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SUMMARY

The paper extends earlier work on the so-called skew-normal distribution, a family of
distributions including the normal, but with an extra parameter to regulate skewness. The
present work introduces a multivariate parametric family such that the marginal densities
are scalar skew-normal, and studies its properties, with special emphasis on the
bivariate case.

Some key words: Bivariate distribution; Multivariate normal distribution; Specified marginal; Skewness.

1. THE SKEW-NORMAL DISTRIBUTION

11. Introduction
The term skew-normal (SfJf} refers to a parametric class of probability distributions

which includes the standard normal as a special case. A random variable Z is said to be
skew-normal with parameter X, written Z ~ SfJ^iX), if its density function is

0(z;A).= ty(z)<D(Az) (zeR), (M)

where <p(z) and O(z) denote the ^ (0 ,1) density and distribution function, respectively; the
parameter X which regulates the skewness varies in (— oo, oo), and X = 0 corresponds to
the Jf{Q,1) density.

The density (11) has appeared at various places in the literature, sometimes in a some-
what casual manner. A systematic treatment of this distribution, developed independently
from earlier work, has been given by Azzalini (1985, 1986).

The interest in density (11) comes from two directions. On the theoretical side, it enjoys
a number of formal properties which reproduce or resemble those of the normal distri-
bution and appear to justify its name skew-normal; in particular, Z2 ~ Xi- From the applied
viewpoint, (1-1) is suitable for the analysis of data exhibiting a unimodal empirical distri-
bution but with some skewness present, a situation often occurring in practical problems.
See Hill & Dixon (1982) for a discussion and numerical evidence of the presence of
skewness in real data. Arnold et al. (1993) include an application of the VJ/" distribution
to real data.

The purpose of the present paper is to introduce a multivariate version of the skew-
normal density. Such an extension is potentially relevant for practical applications, since
in the multivariate case there are far fewer distributions available for dealing with non-
normal data than in the univariate case, especially for the problem of moderate skewness
of the marginals.

A multivariate version of (11) has been discussed briefly in Azzalini (1985), but it has
the disadvantage of being a purely formal extension of the mathematical expression (11),
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716 A. AZZALINI AND A. DALLA VALLE

and its marginals do not enjoy the property of being skew-normal densities, as remarked
by Ana Quiroga in her 1992 doctoral dissertation at the University of Uppsala.

To achieve a multivariate distribution with specified marginals, a standard method is
to use the Farlie-Gumbel-Morgenstern formula, which in the bivariate case takes the
form

T7 (v Y_ 1 — /7 I Y \J? (Y ^ [" 1 -i- ni 1 J* (Y W i 1 V (~Y W~\
V 1 > 2 / — 1 \*^1 / 2 \ 2 / L ' X 1 \ 1)) X 2 \ 2 / / J>

where Fx and F2 denote the marginal distributions and a is a parameter varying in (— 1,1).
One limitation of this approach is that again the extension from the univariate to the
bivariate case is of purely formal nature, and it is not linked to the intrinsic properties of
the Fj's. In particular, the above formula does not produce the bivariate normal distri-
bution when F1(x) = F2(x) = O(x). Another disadvantage is that the range of achievable
correlations obtained by varying a is restricted to the interval (—5,3) (Schucany, Parr &
Boyer, 1978).

In the present paper, we consider a different approach, more directly linked to the
nature of the scalar ifjf distribution, which ensures that the marginals are scalar SfJf
variates. After presenting the general /c-dimensional version, we focus on the bivariate
case, including an illustration with real data.

1-2. Some formal preliminaries
Before tackling the multivariate case, it is useful to recall some properties of the scalar
'Jf distribution, for later use.
The moment generating function and the first moments of Z are given in Azzalini

(1985). In particular,

E(Z)=(-) d, var(Z)=l--<5 2 , (1-2)

where d is related to X via the relationships

X

Also,

the index of skewness, varies in the interval (—0-995,0-995). Henze (1986) has given the
general expression of the odd moments in closed form; the even moments coincide with
the normal ones, because Z2 ~ x\-

PROPOSITION X.lfY and W are independent JV{0, 1) variates, and Z is set equal to Y
conditionally on XY>W, for some real X, then Z ~ SfJ/~{X).

This result is essentially equivalent to the proof that (11) is a density function, given
in Azzalini (1985). For random number generation, it is more efficient to use a variant of
this result, namely to put

XY>W,
Y ifXY^W,

hence avoiding rejection of samples.

= {Y
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Multivariate skew-normal distribution 717

The next result follows immediately from Proposition 1 on setting X =

PROPOSITION 2. If(X, Y) is a bivariate normal random variable with standardised mar-
ginals and correlation 5, then the conditional distribution of Y given X >0 is SfJf{X(b)}.

This representation of the SfJf distribution, derived in a different way by Arnold et al.
(1993), is interesting since it links the Sfjf distribution to a censoring operation on normal
variates, a situation naturally occurring in a large number of practical cases. A similar
conditioning mechanism can be used to obtain the skew-normal distribution as a prior
distribution for the mean of a normal variable, in a Bayesian framework (O'Hagan &
Leonard, 1976).

The following further representation of Z, included in Azzalini (1986), is familiar in the
econometric literature on the stochastic frontier model, starting from Aigner, Lovell &
Schmidt (1977). Andel, Netuka & Zvara (1984) obtain (11) as the stationary distribution
of a nonlinear autoregressive process, with transition law related to the next result.

PROPOSITION 3. If YO and Yt are independent ^V(0,1) variables and d e (— 1,1), then

is

2. A MULTIVARIATE EXTENSION

21. Transformation method
For the fe-dimensional extension of (11), we consider a multivariate variable Z such

that each component is skew-normal. It is then natural to define the joint distribution of
Z as being multivariate yjf.

Consider a /c-dimensional normal random variable Y={YU . . . , Yk)
T with standardised

marginals, independent of Yo~ J/~(Q, 1); thus

0

where ¥ is a k x k correlation matrix. If (<51;..., 3k) are in (— 1,1), define

[j=l,...,k), (2-2)

so that Zj~£f^V{X(5])}, by Proposition 3. Computation of the distribution of Z =
(Z X ) . . . , Zk)

r is trivial but lengthy; the basic steps are reported in the Appendix. The final
expression for its density function is

/ t(z) = 2^(z;fl)<D(aTz) (zeRk), (2-3)

where

aT = (l + AT^-U)*' ( 2 ' 4 )

,...,X(dk))\ (2-5)

Q = A(¥ + /UT)A, (2-6)
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718 A. AZZALINI AND A. DALLA VALLE

and <f>k(z; Q) denotes the density function of the fc-dimensional multivariate nonnal distri-
bution with standardised marginals and correlation matrix Q.

We shall say that a random variable Z with density function (2-3) is a fc-dimensional
skew-normal variable, with vector X of shape parameters and dependence parameter W.
For brevity, we shall write

z ~ yjr^k,^)- (2-7)

22. Conditioning method
An immediate question is whether we would obtain the same class of density functions

if we start from another property of the scalar SfJf distribution, instead of Proposition 3.
Proposition 2 suggests the following scheme. Let X = (Xo, Xlt..., Xk)

T be a (k + 1)-
dimensional multivariate normal random variable such that

X ~ jrk + i(y), II ), (^o)

with standardised marginals and correlation matrix

/ I 5, . . . 5k\

\sk I
and consider the distribution of (Xu ... ,Xk) given Xo > 0. By Proposition 2, each of these
conditional distributions is a scalar SfJf, specifically SfjV{X(dj)}, for j = 1 , . . . , k, and it
would be reasonable to say that (Xu..., Xk) conditionally on J 0 > 0 is a multivariate
skew-normal random variable. However, it can be shown that the class of distributions
obtained by this conditioning method is the same as that obtained by the transformation
method of §21.

To prove this, consider the following transformation of the components of the Vs,
defined in (21):

Clearly, X' = (X'o,..., X'k)
T is still a multivariate normal random variable with standard-

ised marginals, and the resulting correlations are

corr(-X"o, X'j) = Sj (j = 1 , . . . , k),

con(Xh Xj) = coij = didJ + \l/{j(l — df)i(l — dj)i (i>0,j>0), (210)

where \\iii is the corresponding element of *F. Therefore X' has the same distribution as
X introduced for the conditioning method.

The transformation method and the conditioning method differ in that the former
replaces Yo by \Y0\, while the latter requires Yo > 0. The symmetry of the ^"(0,1) density
renders these two operations equivalent, and then the distribution of {X'u . . . , X'k) con-
ditionally on XQ > 0 is the same as for (2-2), provided that the generic element a>y of Q
and the corresponding element \\i{i of *F are related as in (2-10).

The requirement of positive deflniteness of Q* in (29) imposes some restrictions on the
element of it, once the <5/s are fixed. This is why in (2-7) we preferred to refer to *¥ which
does not have such a restriction. Obviously, if the a>,/s are obtained via (2-10), the con-
straints are automatically satisfied. These aspects will be considered in greater detail in
§ 3, for the case k = 2.
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Multivariate skew-normal distribution 719

23. Some formal properties
If Z has density function (2-3), then its cumulative distribution function is

Fk{Zi,..., zJk) = pr{Z1 ^ z l 5 . . . , Zk^zk}

f 'i CZk f * "
= 2 . . . <f>k{v; Q)<f>(u) du d v y . . . dvk

J — oo J — oo J —oo

for z = ( z l 5 . . . , z t)
T e Rk, with a defined by (2-4). Then

where {Yo, Y 1 ; . . . , 7t)
T has distribution (2-1) and

%=Y0-a
TY,

so that

(y)~^+ 1{a(1-'Cr ~^T)}- (212)

To conclude, the distribution function of the fc-dimensional variable Z ~ S/'J/'k{X XP) can
be obtained from (211) by computing the distribution function of a (k + l)-dimensional
normal variable with distribution (212).

For computing the moment generating function of Z, we need the following well-
known result.

PROPOSITION 4. / / U ~ ^ ( 0 , ft), then

for any scalar u and v 6 K*.

This result is usually stated for a scalar random variable; see for instance Zacks (1981,
pp. 53-4). The present formulation is a trivial extension, since vT U ~ ^"(0, vrQv).

Computation of the moment generating function of Z is now immediate:

= 2
JR

M{t) = 2 exp(tTz)^t(z; Q)<D(aTz)dz
J

= 2 exp{±{tTnt)}El®{aT(U + Qt)}]

(2-13)

where U ~ ^(0, Q).
For computing the correlation matrix of Z, it is best to refer to the transformation

method of its generation. Simple algebra leads to

(2-14)
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720 A. AZZALINI AND A. DALLA VALLE

taking into account (12). Substituting (210) in this expression, we can also write

Pit = TT. „ _ 1 r . , w , „ _ , c , » , .

In the scalar case, changing the sign of a <$OT(>1) variable produces a 5OT(— A) variable.
A similar property holds in the multivariate case.

P R O P O S I T I O N 5. If Z~ S/'J/'k{k, *¥) and S = d i a g ( s 1 ? . . . , sk), where slt. ..,sk is a
sequence whose terms are either + 1 or — 1, then

The proof of this statement follows easily by applying the SZ transformation to the Y/s
in (2-2). When all s/s are equal to — 1, we obtain the simple case

(215)

If the conditioning described in § 2-2 applies when Xo < 0 instead of Xo > 0, then the
resulting distribution has the 5 and X vectors of reversed sign. Combining this fact with
(2-15), we obtain the next result.

PROPOSITION 6. If Xo is a scalar random variable and X is k-dimensional, such that

and Z is defined by

ifXo>0,
Z =

1 —X otherwise,
then Z ~ SfjVk{X(5), *?}, where X(5) is given by (13) and the entries of *¥ are computed
from those of Cl by solving (210).

A corollary of this fact, which generalises a property of the scalar skew-normal distri-
bution, is obtained by noticing that ZTQ -1Z is equal to XTCl~1X in distribution.

PROPOSITION 7. IfZ ~ £Ort(A, »F) and Q is given by (2-6), then

3. THE BIVARIATE SKEW-NORMAL DISTRIBUTION

31. Generalities
For the rest of the paper, we shall concentrate on the bivariate case. Setting k = 2 in

(2-3), the density function of Z = (Zls Z2) is

fiitu *a) = 2^2(zi. z2; (uWoCiZj + <x2z2), (3-1)

where co is the off-diagonal element of Q and, after some algebra,

i = {(1 -co2)(l -co2-51-51 + 25152co)}*'

52 — 5^(0
a2 = {(1 -co2){\ -(02-5l-5j + 2<51<
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Multivariate skew-normal distribution 721

An alternative way to obtain (31) is to consider the joint distribution of (XUX2),
components of the vector X = (Xo, X1, X2)

T distributed as (2-8), conditioned on Xo > 0.
This computation can be tackled via a technique similar to that of Cartinhour (1990).
The resulting algebra is messy and is omitted.

Particularising (2-13) gives, after substantial reduction,

M(tu t2) = 2 exp{§(£? + 2<oM2 + ^)}<D(tl(5i + t282).

We have already noted the existence of restrictions on the elements of Q. In the bivariate
case, co must satisfy

5,5, - {(1 - «5?)(1 -51)}* < co < 5,52 + {(1 - 5?)(1 - 5\)}\ (3-2)

Figure 1 shows the achievable correlation p as a function of \\i and 5, when
51 = S2 = 3. In the general case 5, 4= 52, the upper bound for p is less than 1; Figure 2
shows the upper and lower limits for p for a specific value of 5X. The overall message con-
tained in these figures is that (31) spans a reasonably wide range of p values, much wider
than that achieved by the Farlie-Gumbel-Morgenstern formula.

Outside the normal distribution context, the correlation is no longer the obvious meas-
ure of association between two variables. A recent proposal for an alternative measure,
especially relevant in the context of nonlinear dependence among continuous variables, is
the 'correlation curve', discussed by Bjerve & Doksum (1993), which is essentially a local
analogue of the usual correlation, computed for each given value of the conditioning
variable. This correlation curve can be readily obtained for the bivariate skew-normal
distribution, by using the expressions given in § 3-2.

Figures 3 (a) and (b) provide contour plots of the bivariate density (31) when 51 = 82 =
08 and co is equal to 03 and 0-4074, respectively. The value co = 0-4074 corresponds to
uncorrelated components. Additional plots of similar type are presented in the final section.
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Fig. 1. Relation between p and 6 for varying \p.
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Fig. 2. Upper limit (dashed curve) and lower limit (continuous curve) of p
as a function of 82 when <5, = 06.

(a) « = (b) <u = O4074
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Fig. 3. Contour plot ^OT2 for St = 52 = 08 and co = 03, and 6t = 52 = 08 and w = 04074.

These contour plots are clearly different from ellipses, and their shape is substantially
influenced by the value of co.

3-2. The conditional distribution
The conditional density of Z2 given Z t = zx is

(3-3)

where <^c(z2|z1; co) denotes the conditional density associated with a bivariate normal
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Multivariate skew-normal distribution 723

variable with standardised marginals and correlation <x>. We observe that (33) is a member
of an extended skew-normal class of densities, given by equation (9) of Azzalini (1985).

The moment generating function of Z2 given Zj is

(3-4)

By differentiation of (3-4), we obtain, after some algebra, the expressions for the conditional
mean and variance:

E(Z2\Zt = z t) = a>zl

var(Z2 |Z1 = z1) = 1 — or —

where H(x) = <f>(x)/O(—x) denotes the hazard function of the standard normal density.

4. SOME EXAMPLES WITH REAL DATA

The aim of this section is to provide simple numerical illustration of the material
presented so far, focusing on the bivariate case to ease numerical work and graphical
presentation. Neither a full discussion of the statistical aspects involved nor a thorough
exploration of the practical relevance of the skew-normal distribution is attempted here.

To fit real data, a location and a scale parameter should be included. In the bivariate
case, the observed variable Y = (YX, Y2)

T would be naturally expressed as

Yj = Xlj + k2JZj (7 = 1,2), (4-1)

where Z = (Zx, Z2)T ~ SfJ^k i/0, involving seven components to be estimated.
The likelihood function is readily computed from (3-1) and, for these exploratory

examples, the corresponding estimates have been computed by direct maximisation of the
log-likelihood itself. It appears however preferable to reparametrise (41) to

as suggested in Azzalini (1985) for the scalar case. The appropriateness of this parametris-
ation, at least for the scalar case, is confirmed by numerical work by Bruno Genetti, in
his 1993 dissertation presented at the University of Padua, where it is shown that the log
likelihood associated with (4-2) has a much more regular shape than that associated with
(41), which has long narrow ridges, often curved. This sort of behaviour is also found by
Arnold et al. (1993). After the likelihood function has been maximised, it seems however
preferable to convert back the estimates from (4-2) to the simpler form (41).

We shall make use of a data set, collected by the Australian Institute of Sport and
reported by Cook & Weisberg (1994), containing several variables measured on n = 202
Australian athletes. Specifically, we shall consider the pairs of variables (Wt, Ht) and
(LBM, BMI) where the meaning of the names is: Wt, weight (Kg); Ht, height (cm); BMI, body
mass index = Wt^Ht)2; LBM, lean body mass.

Figure 4 displays the scatter-plot of (Wt, Ht) with superimposed contours of the fitted
SfJ^ distribution. Both the observed points and the fitted density exhibit moderate skew-
ness for each of the components.
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150-

120

Fig. 4. Australian athletes data: scatter plot (Wt, Ht) and fitted bivariate skew-
normal distribution.

An 'obvious' way of tackling these data, and the other components of the same data
set, would be via some monotonic transformation of the individual components, a device
which often cures nonnormality of the data; log-transformation is the most commonly
employed transformation for this purpose. It can however be argued that retaining the
variables on the original scale allows a more meaningful interpretation of the quantities
involved. Moreover, transformation of the individual components can improve normality
of the components, but it is of no value when the failure of normality refers to the joint
behaviour of the variables.

To examine somewhat more formally whether the skewness is significantly different
from 0, we use the sample index of skewness yt. This has been shown by Salvan (1986)
to be the locally most powerful location-scale invariant statistic, for testing departure
from normality within the scalar skew normal densities. Standardisation of ^ with its
asymptotic standard deviation (6/n)* gives 1-39 and -115 , for Wt and Ht, respectively.
Neither of them is significant at 5%, but they are both fairly high in absolute value. This
suggests to consider a combined measure of asymmetry, such as the index bli2 proposed
by Mardia (1970) as a test statistic of bivariate normality. For our data, the observed
value of nb1>2/6 is 56-8, which is markedly significant when compared with the xl percent-
age points.

The summary conclusion is that some departure from normality is present, although it
is not evident in a single-component analysis. This is in conflict with the common belief
that anthropometric measurements are 'normal', and is essentially in agreement with the
general findings of Hill & Dixon (1982).

Figure 5 displays the scatter plot and the fitted density for the (BMI, LBM) pair. In this
case, obvious skewness is present in both components, and the observed significance level
of #!, after standardisation, is nearly 0 for both components. The contour level curves
appear to follow satisfactorily the scatter plot, and then the fitted SfJ/~2 density seems to
provide an adequate summary of the data.
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40

BMI

Fig. 5. Australian athletes data; scatter plot (BMI, LBM) and fitted bivariate skew-
normal distribution.
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APPENDIX

Computation of the density

We compute the density function of Z, whose generic component is defined by (2-2), at a point
z = (zl,..., zk)

T e re*. For subsequent use, we define

w, = •

and w = (w1 ; . . . , wt)
T. Using standard methods for transformations of random variables, the den-

sity function of Z at point z e R* is

ui-m*x f Hrw-fr-w-^-

• exp -

J
>0° (1 4- )JyV~^'/

0 \Ln>

dv

(A-l)
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726 A. AZZALINI AND A. DALLA VALLE

We recall the binomial inverse theorem, which states

(A + UBV)-1 = A~1 -A~lUB{B

for any conformable matrices, provided the inverses exist; see for instance Mardia, Kent & Bibby
(1979, p. 459). Using this result, we obtain

V U - l l j T m - l

(A-2)

where n, defined as in (2-6), is such that

Replacing (A-2) and (A-3) in (A-l), we obtain (23).
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