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The music of the hemispheres:
Cortical eigenmodes as a
physical basis for large-scale
brain activity and connectivity
patterns
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Neuroscience has had access to high-resolution recordings of large-scale

cortical activity and structure for decades, but still lacks a generally

adopted basis to analyze and interrelate results from di�erent individuals

and experiments. Here it is argued that the natural oscillatory modes of

the cortex—cortical eigenmodes—provide a physically preferred framework

for systematic comparisons across experimental conditions and imaging

modalities. In this framework, eigenmodes are analogous to notes of a musical

instrument, while commonly used statistical patterns parallel frequently

played chords. This intuitive perspective avoids problems that often arise in

neuroimaging analyses, and connects to underlying mechanisms of brain

activity. We envisage this approach will lead to novel insights into whole-brain

function, both in existing and prospective datasets, and facilitate a unification

of empirical findings across presently disparate analysis paradigms and

measurement modalities.

KEYWORDS
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1. Introduction

Recent technological advances have seen a huge increase in data recorded from the

brain, and in their spatial and temporal resolution, revealing striking complexity of

neural activity up to whole-brain scales. In response, neuroscientists have attempted to

compactly characterize these data, often decomposing signals into statistically derived

components that maximize statistical independence, explained variance, or fidelity to

anatomical and cytological features. Methods such as independent component analysis

(ICA), principal component analysis (PCA), and clustering (McKeown and Sejnowski,

1998; Fischl et al., 2004; Desikan et al., 2006; Triarhou, 2007; Thomas Yeo et al.,

2011; Abeysuriya and Robinson, 2016; Shine et al., 2019) typically produce 5–20

robust large-scale spatial patterns (Van De Ven et al., 2004; Damoiseaux et al., 2006)
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including the visual, attention, and default-mode ‘resting state

networks’ (RSNs), and permit data classification and comparison

between subjects and experiments. However, comparison

between approaches and protocols is difficult, because of the

lack of obvious compatibility of different experimental and

data-processing choices, and most rely on ‘black-box’ statistical

approaches that do not consider the sources or mechanisms

behind the signals being analyzed. These factors limit their

utility for understanding brain dynamics and one is motivated

to seek a means to compactly represent large-scale brain activity

and structure that is researcher- and protocol-independent,

linked to physical mechanisms, and general enough to enable

comparisons across different subjects and imaging modalities.

We argue that the natural oscillatory modes of the physical

cortex (i.e., its spatial eigenmodes), analogous to the notes

of a stringed instrument, represent the optimal basis set

for the systematic decomposition of cortical neural activity.

First, their physical interpretation as mutually independent

‘notes’ produced by the cortex provides an intuitive basis for

understanding brain activity in a way that separates spatial and

temporal structure. Furthermore, this basis provides a compact

representation of neural dynamics with an ordering that is

grounded in the physical structure of the brain and independent

of stimuli. Second, if eigenmodes are the fundamental “notes” of

the brain, one can then view the robust large-scale brain patterns

identified by statistical means as akin to frequently played

musical chords, each comprising a characteristic combination of

notes. This viewpoint enables us to explain classical findings in

whole-brain neuroimaging, such as the alternating engagement

of the default-mode and attentional RSNs (Fox et al., 2005),

as discussed below. Finally, eigenmodes provide insight into

the structure of the cortex and how low-order modes can

facilitate interareal communication in the absence of direct

physical connection.

2. Notes of the cortex: Eigenmodes

The eigenmodes of a physical system typically comprise

spatial patterns that oscillate at characteristic frequencies. For

example, when a violin is plucked, or a drum is struck, natural

frequencies are excited, each corresponding to a spatial pattern

of displacement of the string or drumhead. Before being plucked,

a violin string remains at rest in its equilibrium position, as seen

in Figure 1A. Both ends of the string are fixed, so when it is

plucked they remain stationary (they are termed zeros or nodes)

while the rest of the string oscillates. The first three oscillatory

modes are shown in Figure 1A, ordered by their number of zeros

(and thus by spatial frequency). Significantly, eachmode extends

over the whole string and every point on the string is part of

every mode. In the temporal domain, each spatial eigenmode

generates a note whose frequency is determined by the string’s

physical properties, but constrained by its geometry because

an integer number of half-wavelengths must fit exactly within

its length.

Eigenmodes of any system are intrinsic to that system and

are determined by its dynamics and geometry independently

of any particular inputs or stimuli. Moreover, in a broad class

of systems, eigenmodes are mutually independent and any

arbitrary spatial pattern can be expressed as a weighted sum of

eigenmodes. These properties make eigenmodes so useful that

they have become ubiquitous throughout mathematics, science,

and engineering, starting with Fourier’s work more than 200

years ago (Fourier, 1822). Indeed, moving between coordinate-

space and modal representations is essential to obtain maximal

insight into almost any physical system.

In the case of the cortex, the closed cortical surface imposes

a geometric constraint in two dimensions (2D) that determines

the spatial structure of its eigenmodes. The resonant frequencies

of brain rhythms are then set by a combination of this constraint

and local dynamics, analogously to the case of the 1D violin

string. Any pattern of brain excitation and structure can then be

expressed in terms of these eigenmodes, including spontaneous

and evoked brain activity (Nunez, 1989; Robinson et al., 2001;

Gabay and Robinson, 2017; Mukta et al., 2020) and underlying

brain connectivity (Robinson et al., 2014, 2016; Gao and

Robinson, 2020).

The spatial structure of eigenmodes of the cortex (termed

spatial eigenmodes for brevity) have been shown to be well

approximated by assuming a governing wave equation and

thus solving the Helmholtz equation on a cortical hemisphere

(Nunez, 1989; Robinson et al., 2001; Pinotsis et al., 2013; Gabay

and Robinson, 2017; Mukta et al., 2020).

∇2u(r) = −k2u(r), (1)

where r denotes spatial location. In this approximation,

spatial eigenmodes u(r) of brain activity are eigenfunctions

of the Laplace-Beltrami operator ∇2 with eigenvalues k2; this

equation can be solved on cortical surfaces, such as ones

estimated via MRI, using finite element methods (see Robinson

et al., 2016; Gabay and Robinson, 2017 for mathematical details).

Figure 1B shows examples of the spatial eigenmodes of an

average cortical surface (Fischl, 2012).

As for other systems, cortical eigenmodes are mutually

independent, so each provides independent spatial information.

They are naturally ordered from low spatial frequency (globally

uniform) to high spatial frequency (localized features), with

the lowest modes having the longest-lived oscillations. When

spontaneous or task-related activity with spatial structure given

by a function g(r), where r is position, is decomposed into a sum

overmodes, the coefficient c of amode u is given by the following

integral over all r in the cortex:

c =

∫
u(r)g(r)dr, (2)
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FIGURE 1

Eigenmode basis and dynamics. (A) Equilibrium position (top) and the lowest three eigenmodes of a violin string, ordered by increasing spatial

frequency, showing zeros (nodes) and antinodes. (Note: we do not use “node” to denote an artificially discretized point on the cortex.) The solid

dots indicate the clamped ends and solid and dashed curves show string positions half an oscillation apart in each case. (B) Lowest eigenmodes

of an average cortical surface. Rows display cortical modes ordered by spatial frequency (more nodal lines) and warm and cool colors show

positive and negative values relative to the mean at one extreme of an oscillation. (C) Human BOLD power (amplitude-squared) spectrum of

eigenmodes during rest. The lower eigenmodes contribute the most power to ongoing neural activity. (D) Initial position of a plucked violin

string and its mapping to the first four eigenmodes. (E) Subsequent evolution of mode amplitudes. (F) Subsequent evolution of displacement of

several points along the violin string, analogous to regions-of-interest. (G) The C major chord is made up of a superposition of the notes C, E,

and G, which have the frequency ratio 4:5:6; time series appear below. (H) Eigenmodes of the human cortex (top row) are analogous to “notes”

of the cortex and statistically derived modes (bottom row, PCA modes here) are analogous to commonly recurring “chords” of cortical activity.

(I) Analogously to music, cortical patterns can be decomposed into eigenmodes, whose amplitudes are its ‘fingerprint’. In this example we

approximate Margulies’s principal “gradient” pattern (chord) (Margulies et al., 2016) via its dominant constituent eigenmodes (notes). (The term

(Continued)
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FIGURE 1 (Continued)

gradient derives from the fact that it is calculated from quantities that have spatial gradients although it is not itself the gradient of any quantity.)

(J) Eigenmode decomposition of the seven resting-state networks (RSNs) of Thomas Yeo et al. (2011). The first two columns show the RSNs

formed by clustering correlations and weighted by the confidence of each point’s attribution to its cluster to avoid spurious enhancement of

high-order mode amplitudes by sharp edges. The third and fourth columns show each RSN reconstructed from its dominant four eigenmodes.

The fifth column shows the modal amplitudes of each RSN, from which the dominant modes were identified.

which is termed the projection of g onto u. The lowest

modes are found to dominate the dynamics (Nunez, 1989;

Robinson et al., 2001; Wingeier et al., 2001; Mukta et al.,

2020), as illustrated by the power spectrum of human

blood-oxygen-level-dependent (BOLD) activity during rest

in Figure 1C. This explains why only 5–20 robust spatial

patterns are identified by statistical means. A useful feature

of Equation (2) is that it integrates over short-scale noise,

and hence tends to suppress it, thereby removing the main

motivation for thresholding.

When stimuli enter the brain (or when a violin string

is plucked), eigenmodes are excited with initial amplitudes

given by Eq. (2), with g(r) representing the initial stimulus.

These amplitudes then decay at the damping rates appropriate

to each mode (Mukta et al., 2020). Figure 1D illustrates the

dynamics of a violin string that is plucked (i.e., release

from an initial triangular shape) and its approximation by

just the lowest four nonzero eigenmodes. We see that this

provides a good approximation of the shape of the string,

both then and at later times. Additionally, the subsequent

temporal dynamics of the string is described by exponentially

decreasing mode amplitudes, as shown in Figure 1E. In

contrast, the time evolution of displacements of various

points along the violin string—an analog of region-of-interest

(ROI) time-series—gives a more complicated and obscure

picture, as seen in Figure 1F. This result highlights the

benefits of representing complex brain dynamics via its spatial

eigenmodes and we expect these representations will expand

functional insights.

3. Music of the cortex: Notes and
chords

Music involves vibrational modes of instruments, excited

at various frequencies and times. A chord such as C major

has a complex periodic waveform that comprises superposed

sine waves at the frequencies of the individual notes C, E,

and G, as shown in Figure 1G. An electronic synthesizer

constructs chords in just this way, but a musician plays

chords directly, rather than exciting individual sine waves.

Some chords are very common in particular pieces of music

and thus may be more easily detected in statistical analyses

than less common isolated notes. Each chord has a unique

temporal signature but shares notes with other chords,

establishing a fundamental interdependence. Hence, while

chords provide a useful and efficient way to capture recurring

musical motifs, an understanding of the underlying notes is

essential to facilitate comparisons and groupings of chord

families and links to the mechanisms by which instruments

generate sound.

The above points lead to a direct analogy with the brain:

if cortical eigenmodes correspond to its notes [Figure 1H

(top)] then large-scale statistically detected patterns of recurrent

brain activity can be viewed as its chords [Figure 1H

(bottom)]. Frequently recurring patterns likely emerge from

similar ‘plucking’ via related external stimuli or endogenous

changes (e.g., large-scale neuromodulation). This view is

consistent with the pervasive visual (sensory) and attentional

(neuromodulatory) patterns seen in whole-brain imaging

data (Thomas Yeo et al., 2011).

Any cortical pattern can be uniquely decomposed into

eigenmodes, as illustrated in Figure 1I. Figure 1J (left) shows the

seven widely cited RSNs of Yeo et al., where the confidence of

each region’s attribution to a particular RSN has been used to

spatially smooth the patterns to remove artifactual sharp edges

(Thomas Yeo et al., 2011). The reconstruction of each RSN

using the four dominant (highest amplitude) eigenmodes in each

case is shown, reflecting differing combinations of eigenmodes

[Figure 1J (right)]. Interestingly, the default mode RSN and

the dorsal attention RSN project with opposite sign onto the

dominant low spatial frequency modes (eigenmodes 2–4; i.e.,

those with a single nodal line), so when any of these three

eigenmodes oscillates, the default-mode and the dorsal-attention

RSNs will oscillate 180◦ out of phase, thus providing a simple

mechanistic explanation for the finding that these RSNs are

temporally anticorrelated (Greicius et al., 2003; Fox et al., 2005).

We expect that eigenmode analysis will facilitate further

such mechanistic insights into patterns of whole brain activity

detected via various imaging methods (Atasoy et al., 2016).

Furthermore, eigenmodes may explain a similar axis of

separation that has been demonstrated in functional-MRI data

using diffusion embedding (Margulies et al., 2016). Follow-

up work by Raut et al. (2021) has also shown that a very

similar spatial pattern is found in the oscillatory phase-

shifts observed relative to subject arousal levels measured

via respiratory variation. This phase relationship may be

mechanistically interpreted in terms of physical eigenmodes; i.e.,

arousal is coincident with the promotion of a particular family of

oscillatory eigenmodes.

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1062487
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Müller et al. 10.3389/fnhum.2022.1062487

FIGURE 2

(A) The first non-uniform eigenmode of a string contains three zeros (nodes) and two antinodes that oscillate in antiphase. (B) The first three

non-uniform eigenmodes of the cortex—each has a single nodal line. (C) The local amplitude (magnitude) of the first non-uniform eigenmode

of a string shows a possible communication channel between each antinode. (D) The local amplitude of the first three non-uniform cortical

eigenmodes supports communication along rostrocaudal, dorsoventral, and mediolateral axes.

4. Modal communication channels

Spatial eigenmodes offer a potential channel to mediate

communication between distant brain regions. Equation (2)

shows that modes are most easily excited where |u(r)| is largest;

i.e., at antinodes; likewise, their influence on local activity is

largest at antinodes. Hence, each mode provides a channel for

preferential communication between regions centered on its

antinodes, as illustrated in Figures 2A,C for the second mode of

a violin string.

Applying this idea to the lowest cortical modes, we

see that the first (uniform) mode mediates communication

approximately equally between all regions of the cortex, thus

providing a means for any region to access the typical level of

excitation of the brain as a whole. The next three modes have

a single nodal line each with a pair of antinodes. Figures 2B,D

shows that these are aligned along the rostrocaudal axis,

the dorsoventral axis, and the mediolateral axis of the brain

hemisphere. Each of these modes can thus preferentially mediate

communication along one of these principal axes. Oscillatory

activity transmitted in this way may provide a large-scale

analog of the communication-through-coherence mechanism

originally introduced at short scales by invoking roughly 40

Hz gamma oscillations to preferentially excite responses at

particular phases (Fries, 2005). Here we argue that modal

oscillations could also enhance responses at particular spatial

locations defined by the antinodes of spatial cortical eigenmodes.

To illustrate these points, consider the first mode in

Figure 2B with rostro-caudal orientation. This mode’s antinodes

are in prefrontal cortex and posterior sensory cortex, with a

nodal line running through somatomotor cortex. This provides

a communication channel between sensory and prefrontal

regions that only weakly involves intermediate zones. These

intermediate zones thus interact little with this mode. The

analogy with a violin string is helpful in seeing that this is not

problematic, the second mode seen in Figure 1A peaks at two

points (Figure 1C) with a zero at the center, despite the string

being continuous through the zeros.

Neural activity is dominated by only a few low order

eigenmodes, as shown in Figure 1C. These modes are

continuous, accessible everywhere in the brain, and integrate

over fine scale structure and inputs. We thus speculate

these dominant modes play an important role in supporting

cognition and states of consciousness by providing channels

for communication between distal cortical regions that do not

necessarily possess direct physical connections.

Finally, the spatial patterns of the eigenmodes suggest

a novel stimulation strategy to effectively and deliberately

manipulate large-scale cortical activity— plucking a violin

string near antinodes of a given eigenmode will have the

greatest impact on the amplitude of that eigenmode. This

suggests that systems for measurement or stimulation could

usefully exploit eigenmode structures—particularly those of the

low-order dominant eigenmodes. Indeed, key features of the

empirically observed evoked response of the brain to spatially

localized impulse stimuli are found to be well described by

only a few eigenmodes (Mukta et al., 2020). This insight

is relevant for transcranial magnetic stimulation and other
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stimulation technologies used to probe cognition and treat

pathologies. The power of systems that can excite low level

eigenmodes may also help to explain how small but widely

projecting neuromodulatory sources, such as the adrenergic

locus coeruleus and nucleus basalis of Meynert (Shine et al.,

2021; Wainstein et al., 2022), can have a large effect on cortical

dynamics. We suggest that future experiments investigate

how the neuromodulatory systems interact with cortical

eigenmodes and that this may assist in optimizing cortical

stimulation protocols.

5. Concluding remarks

In this manuscript we have outlined various advantages of a

cortical eigenmode basis of the brain:

(i) Eigenmodes satisfy the main criteria for an optimal basis

set in that they are readily interpretable and leverage the

intuitive understanding of natural resonances or notes of

the cortex—equivalent to notes of a string.

(ii) A key goal of neuroscience is to unify theories of brain

activity, function, and structure. First and foremost this

requires recordings and analysis of brain activity to

be generalizable and thus comparable across recording

sessions, different tasks, subjects, and measurement

methods. In neuroimaging this has been approached

via “resting-state networks” and popular parcellation

schemes (Thomas Yeo et al., 2011; Gordon et al., 2016;

Schaefer et al., 2018); however, as we discussed in

previous sections, these are often constructed via ad

hoc statistical measures, which limits interpretability and

prevents standardization. In the worst case, each new

approach requires the research community to establish

mutual interpretability between it and all others—an

overall burden that scales as the square of the total number

of methods in use. However, much as English often serves

as a common language through which other languages can

be translated, eigenmodes provide a route by which only

a single extra interpreter is required for each new method

(or language, analogously) added. In other words, cortical

eigenmodes can serve as a common basis through which to

interrelate new findings and existing knowledge.

(iii) Eigenmodes are easily generalizable, independent of

stimuli and experimental choices, and result from the

brain’s structure—avoiding the artificial warping and

thresholding required for analyses via parcellations and

artificially discretized networks. As such, eigenmodes

remain applicable regardless of future improvements

in resolution and accuracy of brain measurements

and imaging.

(iv) Eigenmodes provide insight into the whole-brain function

with parallel communication channels possible between

cortical areas with no direct physical connection.

(v) Eigenmodes offer a simple explanation to the perplexing

finding that the dorsal attention network and default

mode network are anticorrelated. And further a cortical

pattern revealed in fMRI data separating primary sensory

and association areas, which has been recapitulated in

oscillatory phase shifts tied to subject arousal, can be simply

interpreted as an arousal evoked family of oscillatory

cortical eigenmodes.

The eigenmodes in this work are considered purely for the

cortex, and an identical set exists for each hemisphere. This

presents an exciting opportunity to extend eigenmode analysis

to subcortical loci including key structures such as the thalamus,

hippocampus, and cerebellum.

The above advantages favor the wider adoption of

eigenmodes in neuroscience that will provide both theoretical

and empirical insight, as it has done for the fields of physics,

mathematics, and engineering, thereby opening up exciting

opportunities for future work.
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