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Abstract

Background: Inflammatory bowel disease (comprising ulcerative colitis and Crohn’s disease) is a multifactorial

disease that is extensively associated with stool microbiome changes (dysbiosis). Appendicitis and appendectomy

limits subsequent colitis, clinically, and in animal models. We wanted to examine how the appendiceal and stool

microbiome fared in our spontaneous colitic Winnie (Muc2−/−) mice model.

Methods: Two C57BL/6 and 10 Winnie mice at ages 12 and 15 weeks were euthanized for stool and caecal patch

samples. DNA was extracted using the QIAamp DNA Stool Mini Kit then the V1-V3 hypervariable region of the 16S

rRNA gene was sequenced using the Roche/454 GS FLX + pyrosequencing instrument. A Galaxy metagenomic

pipeline was used to define phyla and families at sequence similarity threshold of ≥ 80%.

Results: Bacteriodetes was decreased in 15-week Winnie mice appendices compared to corresponding stool samples

(P < 0.01). Proteobacteria was increased in appendices of Winnie mice compared to corresponding stool samples

(P < 0.05). The Bacteroidetes family Rikenellaceae could be identified only in 15-week-old Winnie mice appendices. A

higher quantity of Acetobacteraceae (Proteobacteria phylum) was present in 15-week Winnie mice when compared

to 12-week Winnie mice (P < 0.01). Helicobacteraceae (Proteobacteria phylum), which is prominent in all Winnie mice,

is absent in control mice.

Conclusions: The appendiceal dysbiosis observed in our Winnie mice is commensurate with, and adds to extant

literature data. The presence of Helicobacteraceae (Proteobacteria) only in colitic Winnie mice (but not control mice)

is consistent with reports of increased Helicobacter in IBD patients. Bacteroides (Bacteroidetes) decreases may be a

reflection of reduced anti-inflammatory commensal species such as B. fragilis. Further research is warranted to

expand and delineate the relationship between IBD and the appendix microbiome.
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Background

Inflammatory bowel disease (IBD) comprises ulcerative

colitis (UC) and Crohn’s disease (CD). It has a relapsing

and remitting clinical course, and is characterized by

chronic intestinal inflammation with abdominal pain

and intestinal dysfunction. UC and CD differ in extent,

localization, and inflammatory mediator profiles [1]. The

etiology of IBD is unknown, but is thought to result from

complex interactions between host and environmental

components like diet, standard of living, and antibiotic use

[2]. IBD is on the rise in developed countries, the latest

incidence in Australia being 29.6 per 100,000 [3]. IBD

poses a significant economic and public health burden [4].

Gastrointestinal flora (intestinal microbiome) is crucial

for human health, mediating important functions in me-

tabolism and immunity [5]. There is a glut of evidence

that link the intestinal microbiome to the pathogenesis of

IBD [6]. The human microbiome is most concentrated in

the colon (1012 cells per gram), which is the region most

affected in IBD [7]. Manifold studies link IBD with

antigen-sensing and intestinal innate immunity genes such
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as NOD2 and ATG16L1 [8]. Importantly, compositional

changes in the intestinal micriobiota (dysbiosis) are signifi-

cant features of bowel diseases [9]. The correlation between

dysbiosis and IBD is not completely understood, and

human studies involve confounding variables on bacterial

composition, such as antibiotic use [10]. In contrast,

animal models of IBD enable the study of the gut

microbiome while reducing environmental influence

[11]. The Winnie mouse strain has missense mutations in

the mucin Muc2 gene that alters the intestinal barrier, and

results in “spontaneous” colitis, characterized by intestinal

inflammation and activation of the IL-23/Th17 pathway

[12]. Winnie mice are more vulnerable to intestinal anti-

gens due to defects in Paneth and goblet cells [13], and

present with chronologically progressive IBD symptoms

such as bloody stools, diarrhoea, and weight loss [12].

All Winnie mice (100%) develop mild spontaneous

distal intestinal inflammation by the time they are

6 weeks old [14]. Colitic signs and symptoms become

progressively worse chronologically. Colitis is therefore

significantly worse in 15-week Winnie mice, when com-

pared to 12-week Winnie mice. Corresponding com-

mensurate histopathological findings have already been

published [14].

A succinct summary and critical appraisal of more

than a dozen studies by Koutroubakis et al. [15], show

that appendicitis and appendectomy (AA) prevents or

significantly ameliorates ulcerative colitis. In the mouse, the

caecal lymphoid patch (Figure 1) is the rough equiva-

lent of the human appendix. In Figure 1, this is the pale

milky-white area encircled with a ring. AA in the

most proximal colon substantially curbs T helper 17

cell -recruitment, −differentiation, −activation, and –effector

(interleukin) expression in the most distal colon; thereby

contributing significantly to suppressing Th17 pathway-

mediated immunopathology in TNBS-colitis [16]. AA curbs

autophagy [8], potentially contributing to suppression of

autophagy-mediated immunopathology in colitis.

The appendix cannot be considered a “vestigial” organ

“anymore”. Mouse models of spontaneous colitis have

shown a significant role for the appendix in the adaptive

immune response [17]. Appendectomy in these models

also markedly reduced the risk for colitis development

[17]. Several hypotheses exist explain this relationship,

and, as more evidence endorses its important role in

mucosal immunity [18]. The 2 most plausible explanations

are as follows. The appendix may initiate an aberrant im-

mune response against the gut microbiome, predisposing

to IBD [19]. Alternatively, appendicitis and appendectomy

may induce microbiota changes and/ or major immuno-

logical changes in the distal colon which protect against

colitis development [8,16].

Most intestinal flora is anaerobic, and difficult to identify

using culture-dependent methods [20]. However, next

generation sequencing methods have enabled the high-

throughput phylogenetic study of microbial populations

from multiple samples in parallel [21]. The bacterial

genome is assembled by amplification of fragments of

the conserved 16S rRNA gene [22]. Hyper-variable

regions within 16S rRNA are utilised to characterize

different taxonomic levels [23]. In this study, we sought

to investigate the microbiome signatures of Winnie

mice in different stages of colitis development (at ages

12 and 15 weeks) and compare those against the con-

trol strain (C57BL/6). Microbiome alterations are ex-

pected between mice strains, as well as before and after

inflammation. The rationale of our study was not only

to determine what changes exist between a “normal”

mouse strain, and a “spontaneously colitic” (Winnie)

strain; but also to determine what bacteria were present

at each stage of inflammation progression. These ex-

periments will shed more light on the pathogenetic nu-

ances of IBD. We compared stool and appendix phyla,

as well as more intricate differences at the family level.

Herewith, we posit the differences between the appen-

dix and colon (stool), in normal controls and colitic

Winnie mice.

Figure 1 The mouse caecal lymphoid patch (appendix). Normal

murine caecal lymphoid patch (≈human appendix) – This is the pale

milky-white area encircled with a ring. [License number to reproduce

image from John Wiley and Sons – 3415650102997].
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Results and discussion

Results

Microbiome signature in winnie and C57BL/6

The Bacteriodetes phylum is the most abundant phylum

in appendix and stool samples from both C57BL/6 and

Winnie mice at both time-points (Figure 2). Bacteriodetes

was significantly decreased (P < 0.01) in 15-week Winnie

appendix samples compared to 15-week Winnie stool

samples (Figure 3B). The Proteobacteria phylum was

significantly more (P < 0.05) in appendix samples belong-

ing to both time-points in Winnie mice (12 weeks and

15 weeks), when each was compared to stool samples

(Figure 3D). No significant differences were observed be-

tween the microbiome signatures of Winnie stool samples.

No significant differences were observed between the

microbiome signatures of Winnie appendix samples.

Family-level bacteriodetes signatures in appendices

Family analyses of appendiceal Bacteriodetes phylum

reveal no significant differences in family breakdown.

Bacteroidaceae is the dominant (>90%) family in the ap-

pendices of both mouse strains, at both time-points

(Figure 4A). There are no statistically significant differences

in the constituents and proportion of Bacteroidetes families

in appendices (Figure 4A). However, the Bacteroidetes fam-

ily Rikenellaceae could be identified only in 15-week-old

Winniemice appendices (Figure 4B).

Family-level proteobacteria signatures in appendices

Family analyses of appendiceal Proteobacteria phylum

reveal significant Acetobacteraceae increases (P < 0.05) in

15-week Winnie mice when compared to 12-week Winnie

mice (Figure 5A). Helicobacteraceae, which is prominent

Figure 2 Overview of most common bacterial colonies in mouse appendices and stool. The Bacteriodetes phylum is the most abundant

phylum in appendix and stool samples, from both C57BL/6 and Winnie mice. The Proteobacteria phylum is second most abundant in stool

samples from both C57BL/6 and Winnie mice. The number of samples varied from 2–5 for each group.
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in Winnie mice at both time-points, are not represented

in C57BL/6 (Figure 5B). The Proteobacteria families Rhizo-

biaceae, Pasteurellaceae, Xanthomonadaceae,Vibrionaceae,

Sphingomonadaceae, Bartonellaceae, Pseudomonadaceae,

and Campylobacteraceae which were present in traces in

12-week Winnie mice appendices, disappear at the 15-week

time-point (Figure 5B).

Discussion

The human vermiform appendix is commonly, but

wrongly perceived to be a vestigial organ, despite its

abundant lymphoid tissue, and despite the fact that

appendicitis is the most common abdominal surgery

requiring hospitalization. Anatomically, owing to its

proximity to the caecal segment of the large intestine, it is

perpetually exposed to and gastrointestinal microbiota.

As the murine caecal lymphoid patch (Figure 1) is the

equivalent of human appendix, this study investigated

the microbial content differences of the caecal patch to

the rest of colon (via stool contents).

Bacteriodetes was decreased in 15-week Winnie mice

appendices compared to corresponding stool samples

(Figure 3B). Proteobacteria increased in appendices of

Winnie mice (12 weeks and 15 weeks), when each was

compared to corresponding stool samples (Figure 3D).

The Bacteroidetes family Rikenellaceae could be identified

only in 15-week-old Winnie mice appendices (Figure 4B,

Figure 6). Significantly more Acetobacteraceae (Proteobac-

teria phylum) was present in 15-week Winnie mice when

compared to 12-week Winnie mice (Figure 5A, Figure 6).

Helicobacteraceae (Proteobacteria phylum), prominent

in all Winnie mice, is absent in C57BL/6 control mice

(Figure 5B, Figure 6).

Intestinal biopsies from IBD patients display marked

aberrations in the microbiome signature [24], inclusive

of its Proteobacteria and Bacteriodetes constituents [25].

Surgical samples from IBD patients show reduced

Bacteroidetes load compared to healthy patients [26].

Colonic biopsies show significantly more Proteobac-

teria in IBD patients [27]. Bacteroidetes species are an

Figure 3 Bacterial phyla signature of mouse appendix and stool specimens. Bacterial phyla estimates in appendix and stool samples from

Winnie and C57BL/6 mice aged 12 or 15 weeks were assessed: (A) Relative abundance estimate of phylum Actinobacteria. (B) Relative abundance

estimate of phylum Bacteroidetes. (C) Relative abundance estimate of phylum Firmicutes. (D) Relative abundance estimate of phylum Proteobacteria.

Bacteriodetes was significantly lesser in 15-week Winnie appendices compared to 15-week Winnie stool samples (P < 0.01). Proteobacteria was significantly

increased in Winnie mice appendices (12 weeks) in contrast to stool samples (P < 0.05). Proteobacteria was increased in Winnie group appendices

(15 weeks) compared to stool samples (P < 0.05). No microbiome signature differences were observed between Winnie stool samples, and between

Winnie appendix samples. Error bars represent standard error of the mean. The number of samples varied from 2–5 for each group.
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important source of short chain fatty acids to the intes-

tinal epithelia [28]. In addition, Bacteroidetes regulate the

generation of colonic regulatory T cells, which maintain

immunological tolerance against the gut microbiome [29].

Specifically, capsular polysaccharide A from Bacteroides

fragilis stimulates colonic regulatory T cells enhances the

release of the anti-inflammatory cytokine IL-10 [30].

Proteobacteria levels are higher in IBD patients [31]. Mul-

tiple classes of Proteobacteria are associated with IBD in-

cluding Deltaproteobacteria, which include sulphur-reducing

Figure 5 Constituents and proportion of Proteobacteria families in appendices. (A) Relative proportions of different families in Proteobacteria

appendix samples from C57BL/6; and 12-week-, and 15-week Winnie mice. Acetobacteraceae are increased in 15-week Winnie mice when compared to

12-week Winnie mice (P < 0.05). (B) Individual Proteobacteria family preponderances appendix samples from C57BL/6; and 12-week-, and 15-week Winnie

mice. Helicobacteraceae was not present in C57BL/6 controls. Rhizobiaceae, Pasteurellaceae, Xanthomonadaceae, Vibrionaceae, Sphingomonadaceae,

Bartonellaceae, Pseudomonadaceae, and Campylobacteraceae which had trace presence in 12-week Winnie mice appendices, flatten out at the 15-week

time-point. C57BL6: 2 samples; 12-week Winnie: 4 samples; 15-week Winnie: 5 samples.

Figure 4 Constituents and proportion of Bacteroidetes families in appendices. (A) Relative proportions of different families in Bacteroidetes

appendix samples from C57BL/6; and 12-week-, and 15-week Winnie mice. There are no statistically significant differences. (B) Individual Bacteroidetes

family preponderances appendix samples from C57BL/6; and 12-week-, and 15-week Winnie mice. Rikenellaceae are found only in 15-week-old Winnie

mice. C57BL6: 2 samples; 12-week Winnie: 4 samples; 15-week Winnie: 5 samples.
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bacteria [32]. Increased sulphide damages intestinal

walls [33] and inhibits butyrate oxidation [34]. More im-

portantly, Helicobacter species, which was represented

inWinniemice but not in C57BL/6 (Figure 5B, Figure 6),

is strongly associated with clinical IBD (UC > CD) [35].

The increase in Helicobacteraceae in IBD patients is not

due to Helicobacter pylori infection, as Helicobacteraceae

is prominent in colonic but not gastric mucosa [36].

Limitations of our study include small sample sizes,

and methodological differences (with other studies) in

DNA extraction/sequencing, which may hypothetically

impart an element of inconsistency. Firstly, the QIAamp

DNA Stool Mini kit we used relies on enzymatic lysis,

and produces substantially less DNA yield, compared to

extraction methods involving vigorous mechanical lysis

[37], or bead-beating [38]. This may have a disproportion-

ate impact on specific bacterial groups which are tougher

to lyse owing to stronger cell walls [39]. In addition, pyro-

sequencing can be biased by selection of the primer pair,

and amplifying different 16S rRNA hyper-variable regions

may enhance sequencing coverage [40].

Our study suggests an association or a pathogenic role

for the appendix and its flora in colitic predisposition.

Further characterisation of chronological differences in

inflammation progression, as well as the magnitude of

colitis pathology; would divulge whether our observed

Figure 6 The role of the appendiceal microbiome in experimental spontaneous colitis. In this study, we note significant differences in

appendiceal Proteobacterial compostion between controls and colitic (Winnie) mice. Acetobacteraceae is decreased in colitic mice. Helicobacteraceae,

an unusual inhabitant of control mice appendices, is found abundantly in colitic mice. Rikenellaceae, a family belonging to the phylum Bacterioidetes, is

found only in 15-week-old Winnie mice, but neither earlier, nor in controls.
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microbiome changes indicate association or causality.

Dysbiosis within the appendix (caecal patch) of our

colitis model was significantly more than within stool

samples, especially in older (15-week) Winnie mice,

where intestinal epithelial defects become pronounced

[41]. It is not clear whether dysbiosis is a cause or con-

sequence of intestinal inflammation [42]. However, it is

less likely to be the former, owing to the therapeutic benefit

easily conferred by gut microbiome manipulation [10]. Re-

versing the dysbiotic-inflammatory positive feedback loop

with faecal microbiota transplantation has produced posi-

tive results in recurrent Clostridium difficile-associated

disease (CDAD) [43]. While the appendix might promote

C. difficile infection [44], retrospective studies in humans

show a protective role against CDAD recurrence [45].

Additional research in experimental models is needed to

explain these discrepancies.

Conclusions

The correlation between dysbiosis and IBD is incompletely

understood. Our Winnie mouse strain has an altered intes-

tinal barrier, resulting in spontaneous colitis, characterized

by intestinal ulceration and inflammation. The appendiceal

dysbiosis observed in our colitic Winnie mice is commen-

surate with, and adds to extant literature data. The presence

of Helicobacteraceae (Proteobacteria) only in colitic Winnie

mice (but not control mice) is consistent with reports

of increased Helicobacter in IBD patients. Bacteroides

(Bacteroidetes) decreases may be a reflection of reduced

anti-inflammatory commensal species such as B. fragilis.

Further research is warranted to expand and delineate the

relationship between IBD and the appendix microbiome.

Despite inherent differences between mouse and human

gut flora, this study using our Winnie colitis model will

vastly increase our understanding of IBD pathogenesis.

Methods

Mice

Two C57BL/6 and 18 Winnie mice were purchased from

the Animal Resource Centre, Australia. Owing to dis-

crepancies in the supply of mice strains, there were mild

differences in the number of animals in each experi-

mental group. The mice were bred in a conventional

clean Helicobacter hepaticus - free animal facility used

for all the experiments, which were conducted under the

directions and approval of the animal ethics committee of

the University of Queensland.

Caecal patch (appendix) excision and DNA extraction

Caecal patch was identified as a whitish-patch segment

right at the end portion away from the colonic side

(Figure 1). About 1 cm excision was made and the sample

with contents was immediately snap-frozen for further

DNA processing. In the laboratory, stool material was

scraped and DNA extracted using QIAamp DNA mini

kit (Qiagen, Hilden, Germany). Bacterial DNA content

was confirmed with bacterial 16 s rRNA broad-range

primers.

DNA extraction

Mice were euthanized at ages 12 and 15 weeks and appen-

dix and stool samples were immediately frozen and stored

at −80°C. DNA was extracted using the QIAamp DNA

Stool Mini Kit (Qiagen, Hilden, GER), according to manu-

facturer’s instructions then stored in −20°C. Bacterial

DNA content was confirmed using the A260/A280 ratio

and real-time PCR of 16S rRNA using broad-range

primers as described previously [46] on the iQ5 real-time

PCR system (Bio-RAD Laboratories, CA, USA).

DNA sequencing and metagenomic analysis

Sequencing amplicons were generated for the V1-V3

hypervariable region of the 16S rRNA gene using the

27 F-519R primers and DNA was sequenced using the

Roche GS FLX + 454-pyrosequencing platform at the

Australian Genome Research Facility. Profiling of the

microbiome was performed using the metagenomic tools

available in the Galaxy Public Server [47] following the

metagenomic pipeline described by Kasakovsky Pond et al.

[48]. Briefly, sequences were filtered to exclude reads

with a quality score <20 and a contiguous length <250 bp.

Sequences were compared to the WGS database (28jan2013)

using MegaBLAST z [49] and after removing hits with <50%

coverage, Operational Taxonomic Units (OTU) were des-

ignated based on 80% similarity and identity defined to

the lowest taxonomic rank of kingdom.

Statistical analysis

Since our results could not form a normal distribution

due to the small sample size, we used the non-parametric

Mann–Whitney U-test. Graphs were generated with

Prism v6 (GraphPad Software, CA, USA).
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