

A further way of computing σ is as follows. Define the

fixed-negaperiodic differential of P as

W (r,a,b, c) = [P (r) × P (r + a) × (−1)a·r]↓rj=bj ,∀j|cj=0 ,
(24)

where P : Fn
2 → C, W : F

wt(c)
2 → C, r,a,b, c ∈ Fn

2 , a � c,

and b � c̄, where ‘c̄’ means c̄j = cj + 1 mod 2, ∀j.

Theorem 1:

σ(s) = (
∑

c∈Fn
2

∑

b�c̄

∑

a�c

|
∑

r∈Fn
2

W (r,a,b, c)|2 − 4n)/2.



Proof: Note that

{H,N} = D{I,N}H, (25)

where I =
(

1 0

0 1

)

, and D is an arbitrary diagonal or anti-

diagonal unitary 2 × 2 matrix (we will not care which). To

compute Q we compute the set of 2n × 2n spectral values

Q = {H,N}n(−1)p. However, from (25),

Q = {D}n{I,N}n{H}n(−1)p = {D}n{I,N}nP.

To compute σ we are only interested in |Q|4, so we can

ignore D as it is a diagonal or anti-diagonal unitary matrix.

We are therefore interested in computing Q′ = {I,N}nP ,

where |Q|4 = |Q′|4. Viewing N as an evaluation of P (r) at

rj = ±i, ∀j, and I as a fixing of rj at 0 or 1, for a fixed

c ∈ Fn
2 , and by an application of a generalised form of the

Wiener-Kinchine theorem, we obtain

|Q′
c|

4 =
∑

b�c̄

∑

a�c

|
∑

r∈Fn
2

W (r,a,b, c)|2 − 2n)/2,

where

Q′
c =





j=π(wt(c)−1)
∏

π(0)

Nj



 P,

π is a permutation of Zn, cj = 1 iff j ∈ {π(0), . . . , π(wt(c)−
1)}, and |Q′|4 =

∑

c∈Fn
2

|Q′
c|

4. The notation, Nj , is shorthand

for I ⊗ . . . I ⊗ N ⊗ I . . . ⊗ I , meaning that the 2 × 2 unitary

matrix N is applied to tensor position j only. Therefore the

notation
∏

j Nj means a matrix product of such elemental

matrices. The theorem follows.

It follows that a low MMF(s) also indicates a weakness with

respect to the set of fixed-negaperiodic differentials across the

Walsh-Hadamard transform of p.

III. MMF - EXTREMES, CLASSIFICATION AND

EXPECTATIONS

A. Smallest and largest

The smallest MMF(s) occurs when p(x) is a constant or a

linear function, in which case σn = 6σn−1 +22n−2 = 6n−4n

2 ,

MMF = 2n

3n−2n , and FM = 0. Two open problems are

to determine the largest possible values of MMF and FM.

The largest MMF(s) found thus far is for the trivial function

p(x) = x0x1, for which MMF = 4.0. The largest FM(s)
found thus far is for the line function (path graph) (see Tables

II and III), for which F = 3.0. The path graph is equivalent

to the canonical GRS sequence [5], [20] under lexicographical

ordering of the truth table.

B. Classification and expectation

Table I shows all MMF equivalence classes for Boolean

functions of 2 to 5 variables, with inequivalent representatives

obtained from [3]. Experiments suggest that, for random

Boolean functions and for random quadratic Boolean functions

of n variables, FM = 1.0.

Definition 1: Define Q to be the complete set of homoge-

neous quadratic Boolean functions over n variables, i.e. q ∈ Q
iff q =

∑

j<k cjkxjxk, cjk ∈ F2.

n # inequiv. functions # equiv. classes / list of MMFs

2 2 2 classes
4.000, 0.8

3 5 3 classes
2.667, 1.143, 0.421

4 39 18 classes
3.200, 1.778, 1.600, 1.455, 1.333, 1.231,

1.143, 1.067, 1.000, 0.941, 0.842, 0.800,

0.727, 0.696, 0.640, 0.552, 0.400, 0.246
5 22442 80 classes

2.909 − 0.152

TABLE I

COMPLETE SET OF MULTIVARIATE MERIT FACTORS FOR n = 2 TO n = 5

Definition 2: Let S be an arbitrary subset of n-variable

Boolean functions. Define SQ = {µ + q | ∀µ ∈ S, q ∈ Q}.

Theorem 2: The average value of 1
MMF with respect to

any set SQ is

average SQ
(

1

MMF
) =

2n − 1

2n
.

Proof: (summary) The argument is an extension of that

used in [17] for the univariate case.

Theorem 2 implies that it is pointless to look for preferred

cosets of RM(t, n), t ≥ 2, with respect to the MMF , as they

will all have the same average value of 1
MMF and therefore

be relatively indistinguishable with respect to the MMF .

Corollary 1: The set of n-variable Boolean functions of

degree d or less satisfies average ( 1
MMF ) = 2n−1

2n for any

d, 2 ≤ d ≤ n, and, consequently, average ( 1
MMF ) → 1.0 as

n → ∞.

Remark: Theorem 2 is similar to a theorem in [17]

which states that, for a random bipolar sequence of length

N , average ( 1
MF ) = N−1

N
.

IV. CONSTRUCTIONS

For both multivariate and univariate scenarios, we present

recursive quadratic constructions, determining sum-of-squares

recursions and merit factor asymptotes - see Table II for

graphical nomenclature, Table III for proved MMF results,

and Table IV for MF results (conjectured apart from [11]).

Proofs and initial conditions on σ are omitted for brevity.

V. CONCLUSIONS

The univariate merit factor and multivariate merit factor

(MMF) have been characterised. The relevance of MMF
as a metric that quantifies resistance of a Boolean function

to generalised forms of differential attack has been outlined.

Expected values for the asymptotic MMF have been con-

jectured and expected values for asymptotic 1
MMF have been

proven. Recursions have been identified for both multivariate

and univariate merit factors of some binary quadratic con-

structions, allowing evaluation of asymptotic multivariate and

univariate merit factors, respectively. Two interesting open

problems have been highlighted, namely to determine the



Graph p(x)

Path
Pn−2

i=0 xixi+1

Circle xn−1x1 +
Pn−2

i=0 xixi+1

Clique
Pi=n−1

i=0,j<i xixj

Star x0
Pn−1

i=1 xi

Triangles x0x1 +
Pn−3

i=0 xixi+2 + xi+1xi+2

Squares x0x1 +
Pn/2−1

i=0 (x2i+2x2i+3 +
P1

j=0 x2i+jx2i+2+j)

Wheel (x0
Pn−1

i=1 xi) + xn−1x1 +
Pn−2

i=0 xixi+1

TABLE II

GRAPH NAMES FOR VARIOUS QUADRATIC CONSTRUCTIONS

Graph σn FM

σn: Closed-Form

Path 2σn−1 + 8σn−2 3
4n

6
− (−2)n

6
Circle 2σn−1 + 8σn−2 1

(−2)n

2
+ 4n

2
Clique 10σn−1 − 20σn−2 − 40σn−3 + 96σn−4 0

2n

2
+ 6n

4
− 4n

2
− (−2)n

4
Star 12σn−1 − 44σn−2 + 48σn−3 0

2n − 4n

2
+ 6n

6

Triangles 2σn−1 + 16σn−3 + 256σn−5
5
3

( 5

84
i
√

7 − 1

12
)(1 +

√
7i)n − ( 5

84
i
√

7 + 1

12
)(1 −

√
7i)n

−( 1
15

+ 2
15

i)(−2 + 2i)n − ( 1
15

− 2
15

i)(−2 − 2i)n + 3
10

4n

Squares 12σn−2 + 32σn−4 + 1024σn−6 − 8192σn−8
5
3

n even 3 16n

10
+

„

P

r

(384r2−40r−3)( 1

r
)n

(15360r2−640r−40)r

«

,

r ∈ roots of 512z3 − 32z2 − 4z − 1
Wheel 4σn−2 + 32σn−3 + 64σn−4 1

4n

2
− (−2)n

2
− ( 1

4
+ 1

4
i
√

7)(−1 +
√

7i)n

+(− 1
4

+ 1
4
i
√

7)(−1 −
√

7i)n

TABLE III

ASYMPTOTIC MULTIVARIATE MERIT FACTOR FOR VARIOUS QUADRATIC

CONSTRUCTIONS

maximum achievable MMF and the maximum achievable

asymptotic MMF .
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