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Abstract

The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–

astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation

aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid

approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based

on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted

servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA

has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently

transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline

the correlator design, signal path, and processing elements and present the data format for the internal and external

interfaces.
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1. INTRODUCTION

The MWA is a 128 element dual polarisation interferometer,

each element is a 4 × 4 array of analog beam formed dipole

antennas. The antennas of each array are arranged in a reg-

ular grid approximately 1 m apart, and these small aperture

arrays are known as tiles. The science goals that have driven

the MWA design and development process are discussed in

the instrument description papers (Tingay et al. 2013a; Lons-

dale et al. 2009), and the MWA science paper (Bowman et al.

2013). These are (1) the detection of redshifted 21 cm neutral

hydrogen from the Epoch of Re-ionization; (2) Galactic and

extra-Galactic surveys; (3) time-domain astrophysics; (4) so-

lar, heliospheric and ionospheric science and space weather.

1.1. Specific MWA correlator requirements

The requirements and science goals have driven the MWA

into a compact configuration of 128 dual polarisation tiles.

50 tiles are concentrated in the 100-m diameter core, with

62 tiles distributed within 750 m and the remaining 16 dis-

tributed up to 1.5 km from the core.

The combination of the low operating frequency of the

MWA and its compact configuration allow the correlator to

be greatly reduced in complexity, however this trade-off does

drive the correlator specifications. Traditional correlators are

required to compensate for the changing geometry of the ar-

ray with respect to the source in order to permit coherent in-

tegration of the correlated products. In the case of the MWA,

no such corrections are performed. This drives the tempo-

ral resolution specifications of the correlator and forces the

products to be rapidly generated in order to maintain coher-

ence. Tingay et al. (2013a) list the system parameters and

these include a temporal resolution of 0.5 s.

The temporal decoherence introduced by integrating for

0.5 s without correcting for the changing array geometry; and

the requirement to image a large fraction of the primary beam,

drive the system channel resolution specification to 10 kHz. It

should be noted that this does not drive correlator complexity

as it is total processed bandwidth that is the performance

driver, not the number of channels. Albeit the number of

output channels does drive the data storage and archiving

specifications. The MWA correlator is required to process

the full bandwidth as presented by the current MWA digital

receivers, which is 30.72 MHz per polarisation.

In summary, in order to meet the MWA science require-

ments, the correlator is required to correlate 128 dual polar-

isation inputs, each input is 3072 × 10 kHz in bandwidth.

The correlator must present products, integrated for no more

than 0.5 s at this native channel resolution, to the data archive

for storage.

1.2. Benefits of software correlator implementations

The correlation task has previously been addressed by Ap-

plication Specific Integrated Circuits (ASICs) and Field Pro-

grammable Gate Arrays (FPGAs). However the current gen-

eration of low frequency arrays including the MWA (Wayth,

Greenhill, & Briggs 2009), LOFAR (van Haarlem et al.

2013), PAPER (Parsons et al. 2010) and LEDA (Kocz et al.

2014) have chosen to utilise, to varying degrees, general pur-

pose computing assets to perform this operation. The MWA

leverages two technologies to perform the correlation task, a

Fourier transformation performed by a purpose built FPGA-

based solution, and a XMAC utilising the xGPU library1

described by Clark, La Plante, & Greenhill (2012), also used

by the PAPER telescope and the LEDA project. The MWA

system was deployed over 2012/13 as described by Tingay

et al. (2013a), and is now operational.

The MWA is unique amongst the recent low frequency

imaging dipole arrays, in that it was not designed to utilise

a software correlator at the outset. The flexibility provided

by the application of general purpose, GPU based, software

solution has allowed a correlator to be rapidly developed and

fielded. This was required in order to respond to a changed

funding environment, which resulted in a significant design

evolution from that initially proposed by Lonsdale et al.

(2009) to that described by Tingay et al. (2013a). Expeditious

correlation development and deployment was possible be-

cause General Purpose GPU (GPGPU) computing provides

a compute capability, comparable to that available from the

largest FPGAs, in a form that is much more accessible to soft-

ware developers. It is true that GPU solutions are more power

intensive than FPGA or ASIC solutions, but their compute

capability is already packaged in a form factor that is read-

ily available and the development cycle is identical to other

software projects. Furthermore the GPU processor lifecycle

is very fast and it is also generally very simple to benefit

from architecture improvements. For example, the GPU ker-

nel used as the cross-multiply engine in the MWA correlator

will run on any GPU released after 2010. We could directly

swap out the GPU in the current MWA cluster, replace them

with cards from the Kepler series (K20X), and realise a factor

of 2.5 increase in performance (and a threefold improvement

in power efficiency).

The organisation of this paper begins with a short intro-

duction to the correlation problem, followed by an outline

of the MWA correlator design and then a description of the

sub-elements of the correlator following the signal path; we

finally discuss the relevance of this correlator design to the

Square Kilometre Array (SKA) and there are several Appen-

dices describing the various internal and external interfaces.

2. THE CORRELATION PROBLEM

A traditional telescope has a filled aperture, where a sur-

face or a lens is used to focus incoming radiation to a focal

point. In contrast, in an interferometric array like the MWA

the purpose of a correlator is to measure the level of signal

correlation between all antenna pairs at different frequencies

1xGPU available at: https://github.com/GPU-correlators/xGPU
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across the observing band. These products can then be added

coherently, and phased, or focussed, to obtain a measurement

of the sky brightness distribution in any direction.

The result of the correlation operation is commonly called

a visibility and is a representation of the measured signal

power (brightness) from the sky on angular scales commen-

surate with the distance between the constituent pair of an-

tennas. Visibilities generated between antennas that are rela-

tively far apart measure power on smaller angular scales and

vice versa. When all visibilities are calculated from all pairs

of antennas in the array many spatial scales are sampled

(see Thompson, Moran, & Swenson (2001) for an exten-

sive review of interferometry and synthesis imaging). When

formed as a function of observing frequency (ν), this visibil-

ity set forms the cross-power spectrum. For any two voltage

time-series from any two antennas V1 and V2 this product

can be formed in two ways. First the cross correlation as a

function of lag, τ , can be found, typically by using a delay

line and multipliers to form the lag correlation between the

time-series.

(V1 ⋆ V2)(τ ) =

∫ ∞

−∞

V1(t)V2(t − τ )dt. (1)

The cross power spectrum, S(ν), is then obtained by appli-

cation of a Fourier transform

S12(ν) =

∫ ∞

−∞

(V1 ⋆ V2)(τ )e−2π iντ dτ. (2)

When the tasks required to form the cross power spectrum are

performed in this order (lag cross-correlation, followed by

Fourier transform) the combined operation is considered an

XF correlator. However, the cross correlation analogue of the

convolution theorem allows Equation (2) to be written as the

product of the Fourier transform of the voltage time-series

from each antenna

S12(ν) =

∫ ∞

−∞

V1(t)e
−2π iνtdt ×

∫ ∞

−∞

V2(t)e
−2π iνtdt. (3)

Implemented as described by Equation (3) the operation is

an FX correlator. For large-N telescopes the FX correlator

has a large computational advantage. In an XF correlator for

an array of N inputs the cross correlation for all baselines

requires O(N2) operations for every lag, and there is a one

to one correspondence between lags and output channels, F,

resulting in O(FN2) operations to generate the full set of

lags. The Fourier transform requires a further O(F log2 F )

operations, but this can be performed after averaging the lag

spectrum and is therefore inconsequential. For the FX cor-

relator, we require O(NF log2 F ) operations for the Fourier

transform of all input data streams, but only O(N2) opera-

tions per sample for the cross multiply (although we have F

channels the sample rate is now lower by the same factor).

Therefore, as long as N is greater than log2 F there is a com-

putational advantage in implementing an FX correlator. XF

correlators have been historically favoured by the astronomy

community, at least in real-time applications, as until very

recently N has been small, and there are disadvantages to the

Figure 1. The MWA signal processing path, following the MWA data re-

ceivers, in the form of a flow diagram.

FX implementation. The predominant disadvantage is data

growth: the precision of the output from the Fourier trans-

form is generally larger than the input, resulting in a data rate

increase. There is also the complexity of implementing the

Fourier transform in real-time.

3. THE MWA CORRELATOR SYSTEM

The tasks detailed in this section cover the full signal path

after digitisation, including fine channelisation, data distri-

bution, correlation and output. In the MWA correlator the

F stage is performed by a dedicated channeliser, subsets of

frequency channels from all antennas are then distributed to

a cluster of processing nodes via an ethernet switch. The

correlation products are then assembled and distributed to

an archiving system. An outline of the system as a whole is

shown in Figures 1 and 2. As shown in Figure 3 the correlator

is conceptually composed of 4 sub-packages, the Polyphase

Filter bank (PFB), that performs the fine channelisation, the

Voltage Capture System (VCS), responsible for converting

the data transport protocol into ethernet and distributing the
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Figure 2. The full physical layout of the MWA digital signal processing path. The initial digitalisation and coarse channelisation is performed in the

field. The fine channelisation, data distribution and correlation is performed in the computer facility at the Murchison Radio Observatory, the data

products are finally archived at the Pawsey Centre in Perth.

Figure 3. The decomposition of the MWA Correlator system demonstrating the relationship between the major sub-elements.
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data, the correlator itself (XMAC), and the output buffer-

ing that provides the final interface to the archive. Figure 2

presents the physical layout of the system.

3.1. The system level view

The computer system consists of 40 servers, grouped into

different tasks and connected by a 10 GbE data network and

several 1 GbE monitoring, command and control networks.

The correlator computer system has been designed for ease

of maintenance and reliability. All of the servers are config-

ured as thin-clients and have no physical hard-disk storage

that is utilised for any critical functions–any hard-disk is used

for non-critical storage and could be removed (or fail) with-

out limiting correlator operation. All of the servers receive

their operating system through a process known as the PXE

(Pre-eXecution Environment) boot process, and import all of

their software over NFS (Network File System) and mount

it locally in memory. The servers are grouped by task into

the VCS machines that house the FPGA capture card and

the servers that actually perform the XMAC and output the

visibility sets for archiving. Any machine can be replaced

without any more effort than is required to physically con-

nect the server box and update an entry in the IP address

mapping tables.

3.2. The MWA data receivers: Input to the correlator

As described in Prabu, Srivani, & Anish (2014) there are

16 digital receivers deployed across the MWA site. Power

and fibre is reticulated to them as described by Tingay et al.

(2013a). The individual tiles are connected via coaxial cable

to the receivers, the receivers are connected via fibre runs

of varying lengths to the central processing building of the

MRO, where the rest of the signal processing is located.

3.2.1. The polyphase filterbank

PFBs are commonly used in digital signal communications

as a realisation of a Discrete Fourier Transform (DFT; see

Crochiere & Rabiner (1983) for a detailed explanation). It

specifically refers to the formation of a DFT via a method

of decimating input samples into a polyphase filter structure

and forming the DFT via the application of a Fast Fourier

Transform to the output of the polyphase filter (Bunton 2003).

As described by Prabu et al. (2014) the first or coarse PFB

is as an 8 tap, 512 point, critically sampled, PFB. This is

implemented as; an input filtering stage realised by 8 × 512

point Kaiser windowing function, the output of which is

subsampled into a 512 point FFT. This process transforms

the 327.68 MHz input bandwidth into 256, 1.28 MHz wide,

subbands.

The second stage of the F is performed by four dedicated

FPGA based PFB boards housed in two ATCA (Advanced

Telecommunications Computing Architecture) racks, which

implement a 12 tap, 128 point filter response weighted DFT.

Because the first stage is critically sampled the fine channels

that are formed at the boundary of the coarse channels are

corrupted by aliasing. These channels are processed by the

pipeline, but removed during post-processing, the fraction of

the band excised due to aliasing is approximately 12%. The

second stage is also critically sampled so there is a similar

degree of aliasing present in each 10 kHz wide channel. The

aliased signal correlates, and the phase of the correlation

does not change significantly across the narrow channel, any

further loss in sensitivity is negligible.

Development of the PFB boards was initially funded

through the University of Sydney and the firmware initially

developed by CSIRO. The boards were designed to form part

of the original MWA correlator which would share technol-

ogy with the Square Kilometre Array Molongolo Prototype

(SKAMP) (de Souza et al. 2007). Subsequent modifications

to the firmware were undertaken at MIT-Haystack and the

final boards, with firmware specific to the MWA, were first

deployed as part of the 32-tile MWA prototype.

3.2.2. Input format, skew and packet alignment

The PFB board input data format is the Xilinx serial protocol

RocketIO, although there have been some customisations at

a low level, made within the RocketIO CUSTOM scheme.

The data can be read by any multi-gigabit-transceiver (MGT)

that can use this protocol, which in practice is restricted to

the Xilinx FPGA (Vertex 5 and newer). The packet format as

presented to the PFB board for the second stage channeliser

is detailed in Prabu et al. (2014).

A single PFB board processes 12 fibres that have come

from 4 different receivers. The receivers are distributed over

the 3 km diameter site and there exists the possibility of there

being considerable difference in packet arrival time between

inputs that are connected to different receivers. The PFB

boards have an input buffer that is used to align all receiver

inputs on packet number 0 (which is the 1 s tick marker

see Appendix A). The buffer is of limited length (±8 time-

samples, corresponding to several hundred metres of fibre)

and if the relative delay between input lines from nearby

and distant receivers is greater than this buffer length, the

time delay between receivers will be undetermined. We have

consolidated the receivers into 4 groups with comparable

distances to the central processing building and constrained

these groups to have fibre runs of 1 380, 925, 515, and 270

metres. Each of the 4 groups is allocated to a single PFB (see

Figure 2). This has resulted in more fibre being deployed

than was strictly necessary, but has guaranteed that all inputs

to a PFB board will arrive within a packet-time. The limited

buffer space available can therefore be utilised to deal with

variable delays induced by environmental factors and will

guarantee that all PFB inputs will be aligned when presented

to the correlator.

This packet alignment aligns all inputs onto the same 1 s

mark but does not compensate for the outward clock signal

delay, which traverses the same cable length, and produces

a large cable delay between the receiver groups, commensu-

rate with the differing fibre lengths. The largest cable length
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Figure 4. The decomposition of the Voltage Capture System. The diagram shows the individual elements that comprise the VCS on a single host. There

are 16 VCS hosts operating independently (but synchronously) within the correlator system as a whole.

difference is 1 110 metres, being the difference in length be-

tween the shortest and longest fibres and is removed during

calibration.

3.2.3. PFB output format

As the MWA PFB boards were originally purposed as the

hardware F-stage of an FPGA based FX correlator, the out-

put of the PFB was never intended to be processed indepen-

dently. The output format is also the Xilinx serial protocol

RocketIO, and the PFB presents eight output data lanes on

two CX4 connectors. These connectors generally house four-

lane XAUI as used by Inifiniband and 10 GbEt, but these are

simply used as a physical layer. In actuality all of the pins on

the CX4 connectors are driven as transmitters, as opposed to

receive and transmit pairs, therefore only half of the avail-

able pins in the CX4 connectors were being used. We were

subsequently able to change the PFB firmware to force all

output data onto connector pins that are traditionally trans-

mit pins, and leave what would normally be considered the

receive pins unused. We then custom designed breakout ca-

bles that split the CX4 into 4 single lane SFP connectors (see

Appendix A).

3.3. The voltage capture system

In order to capture data generated by the PFBs with off-the-

shelf hardware, the custom built SFP connectors were then

plugged into an off-the-shelf Xilinx based RocketIO capture

cards that are housed within Linux servers. Each card can

capture 2 lanes from the PFB cards, therefore 4 cards were

required per PFB, and 16 cards required in total. A set of

16 machines are dedicated to this VCS, these are 16 CISCO

UCS C240 M3 servers. They each house two Intel Xeon E5-

2650 processors, 128 GB of RAM, and 2x1TB RAID5 disk

arrays. These machines also mount the Xilinx-based FPGA

board, supplied by Engineering Design Team Incorporated

(EDT) that is used to capture the output from the PFB. All of

the initial buffering and packet synchronisation is performed

within these machines.

3.3.1. Raw packet capture

The data capture and distribution is enabled by a succes-

sion of software packages outlined in Figure 4. First, the

EDT supplied capture card transfers a raw packet stream

from device memory to CPU host memory. The transfer is

mediated by the device driver and immediately copied to

a larger shared memory buffer. At this stage the data are

checked for integrity and aligned on packet boundaries to

ensure efficient routing without extensive re-examination of

the packet contents. Each of the 16 MWA receivers in the

field obtain time synchronisation via a distributed 1 pulse

per second (PPS) that is placed into the data stream in the

‘second tick’ field as described in Appendix A. We main-

tain synchronisation with this ‘tick’and ensure all subsequent

processing within the correlator labels the UTC second cor-

rectly. As each machine operates independently the success

or failure of this synchronisation method can only be de-

tected when packets from all the servers arrive for correla-

tion, at which point the system is automatically resynchro-

nised if an error is detected. No unsynchronised data are

correlated.

3.3.2. The demultiplex

Data distribution in a connected element interferometer is

governed by two considerations; all the inputs for the same

frequency channels for each time step must be presented to

the correlator; and the correlator must be able to keep up with

the data rate.

As there are four PFB boards (see Figure 2), each pro-

cessing one quarter of the array, each output packet contains

the antenna inputs to that PFB, for a subset of the channels

for a single time step. Individual data streams from each
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antenna in time order need to be cross-connected to satisfy

the requirement that a single time step for all antennas is

presented simultaneously for cross correlation. To achieve

this we utilise the fact that each PFB packet is uniquely iden-

tified by the contents of its header (see Appendix A). We

route each packet (actually each block of 2 000 packets) to

an endpoint based upon the contents of this header, each VCS

server sends 128 contiguous, 10 kHz channels to the same

physical endpoint, from all of the antennas in its allocation.

This results in the same 128 frequency channels, from all

antennas in the array, arriving at the same physical endpoint.

This is repeated for 24 different endpoints–each receiving a

different 128 channels. These endpoints are the next group

of servers, the XMAC machines.

This cross-connect is facilitated by a 10 GbE switch. In

actuality this permits the channels to be aggregated on any

number of XMAC servers. We use 24 as it suits the fre-

quency topology of the MWA. Regardless of topology some

level of distribution is required to reduce the load on an indi-

vidual XMAC server in a flexible manner, as compute limi-

tations govern how many frequency channels can be simul-

taneously processed in the XMAC stage. Clark et al. (2012)

demonstrates that the XMAC engine performance is limited

to processing approximately 4 096 channels per NVIDIA

Fermi GPU at the 32 antenna level and 1 024 channels at

the 128 antenna level. This is well within the MWA com-

putational limitations as we are required to process 3 072

channels, and have up to 48 GPU available. However, the

benefit of packet switching correlators in general is clear: if

performance were an issue we could simply add more GPU

onto the switch to reduce the load per GPU without adding

complexity. Conversely, as GPU performance improves, we

can reduce the number of servers and still perform the same

task.

Each of the VCS servers is required to maintain 48 con-

current TCP/IP connections, two to each endpoint, because

each VCS server captures two lanes from a PFB board . This

amounts to 48 open sockets that are being written to sequen-

tially. As there are many more connections than available

CPU cores individual threads, tasked to manage each con-

nection, the operation is subject to the Linux thread sched-

uler, which attempts to distribute CPU resources in a round

robin manner. Each thread on each transmit line utilises a

small ring buffer to allow continuous operation despite the

inevitable device contention on the single 10 GbE line. Any

such contention causes the threads without access to the in-

terface to block. This time spent in this wait condition al-

lows the scheduler to redistribute resources. We also employ

some context-based thread waiting on the receiving side of

the sockets to help the scheduler in its decision making and

to even the load across the data capture threads. We have

found that this scheme results in a thread scheduling pattern

that is remarkably fair and equitable in the allocation of CPU

resources and provided that a reasonably-sized ring buffer

is maintained for each data line, all the data are transmitted

without loss.

3.3.3. VCS data output

To summarise, we are switching packets as they are received

and they are routed based upon the contents of their header.

Therefore any VCS server can process any PFB lane output.

Each server holds a single PCI-based capture card, and cap-

tures two PFB data lanes. The data from each lane is grouped

in time contiguous blocks of 2 000 packets (50 ms worth of

samples for 16 adjacent 10 kHz frequency channels), from all

32 of the antennas connected to that PFB. The packet header

provides sufficient information to uniquely identify the PFB,

channel group, and time block it is, and the packet block is

routed on that basis. Further information is given in Appendix

B. A static routing table is used to ensure that each XMAC

server receives a contiguous block of frequency channels, the

precise number of which is flexible and determined by the

routing table, but it is not alterable at runtime.2

3.3.4. Monitoring, command, control and the watchdog

Monitor and control functionality within the correlator is

mediated by a watchdog process that runs independently on

each server. The watchdog launches each process, monitors

activity, and checks error conditions. It can restart the sys-

tem, if synchronisation is lost and mediates all start/stop/idle

functionality as dictated by the observing schedule. All in-

terprocess command and control, for example propagation

of HALT instructions to child processes and time synchroni-

sation information, is maintained in a small block of shared

memory that holds a set of key-value pairs in plain text that

can be interrogated or set by third-party tools to control the

data capture and check status.

3.3.5. Voltage recording

The VCS system also has the capability to record the com-

plete output of the PFB to local disk. The properties and

capabilities of the VCS system will be detailed in a compan-

ion paper (Tremblay et al. 2015).

3.4. The cross-multiply and accumulate (XMAC)

The GPU application for performing the XMAC is running

on 24 NVIDIA M2070 Fermi GPU housed in 24 IBM iDat-

aplex servers. These machines are housed in racks adjacent

to the VCS servers and connected via a 10 GbE network.

The package diagram detailing this aspect of the correlator is

presented in Figure 5 and the packet interface and data for-

mat is described in Appendix C. The cross-multiply servers

receive data from the 32 open sockets and internally align

and unpack the data into a form suitable for the GPU. The

GPU kernel is launched to process the data allocation and

internally integrates over a user defined length of time. There

are other operations possible, such as incoherent beam form-

ing and the raw dump of data products (or input voltages).

2In order to achieve optimal loop unrolling and compile-time evaluation of
conditional statements, xGPU requires that the number of channels, number
of stations, and minimum integration time are compile-time parameters.

PASA, 32, e006 (2015)
doi:10.1017/pasa.2015.5

https://doi.org/10.1017/pasa.2015.5 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2015.5
https://doi.org/10.1017/pasa.2015.5


8 Ord et al.

Figure 5. The decomposition of the cross-multiply and accumulate operation running on each of 24, GPU enabled IBM iDataplex servers.

These modes will be expanded upon during the development

of other processing pipelines and will be detailed in compan-

ion papers when the modes are available to the community.

3.4.1. Input data reception, and management

A hierarchical ring buffer arrangement is employed to man-

age the data flow. Each TCP connection is managed by a

thread that receives a 2 000 packet block and places it in a

shared memory buffer. Exactly where in a shared memory

block each of the 2 000 packets is placed is a function of

the time/frequency/antenna block that it represents. A small

corner-turn, or transpose, is required as the PFB mixes the

order of time and frequency. The final step in this process

is the promotion of the sample from 4 to 8 bits, which is

required to enable a machine instruction that performs rapid

promotion from 8 to 32 bits within the GPU. This promotion

is not performed if the data are just being output to local disk

after reordering.

Each of the 32 threads is filling a shared memory block that

represents 1 s of GPU input data, and a management thread

is periodically checking this block to determine whether it

is full. Safeguards are in place that prevent a thread getting

ahead of its colleagues or overwriting a block. The threads

wait on a condition variable when they have finished their

allocation, so if a data line is not getting sufficient CPU

resources it will soon be the only thread not waiting and

is guaranteed to complete. This mechanism helps the Linux

thread scheduler to divide the resources equitably. The use of

TCP allows the receiver to actually prioritise which threads

on the send side of the connection are blocked to facilitate

an even distribution of CPU resources.

Once the management thread judges the GPU input block

to be full, it releases it, launches the GPU kernel and frees

all the waiting threads to fill the next buffer while the GPU

is running.

3.4.2. xGPU - correlation on a GPU

It is possible to address the resources of a GPU in a number of

ways, utilising different application programming interfaces

(API), such as OpenCL, CUDA, and openGL. The MWA

correlator uses the xGPU library as is described in detail in

Clark et al. (2012). The xGPU library is a CUDA application

which is specific to GPUs built by the NVIDIA corporation.

There are many references in the literature to the CUDA

programming model and examples of its use (Sanders &

Kandrot 2010).

The performance improvement seen when porting an ap-

plication to a GPU is in general due to the large aggre-

gate FLOPS and memory bandwidth rates, but to realise this

performance requires effective use of the large number of

concurrent threads of execution that can be supported by

the architecture. This massively parallel architecture is per-

mitted by the large number of processing cores on modern

GPUs. The TESLA M2070 are examples of NVIDIA Fermi

architecture and have 448 cores, grouped into 14 streaming

multiprocessors or SM, each with 32 cores. The allocation of

resources follows the following model: threads are grouped

into a thread block and a thread block is assigned to an SM;

there can be more thread blocks than SM, but only one block

will be executing at a time on any SM; the threads within each

block are then divided into groups of 32, (one for each core

of the associated SM), and this subdivision called a warp;
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The correlation matrix is

broken into tiles, each

tile consists of many baselines

Each tile is mapped to a

block of threads

Each thread is allocated a 

a sub-tile of baselines

Tx

Ty

Rx

Ry

Figure 6. The arithmetic intensity of the correlation operation on the GPU

is increased by tiling the correlation matrix. Threads are assigned groups of

baselines instead of a single baseline.

execution is serialised within a warp with the same instruc-

tion being performed by all 32 threads, but on different data

elements in the single instruction multiple data paradigm.

GPGPU application performance is often limited by

memory access bandwidth. A good predictor of algorithm

performance is therefore arithmetic intensity, or the number

of floating point operations per byte transferred. A complex

multiply and add for two dual polarisation antennas at 32

bit precision requires 32 bytes of input, 32 FLOPS (16

multiply-adds), and 64 bytes of output. The arithmetic

intensity of this is 32/96 = 0.33. Compare this to the

Fermi C2070 architecture which has a peak single-precision

performance of 1030 GFLOPS and memory bandwidth

of 144 GB/s; the ratio of which (7.2) tells us that the

performance of the algorithm will be completely dominated

by memory traffic. The high performance kernel developed

by Clark et al. (2011) increases the arithmetic intensity in

two ways. Firstly, the output memory traffic can be reduced

by integrating the products for a time, I, at the register

level. Secondly, instead of considering a single baseline,

groups of (m × n) baselines denoted tiles (see Figure 6),

are constructed cooperatively by a block of threads. In

order to fill an m × n region of the final correlation matrix,

only two vectors of antennas need to be transferred from

host memory. A thread block loads two vectors of antenna

samples (of length n and m) and forms nm baselines. These

two steps then alter the arithmetic intensity calculation to

Arithmetic Intensity =
32mnI

16(m + n)I + 64mn
, (4)

which implies that the arithmetic intensity can be made ar-

bitrarily large by increasing the tile size until the number of

available registers is exhausted. In practice, a balance must

be struck between the available resources and the arithmetic

intensity and this balance is achieved in the xGPU imple-

mentation by multi-level tiling and we direct the reader to

Clark et al. (2012) for a complete discussion.

The MWA correlator is not a delay tracking correlator.

Therefore, we do not have to adjust the correlator inputs

for whole, or partial sample delays. The correlator always

provides correlation output products phased to zenith. The

system parameters (integration time, baseline length, channel

width) have all been chosen with this in mind and the long

operating wavelengths result in the system showing only

minimal (1%) decorrelation even far from zenith for typical

baseline lengths, integration times and channel widths (see

Figure 7). Typical observing resolutions have been between

0.5 and 2 s in time and 40 kHz and 10 kHz in frequency.

Figure 7. The combined reduction in coherence due to time and bandwidth smearing 45◦ from

zenith on a 1km baseline, at an observing frequency of 200 MHz as a function of channel width and

integration time, demonstrating that even this far from zenith the decorrelation is generally less the

1%. The longest MWA baselines are 3 km, and these baselines show closer to 5% decorrelation for

the same observing parameters. Decorrelation factors above 1% are not plotted for clarity.
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3.4.3. Output data format

The correlation products are accumulated on the GPU device

and then copied asynchronously back to host memory. The

length of accumulation is chosen by the operator. Each accu-

mulation block is topped with a FITS header (Wells, Greisen,

& Harten 1981) and transferred to an archiving system where

the products are concatenated into larger FITS files with mul-

tiple extensions, wherein each integration is a FITS extension

(see Appendix D). The archiving system is an instantiation

of the Next Generation Archiving System (NGAS) (Wicenec

& Knudstrup 2007; Wu et al. 2013) and was originally devel-

oped to store data from the European Southern Observatory

(ESO) telescopes. The heart of the system is a database that

links the output products with the metadata describing the

observation and that manages the safe transportation and

archiving of data. In the MWA operating paradigm all vis-

ibilities are stored, which at the native resolution is 33 024

visibilities and 3 072 channels or approximately 800 MBytes

per time resolution unit (more than 6 Gb s−1 for 1 s integra-

tions). Due to the short baselines and long wavelengths used

by the array it is reasonable to integrate by a factor of two

in each dimension (of time and frequency, see Figure 7 for

the parameter space), but even this reduced rate amounts to

17 TBytes day−1 at 100% duty cycle. The large data volume

precludes handling by humans and the archiving scheme is

entirely automated. NGAS provides tools to access the data

remotely and provides the link between the data products to

the observatory SQL database. As discussed in Tingay et al.

(2013a), the data are taken at the Murchison Radio Observa-

tory in remote Western Australia (WA) and transferred to the

Pawsey HPC Centre for SKA Science in Perth, where 15 PB

of storage is allocated to the MWA over its five-year lifetime.

Subsequently the archive database is mirrored by the NGAS

system to other locations around the world: MIT in the USA;

The Victoria University of Wellington, NZ; and the Raman

Research Institute in India. These remote users are then able

to access their data locally.

4. INSTRUMENT VERIFICATION AND

COMMISSIONING

After initial instrument commissioning with simple test vec-

tors and noise inputs the telescope entered a commissioning

phase in September 2012. The commissioning team initially

consisted of 19 scientists from 10 institutions across 3 coun-

tries and was led by Curtin University. This commissioning

phase was successfully concluded in July 2013 giving way to

“Early Operations” and the MWA is now fully operational.

4.1. Verification

The development of the MWA correlator proceeded sepa-

rately to the rest of the MWA systems and the correlator

GPU based elements were verified against other software

correlator tools. The MWA correlator is comparatively sim-

Figure 8. A correlation matrix showing the baseline length distribution.

The antennas are grouped into receivers, each servicing 16 antennas and the

antenna layout displays a pronounced centrally dense core. The layout is

detailed in Tingay et al. (2013a). The colours indicate baseline length and

the core regions are also indicated by arrows within the figure.

ple, it does not track delays, performs the correlation at 32-

bit floating point precision, and does not have to perform

any Fourier transformations. The only verification that was

required was to ensure that the XMAC was performed to suf-

ficient precision and matched results generated by a simple

CPU implementation.

Subsequent to ensuring that the actual XMAC operation

was being performed correctly, the subsequent testing and

integration was concerned with ensuring that the signal and

path was maintained. This was a relatively complex oper-

ation due to the requirement that the correlator interface

with legacy hardware systems. The details of these inter-

faces are presented in the Appendices. In Figure 8, a corre-

lation matrix is shown, the colours representing the length

of the baseline associated with that antenna pair. The fol-

lowing Figure 9 shows the response of the baselines when

the telescope is pointed at the radio galaxy Centaurus A,

demonstrating the response of the different baseline lengths

of the interferometer to structure in the source. Images of

this object obtained with the MWA can be found in McKin-

ley et al. 2013. The arrows on Figure 8 indicate those base-

lines associated with the densely-packed core (Tingay et al.

2013a).

4.2. Verification experiments

The MWA Array and correlator is also the verification plat-

form for the Aperture Array Verification System (AAVS)

within the SKA reconstruction activities pursued by the Low

Frequency Aperture Array (LFAA) consortium(bij de Vaate
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Figure 9. Visibility amplitude vs baseline length for a 2 min snapshot pointing at the giant radio galaxy Centaurus

A. Centre frequency 120 MHz. Only 1 polarisation is shown for clarity. The source has structure on a wide range

of scales and does not dominate the visibilities as a point source.

et al. 2011). This group have recently performed a success-

ful verification experiment, using both the MWA and the

AAVS telescopes. Using an interferometric observation of

the radio galaxy Hydra A taken with the MWA system, they

have obtained a measurement of antenna sensitivity (A/T)

and compared this with a full-wave electromagnetic simula-

tion (FEKO3). The measurements and simulation show good

agreement at all frequencies within the MWA observing band

and are presented in detail in Colegate et al. (2014).

4.3. Commissioning science

In order to verify the instrumental performance of the ar-

ray, correlator and archive as a whole, the MWA Science

Commissioning Team have performed a 4 300 deg2 survey,

and have published a catalogue of flux densities and spectral

indices from 14 121 compact sources. The survey covered

approximately 21 h < Right Ascension < 8 h, −55◦ < Dec-

lination < −10◦ over three frequency bands centred on 119,

150, and 180 MHz. This survey will be detailed in Hurley-

Walker et al. (2014). Data taken during and shortly after the

commissioning phase of the instrument has also been used

to demonstrate the tracking of space debris with the MWA

(Tingay et al. 2013b), novel imaging and deconvolution

schemes (Offringa et al. 2014), and to present multi-

3www.feko.info

frequency observations of the Fornax radio galaxy (McKin-

ley et al. 2013) and the galaxy cluster A3667 (Hindson et al.

2014).

5. THE FUTURE OF THE CORRELATOR

5.1. Upgrade path

We do not fully utilise the GPU in the MWA correlator and

we estimate that the X-Stage of the correlator could currently

support a factor of 2 increase in array size (to 256 dual polar-

isation elements). As discussed in Tingay et al. (2013a) the

operational life-span of the MWA is intended to be approxi-

mately five years. The GPUs (NVIDIA M2070s) the MWA

correlator are from the Fermi family of NVIDIA GPU and are

already almost obsolete. One huge advantage of off-the-shelf

signal processing solutions is that we can easily benefit from

improvements in technology. We could swap out the GPU

in the current MWA cluster, replace them with cards from

the Kepler series (K20X) with no code alteration, and would

benefit from a factor of 2.5 increase in performance (and a

threefold improvement in power efficiency) as not only are

the number of FLOPS provided by the GPUs increasing, but

also their efficiency (in FLOPS/Watt) is improving rapidly.

This would permit the MWA to be scaled to 512 elements.

However, not all of our problem is with the correlation step

and increasing the array to 512 elements would probably
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require an upgrade to the networking capability of the corre-

lator.

5.2. SKA activities

The MRO is the proposed site of the low frequency por-

tion of the SKA. Curtin University is a recipient of grants

from the Australian government to support the design and

pre-construction effort associated with the construction and

verification of the LFAA and software correlation systems for

the SKA project. The MWA correlator will therefore be used

as a verification platform within the prototype for the LFAA,

known as the AAVS. One of the benefits of a software based

signal processing system is flexibility. We have been able to

easily incorporate AAVS antennas into the MWA processing

chain to facilitate these verification activities, which have

been of benefit to both LFAA and the MWA (Colegate et al.

2014). Furthermore, we will be developing and deploying

SKA software correlator technologies throughout the pre-

construction phase of the SKA using the MWA correlator for

both testing and verification.

6. SUMMARY

This paper outlines the structure, interfaces, operations and

data formats of the MWA Hybrid FPGA/GPU correlator. This

system combines off-the-shelf computer hardware with be-

spoke digital electronics to provide a flexible and extensible

correlator solution for a next generation radio telescope. We

have outlined the various stages in the correlator signal path

and detailed the form of all internal and external interfaces.
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APPENDIX

A. MWA F-STAGE (PFB) TO VOLTAGE

CAPTURE SYSTEM (VCS)

The contents of this Appendix are extended from the original MWA

ICD for the PFB written by R. Cappallo. We have incorporated

the changes made to the physical mappings, electrical connections

and header contents to enable capture of the PFB output by general

purpose computers.

A.1. Physical

• PFB presents data on two CX4 connectors. ALL pins are wired

with transmit drivers, there are no receivers on any pins.
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A.2. Interface details

• Two custom made CX4 to SFP breakout cables. This cable

breaks a CX4 connector into 4 1X transmit and receive pairs

on individual SFP terminated cables.

• Data flows only in a single direction (simplex) from PFB to

CB. Each (normally Tx/Rx) pair of differential pairs is wired

as two one-way data paths (Tx /Tx). We have distributed these

one-way data paths to occupy every other CX4 pin. Therefore,

all cables are wired correctly as Tx/Rx but the Rx channels

are not utilised.

• The serial protocol to be used a custom protocol as de-

scribed below. The interface to the Xilinx Rocket I/O MGTs

is GT11_CUSTOM, which is a lean protocol. The word width

will be 16 bits.

• The mean data rate per 1X cable will be 2.01216 Gb s−1, car-

ried on a high speed serial channel of burst rate of 2.08 Gb s−1

formatted, or 2.6 Gb s−1 including the 10B 8B−1 encoding

overhead.

A.3. Data format

• Each data stream carries all of the antenna information for 384

fine frequency channels. In the entire 32T correlation system

there are 8 such data streams going from the PFB to the CB,

each carrying the channels making up a 3.84 MHz segment of

the processed spectrum.

• Each sample in the stream is an 8-bit (4R + 4I) complex num-

ber, 2 s complement with 8 denoting invalid data, representing

the voltage in a 10 kHz fine frequency channel.

• Data are packetised and put in a strictly defined sequence, in

f1t[f2a] (frequency-time-frequency-antenna) order. The most

rapidly varying index, a, is the antenna number (0, 16, 32,

48, 1, 17, 33, 49, 2, 18, 15, 31, 47, 63), followed by f2,

the fine frequency channel (n..n + 3), then time (0..499), and

most slowly the fine frequency channel group index (0, 4, 8,

12, 128, 132, 136, 140, 2 944, 2 948, 2 952, 2 956 for fibre 0;

increment by 16 n for fibre n). The brackets indicate the portion

of the stream that is contained within a single packet. The

antenna ordering is nonintuitive as for historical reasons each

PFB combines its inputs into an order originally considered

conducive to its interface to a full mesh backplane and a

hardware FPGA based correlator.

• A single packet consists of all antenna data for a group of

four fine channels for a single time point. Thus, there are 500

sequential time packets for each of the 96 frequency channel

groups. Over the interval of 50 ms there are 48 000 (= 96chan-

nel groups × 500 time samples) packets sent per data stream,

so there are 960 000 packets s−1.

• Using a packet size of 264 bytes allows a 16-bit packet header

(0 × 0800), two 16-bit words carrying the second of time tick

and packet counter, 256 bytes of antenna data, finally followed

by a 16-bit checksum (see Table 1).

• The header word is a 16-bit field with value 0 × 0800, used

to denote the first word in a packet. Note that it cannot be

confused with the data words, since the value 8 is not a legal

voltage sample code.

• The second tick in word two is in bit 0, and has the value 0 at

all times, except for the first packet of a new second, when it

is 1.

• The leading bits of word two, and all of word three contains

the following counter values that can be decoded to determine

the precise input and channel that a given packet belongs to.

– sec_tick (1 bit): Is this the first packet for this data lane, for

this one second of data? 0 = No, 1 = Yes. Only found on the

very first packet of that second. If set, then the mgt_bank,

mgt_channel, mgt_group and mgt_frame will always be 0.

The preceding 3 bits are unused.

– pfb_id (2 bits): Which physical PFB board generated this

stream (0–3). This defines the set of receivers and tiles the

data refers to. A lane’s pfb_id will remain constant unless

physically shifted to a different PFB via a cable swap.

– mgt_id (3 bits): Which 1/8 of coarse channels this Rocke-

tIO lane contains. Should be masked with 0× 7, not 0× f.

Contains [0–7] inclusive. A lane’s mgt_id will remain con-

stant unless physically shifted to a different port on the PFB

via a cable swap.

Within an individual data lane, the data packets cycle in the

following order, listed from slowest to fastest.

– mgt_bank (5 bits): Which one of the twenty 50 ms time

banks in the current second is this one? [0–19] [0–0 × 13].

– mgt_channel (5 bits): Which coarse channel [0–23] [0–

0 × 17] does the packet relate to?

– mgt_group (2 bits): Which 40 KHz wide packet of the con-

tiguous 160 KHz does this packet contain the 4 × 10 KHz

samples for? [0–3]

– mgt_frame (5 bits): Which time stamp within a 50 ms block

this packet is. [0–499] or [0–0 × 1F3]. Cycles fastest. Loops

back to 0 after 0 × 1F3. There are 20 complete cycles in a

second.

• The last word of the packet is a 16-bit checksum, formed by

taking the bitwise XOR of all 128 (16 bit) words of antenna

samples in the packet.

B. VCS TO XMAC SERVER

B.1. Physical

• Data presented on either fibre optic or direct attach copper

cables terminated with SFP pluggable transceivers. Note that

all optical transceivers used in the CISCO UCS servers must

be supplied by CISCO, the firmware within the 10 GbE cards

requires it.

• A single 10 GbE interface is sufficient to handle the data rate.

B.2. Interface details

• Ethernet IEEE 802.3 frames, with TCP/IPv4.

• The packet format is precisely as described in the PFB to VCS

interface.

• The communication is from the VCS to the XMAC is unidi-

rectional and mediated by a switch.

• Each XMAC requires a data packet from all VCS machines.

This requires 32 open connections mediated by TCP.

• Data from all sources is stripped of header information and

assembled into a common 1 s buffer which requires 20 blocks

of 2 000 packets from each of the 32 connections to be assem-

bled.
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• As the packets for four PFB are being combined, the antenna

ordering is also being concatenated. The order within each

packet is maintained with the 64 inputs concatenated into a

final block of 256 inputs.

C. XMAC TO GPU INTERFACE

C.1. Physical

The interface is internal to the CPU host, being a section of memory

shared between the GPU device driver and the host.

C.2. Interface details

C.2.1. GPU input

The data ordering in the assembly buffer for input buffers, running

from slowest to fastest index is time(t), channel(f), station(s), po-

larisation(p), complexity(i). The data is an 8-bit integer, promoted

from 4-bit twos-complement sample via a lookup table. The cor-

relator is a dual polarisation correlator as implemented, but the

input station/polarisation ordering is not in a convenient order as

we have concatenated 4 PFB outputs during the assembly of this

buffer. Two options presented themselves. One that we re-order

the input stations and polarisation to undo the partial corner turn.

The disadvantage begin that each input packet would need to be

broken open and the stations reordered–which would have been

extremely compute intensive. Or to correlate without changing the

order and remapping the output products to the desired order. This

is preferable as although there are now N2 products instead of N

stations, the products are integrated in time and can be reordered in

post-processing.

C.2.2. GPU output

The data are formatted as 32-bit complex floating point numbers.

An individual visibility set has the order (from slowest index to

fastest index): channel (f), station (s1), station (s2), polarisation (p1),

polarisation (p2), complexity (i). The full cross-correlation matrix

is Hermitian so only the lower, or upper, triangular elements need

to be calculated, along with the on-diagonal elements which are

the auto-correlation products. Therefore, only a packed triangular

matrix is actually transferred from the GPU to the host. The GPU

processing kernel is agnostic to the ordering of the antenna inputs

and the PFB output order is maintained. Therefore, the correlation

products cannot be simply processed without a remapping.

The remapping is performed by a utility that has been supplied

by the builders to the data analysis teams that simply reorders the

data products into one that would be expected if no PFB reordering

had taken place. It is important to keep track of which products

have been generated but the XMAC as conjugates of the desired

products, and which need conjugating. It should further be noted

that this correction is performed to the order as presented to the

PFB and may not be the order as expected by the ordering of the

receiver inputs. Care should be taken in mapping antennas on the

ground as the order of the receiver processing within a PFB is not

only function of the physical wiring but the firmware mapping. We

have carefully determined this mapping and the antenna mapping

tables are held within the same database as the observing metadata.

For historical reasons, the files are transferred into an interme-

diate file format that was originally used during instrument com-

missioning before subsequent transformation to UVFITS files (or

measurement sets) by the research teams.

D. XMAC SERVER TO NGAS (NEXT

GENERATION ARCHIVING SYSTEM)

D.1. Physical

The interface is internal to the CPU host, being a section of memory

shared between the XMAC application and an NGAS application

running on the same host.

D.2. Interface details

The data are handed over as a packed triangular matrix with the

same ordering as was produced by the GPU. It has a FITS header

added and is padded to the correct size as expected by a FITS

extension. The FITS header includes a time tag.

Once the buffer is presented to the NGAS system, it is buffered

locally and presented to a central archive server, subsequently it is

added to a database and mirrored to multiple sites across the world.
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