
The mutation effect reaction norm (Mu-RN) highlights
environmentally dependent mutation effects and epistatic interactions

C. Brandon Ogbunugafor
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA

brandon.ogbunu@yale.edu

Abstract – Since the modern synthesis, the fitness ef-1

fects of mutations and epistasis have been central yet2

provocative concepts in evolutionary and population ge-3

netics. Studies of how the interactions between parcels of4

genetic information can change as a function of environ-5

mental context have added a layer of complexity to these6

discussions. Here I introduce the “mutation effect reac-7

tion norm” (Mu-RN), a new instrument through which8

one can analyze the phenotypic consequences of muta-9

tions and interactions across environmental contexts. It10

embodies the fusion of measurements of genetic inter-11

actions with the reaction norm, a classic depiction of12

the performance of genotypes across environments. I13

demonstrate the utility of the Mu-RN through the signa-14

ture of a "compensatory ratchet" mutation that under-15

mines reverse evolution of antimicrobial resistance. More16

broadly, I argue that the mutation effect reaction norm17

may help us resolve the dynamism and unpredictability18

of evolution, with implications for theoretical biology, ge-19

netic modification technology, and public health.20

I. INTRODUCTION

Modern perspectives in evolutionary genetics are increas-21

ingly driven by notions that complex traits are the product of22

interactions between genes [1, 2]. In many ways, these are23

renditions of classical debates surrounding the eminence of24

gene interactions that were a feature of the modern synthesis25

[3, 4, 5]. At one level, the debates have not changed much26

during the last century, still defined by a simple question–27

how many different actors do we need to consider in order28

to understand the relationshp between genotype and pheno-29

type? Can we understand meaningful changes in phenotypes30

by studying biology one-mutation-at-a-time? Or do we need31

better models for how mutations interact with each other,32

and/or the environment?33

The importance of understanding interactions between mu-34

tations has emerged as its own area of evolutionary genetics,35

to the tune of several different (but related) concepts that are36

studied under the umbrella concept of epistasis. One of these37

concepts, “physiological epistasis,” has been defined as “any38

situation in which the genotype at one locus modifies the39

phenotypic expression of the genotype at another [6].” An40

expansive literature exists that has examined physiological41

epistasis in adaptive landscapes [7, 8, 9], with respect to pro- 42

tein biophysics [10, 11, 12], in terms of genomic architecture 43

[13, 14], and many other arenas. 44

This broader notion that mutations may interact with other 45

parcels of genetic information in a cryptic, spurious fashion 46

casts a shadow over much of modern genetics [15, 16, 17, 47

18], and may contribute to phenomenon like phantom her- 48

itability [19, 20, 21]. Relatively underexplored in conver- 49

sations about how interactions manifest in complex pheno- 50

types are theoretical treatments of how environmental gra- 51

dients may influence the interactions between mutations or 52

SNPs. 53

Conveniently, an abstraction exists in the evolutionary bi- 54

ology and ecology canons—the reaction norm (also known 55

as the “norm of reaction”)—to describe how the environ- 56

ment shapes the performance (phenotype) of genotypes [22]. 57

The reaction norm is widely applied in quantitative genetics 58

[23, 24], in discussions of phenotypic plasticity [25, 26, 27], 59

and other subtopics. 60

While several studies have examined how environments 61

can tune nonlinear interactions between mutations [28, 29, 62

30, 31, 32, 27, 33], there have been few formal attempts to 63

integrate details of the environment into measurements of 64

mutation effects and interactions. In this study, I introduce 65

the “mutation effect reaction norm,” an abstraction that com- 66

bines the reaction norm with mutation effects and physiolog- 67

ical epistasis. It demonstrates how the strength and nature 68

of interactions can change appreciably across environmen- 69

tal contexts of various kinds. To demonstrate its utility, I 70

explore data sets corresponding to a collection of alleles as- 71

sociated with antimicrobial drug resistance. I analyze these 72

data using the mutation effect reaction norm framework and 73

diagnose the signature of a "compensatory ratchet" mutation 74

whose effect is specific to environment. 75

Summarizing, I discuss how this abstraction is relevant in 76

many problems where the effects of individual mutations are 77

influenced by environments, including genetic modification, 78

public health and biomedicine. More broadly, I use the con- 79

cept to emphasize the importance of more detailed biogra- 80

phies of mutation interactions in present and future attempts 81

to capture the shape of molecular evolution. 82
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II. METHODS

A. Data Sets83

While much of the argument surrounding the utility of the84

Mu-RN is conceptual, I thought that it would be most effec-85

tive to demonstrate how it works using real world data and86

analyses. In this way, the ideas are less abstract, and the87

reader can observe firsthand how they can be applied.88

In this study I decided to study mutation effects and inter-89

actions involved in the evolution of antimicrobial resistance.90

I utilized two data sets, each a combinatorially complete set,91

where suite of mutations within a locus (a protein in this92

case) are engineered in all possible combinations. While this93

data structure is not necessary to measure interactions and94

epistasic effects, it facilitates the use of certain transparent,95

established algebraic formulations.96

A note on the use of "reaction norm." I should mention that97

use of the term "reaction norm" describes depictions of how98

the alleles in this set perform across drug environments. Very99

similar analyses and descriptions were used in prior studies100

[34], but without using the "reaction norm" descriptor.101

The traits of interest in this study are growth rates of the102

alleles in different concentrations of pyrimethamine and cy-103

cloguanil, antifolate drugs used to treat malaria [35]. I exam-104

ined 16 alleles composed of combinations of four mutations105

(N51I, C59R, S108N, I164L; 24 = 16 alleles)) in Plasmod-106

ium falciparum (a cause of malaria) dihydrofolate reductase107

(DHFR, an essential enzyme). All 16 alleles have growth rate108

values across a gradient of drug concentrations (10−3 𝜇𝑀 to109

105 𝜇𝑀). These data arise from a set utilized in previous stud-110

ies that examined the evolution of resistance to antimalarials111

[36, 34]. Also note that while we use growth rates as our112

main phenotype, the methods described here can be used to113

study fitness measurements of various kinds, including rela-114

tive fitness.115

B. A note on methods to measure interactions116

Many methods exist for measuring the strength of inter-117

actions between mutations in empirical datasets. Questions118

surrounding which methods are appropriate are similar to119

many statistical questions surrounding how to disentangle120

nonlinear effects in complex systems (biological or other):121

the shape, scope, and size of the data dictate which analyses122

are most appropriate. Furthermore, epistasis might be de-123

scribed as an idea whose definitions are at least partly based124

on how it is measured. For example, some methods con-125

sider how noise can conflate the measurement of resistance126

[37, 38], accommodate non-binary encoding or gaps in data127

[39], interrogate the limits of regression methods [40, 41],128

or measure marginal epistasis across large genomic data sets129

[42]. These methods can be considered more ideal for certain130

questions or data structures. However, a rigorous treatment 131

of methods used to measure epistasis is beyond the scope of 132

this manuscript. 133

An example method: The Walsh-Hadamard transform. In 134

this study, I used the Walsh-Hadamard transform, which 135

computes a coefficient corresponding to the magnitude and 136

sign of an interaction between mutations with respect to a 137

phenotype. It was pioneered for use in the study of higher- 138

order epistasis in a 2013 study that both provided a primer for 139

the calculation and analyzed several combinatorially com- 140

plete data sets [7]. It has since been further applied to study 141

of higher-order epistasis across a larger sampling of empiri- 142

cal data sets [43]. 143

The Walsh-Hadamard transform implements phenotypic 144

measurements into a vector, then a Hadamard matrix, which 145

is scaled by an additional diagonal matrix and is used to act 146

on this phenotypic vector. The result is a set of coefficients 147

that measure the degree to which the genotype-phenotype 148

map (perhaps described in the guise of an adaptive land- 149

scape) is linear, or second order, third, and so forth. For 150

more rigorous discussions of the method, I encourage readers 151

to engage several published manuscripts—especially Wein- 152

reich et. al. (2013) [7] and Poelwijk et al. (2016) [44] — 153

each of which explore the methods and their related issues in 154

greater detail. For clarity, I will describe selected aspects of 155

the method in this manuscript. 156

As the data examined by the Walsh-Hadamard transform 157

are combinatorially complete, one can represent the pres- 158

ence or absence of a given mutation by a 0 or 1 at a given 159

locus. For example, one can represent a wildtype variant of 160

a gene as 0000. In this one scenario, the mutations at each of 161

four sites (e.g. the four mutations corresponding to antifolate 162

resistance Plasmodium falciparum dihydrofolate reductase) 163

[45, 46] are, N51I, C59R, S108N, and I164L. For those un- 164

familiar with this notation: the number corresponds to the 165

location in the protein, and the letters on each side of the 166

number correspond to single-letter amino acid abbreviations 167

for the variants at that site. For example, N51I corresponds to 168

an asparagine to isoleucine mutation at the 51st amino acid 169

in DHFR). The quadruple mutant, IRNL, would be encoded 170

as 1111 in this scenario. 171

The full data set consists of a vector of phenotypic values 172

(growth rate in the presence of two different antifolates) for 173

all possible combinations of mutations (for 16 alleles in to- 174

tal): 175

NCSI, NCSL, NCNI, NCNL, NRSI, NRSL, 176

NRNI, NRNL, ICSI, ICSL, ICNI, ICNL, IRSI, 177

IRSL, IRNI, IRNL 178

These can be depicted in binary notation as the following: 179

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 180

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 181
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This vector of phenotypes, denoted by 𝑝 (arranged numeri-182

cally as in the order presented above), is multiplied by a (16 ×183

16) square matrix, which is the product of a diagonal matrix184

𝑉 and a Hadamard matrix 𝐻 . These are defined recursively:185

𝑉𝑛 = (
1
2𝑉𝑛−1 0
0 −𝑉𝑛−1) , 𝑉0 = 1 (1)

𝐻𝑛 = (
𝐻𝑛−1 𝐻𝑛−1
𝐻𝑛−1 −𝐻𝑛−1) ,𝐻0 = 1 (2)

n is the number of loci (n = 4 in this Plasmodium falci-186

parum DHFR setting corresponding to resistance mutations).187

For 𝑛 = 4, these matrices can be depicted as follows:188

𝑉4 =189

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 − 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 − 1

8 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1

2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and190

𝐻4 =191

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

These are combined with the phenotype vector as follows:192

𝛾 = 𝑉𝑛𝐻𝑛𝑝 (3)

Where 𝑉𝑛 and 𝐻𝑛 are the matrices described in equations 1193

and 2 above and 𝛾 is the Walsh coefficient vector, the mea-194

sure of the interaction between mutations. Using this for-195

mulation, I compute 𝛾 values for every possible interaction196

between bits in each string.197

In addition to the aforementioned references where this ap- 198

proach was introduced and described in good detail [7, 44], 199

this method is also made available for exploration in the Sup- 200

porting Information. It contains a spreadsheet that outlines 201

the calculation and provides a means for inexperienced users 202

to calculate interaction coefficients. While this is not a sub- 203

stitute for learning the methods from their proper sources, it 204

does provide a simple way for those interested to perform 205

these calculations on data of a certain structure. 206

Having outlined the method used to calculate the Walsh- 207

Hadamard coefficient, I must be clear about the interpreta- 208

tion. The Walsh coefficient corresponds to the average effect 209

of a given mutation effect (first order, pairwise, etc.) across 210

all cognate genetic backgrounds. Negative values for an ef- 211

fect suggest that the average effect is adverse for a given phe- 212

notype in a given setting, positive if it has a beneficial effect 213

on a phenotype (e.g., antibiotic resistance). Please note that 214

the idea of "adverse" or "beneficial" in this context is simply 215

a description of its quantitative impact, and not a biological 216

(or ethical/moral) interpretation of the "goodness" of an ef- 217

fect. 218

One limitation of the iteration of the Walsh-Hadamard 219

transform used in this study is that it requires combinato- 220

rial data sets, where an often small set of mutations are con- 221

structed in all possible combinations. Another limitation 222

is that it can only accommodate two variants (amino acid 223

substitutions in this case) per locus. For example, if one 224

wanted to measure the higher-order interactions between 4 225

mutations within a gene, one would need 2𝐿 = 16 individ- 226

ual measurements, with L corresponding to the number of 227

different mutations whose effects one is interested in disen- 228

tangling (4 in this case). Another established limitation of 229

the method is that it doesn’t formally incorporate experimen- 230

tal noise. Consequently, its resultant measurement is more 231

consistent with an average of the effect of a mutation or 232

mutation-interactions. Though these limitations reveal that 233

the Walsh-Hadamard transform might be specific to certain 234

datasets, it still applies to many real-world settings, and pro- 235

vides relevant biological insight. 236

C. Calculations of higher-order epistasis 237

Previous studies have examined how higher-order epistasis 238

manifests across empirical adaptive landscapes [7, 43, 30]. 239

“Order” corresponds to the number of actors involved in 240

an interaction. “First-order” would correspond to the effect 241

of single mutations, second-order or “pairwise” interactions 242

would apply to pairs of mutations, and so forth. One can 243

calculate higher-order epistasis using several minor modifi- 244

cations to the Walsh-Hadamard transform method outlined 245

above, very similar to how prior studies carried this out [7]. 246

For example, in a combinatorially complete data set com- 247

prising 16 alleles, one can also depict the interactions be- 248

tween individual loci and genetic background using a binary 249

representation (just as one can with whole alleles). In this 250

3
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case, each 0 or 1 represents a locus interaction. To empha-251

size the distinction in using binary notation both for pheno-252

type and for epistasis coefficients, one should consider using253

language like 𝛾0000 for clarity:254

𝛾0000: zeroth order interaction255

𝛾0001, 𝛾0010, 𝛾0100 & 𝛾1000 are first-order interactions. For256

example, this translates to the average effect of the N51I257

mutation across all possible genetic backgrounds (composed258

of combinations of the other three loci), those between the259

C59R mutation and all possible genetic backgrounds, be-260

tween S108N mutation and all possible genetic backgrounds,261

and between I164L and the other loci.262

Relatedly: 𝛾0011, 𝛾0101, 𝛾0110, 𝛾1001, 𝛾1100 & 𝛾1010 are second-263

order or pairwise interactions; 𝛾0111, 𝛾1011, 𝛾1101 & 𝛾1110 are264

third-order interactions; and 𝛾1111 is a fourth-order interac-265

tion, the interaction between the four mutations that consti-266

tute the quadruple mutant, IRNL. For even more clarity, one267

can replace the 0s with asterisks (*) to emphasize that binary268

sites represent mutation interaction effects across all possible269

genetic backgrounds. For example, the pairwise effect coeffi-270

cient corresponding to "0110" truly means the average effect271

of the C59R and S018N mutations, across all other genetic272

backgrounds. One can depict this effect as "*11*".273

Though the data used in this study are not normalized, it is274

often prudent to take the absolute value of coefficients, then275

compute a normalized version of the epistatic coefficients.276

The normalization standardizes the value so that the analyses277

might be compared to other data sets. For a given epistatic278

coefficient 𝛾 , I define the normalized epistatic coefficient E,279

as in prior studies of in silico adaptive landscapes [47]:280

𝐸𝑖 =
|𝛾𝑖 |

∑𝑗 |𝛾𝑗 |
(4)

Where the sum over 𝑗 runs over all epistatic coefficients281

comprised in 𝛾 . In this study, I only use the absolute values282

of the epistatic coefficients for all analyses, without normal-283

ization. One can average the interaction coefficients within284

an order to facilitate comparisons between orders (e.g., are285

third order effects stronger than pairwise effects across en-286

vironments?). I label these order-averaged effects with the287

term “absolute mean." This provides mean values for each288

order, which calculates the overall contribution of, for exam-289

ple, 1st order effects and higher-order (3𝑟𝑑 order, 4𝑡ℎ order,290

etc.) effects. And one can examine how the order of effects291

changes across environmental gradients, representing a kind292

of mutation effect reaction norm for higher-order epistasis.293

III. RESULTS

First, we discuss the reaction norm, the performance294

(growth rate) of the 16 alleles across drug environments. Sec-295

ond, we will discuss what happens when these alleles are de-296

constructed into their mutation effects using the procedures297

outlined in the Method and depicted across environments. 298

This is the anatomy of the Mu-RN, and the most critical as- 299

pect of the results. Lastly, we provide a real-world example 300

of a type of problem that the Mu-RN might be applied to: 301

the diagnosis of mutations that have certain effects in specific 302

environments, and serve as "compensatory ratchets" against 303

reverse evolution. 304

A. The reaction norm demonstrates the growth rate of alleles 305

across drug environments 306

Figure 1 depicts reaction norms for a combinatorial set of 307

16 alleles. The data demonstrate growth rates as a function 308

of concentrations of two different drugs: pyrimethamine (1A, 309

B) and cycloguanil (1C, D). 310

The dynamism of the reaction norms is further encapsu- 311

lated by depictions of the respective rank orders of alleles in 312

the presence of the two antimalarial drugs, pyrimethamine 313

and cycloguanil (Fig. 1B, D). That the rank order of alleles 314

changes rapidly at some concentrations is a signature of epis- 315

tasis present in the system, as rank order reflects nonlinear 316

interactions between the mutations that compose the allele 317

[48]. Specifically, note the rapid rank order changes occur- 318

ring at certain drug concentrations (roughly from 10−2𝜇𝑀 to 319

102 𝜇𝑀 , on both pyrimethamine and cycloguanil). The data 320

that compose these reaction norms were previously exam- 321

ined with respect to how drug environments create different 322

evolutionary dynamics (across drug type and concentration) 323

[36, 34]. 324

B. Exploring how the phenotypic effects of mutations 325

changes according to environment 326

Mutation effect reaction norms display interactions 327

between mutations for two similar antifolate drugs 328

(pyrimethamine and cycloguanil) along continuous en- 329

vironmental dimensions (Fig. 2A and 2C). Using this 330

approach, we can observe how mutation effects are tuned 331

differently across environments that are at least somewhat 332

similar. That is, pyrimethamine and cycloguanil are both 333

antifolate drugs used to treat malaria infections and have 334

slightly different patterns of mutation effects across contexts, 335

all coefficients converging towards [0] as drug concentra- 336

tions increase. That is, at a high enough drug concentration, 337

no alleles grow (see the reaction norm results, Figure 1), 338

and so the mutation interactions that compose the alleles 339

in the reaction norm have small effects at the highest drug 340

concentrations. 341

The differences between pyrimethamine and cycloguanil 342

manifest in the topographies of their respective adaptive 343

landscapes[34, 36] and in the shape of their mutation effect 344

reaction norms. For clarity, the average effects of single mu- 345

tations are emphasized in the Figures 2A and 2C (thicker 346

lines), as they are the coefficients whose interpretation are 347

the most intuitive: the single mutation effect lines provide 348

an average description of how impactful each of the four in- 349

4
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Figure 1: Reaction norms and rank orders. The reaction norm for growth rates corresponding to Plasmodium falciparum
carrying 16 different alleles of dihydrofolate reductase associated with resistance to antifolates, across drug environments. (A)
Reaction norm for growth rate of alleles across drug concentrations of pyrimethamine. (B) Rank order of alleles across drug
concentrations in pyrimethamine. (C) Reaction norm for growth rate of alleles across drug concentrations of cycloguanil, and
(D) Rank order of alleles across drug concentrations in cycloguanil.

dividual loci are across the drug environments. The values350

of the remainder of the interactions arise from the formula351

outlined in the Walsh-Hadamard transform calculation (see352

equations 1-4) and are more challenging to summarize ver-353

bally (see Methods).354

To offer a clearer understanding of how environments355

shape higher-order interactions, I provide a mutation effect356

reaction norm corresponding to the absolute mean values of357

mutation effects, organized by order (Fig. 2B and 2D). These358

represent magnitude differences between orders of effects359

and communicate the overall presence of higher-order inter-360

actions across environmental gradients (the environments be-361

ing drug type and concentration).362

C. The mutation effect reaction norm highlights the specific363

signature of "compensatory ratchet" mutations364

Of particular interest are the effects of S108N in P. falci-365

parum dihydrofolate reductase (Fig. 2A, 2C). The effects of366

an orthologous mutation were described in a study of reverse367

evolution of antifolate resistance in Plasmodium vivax [49].368

Note that in both pyrimethamine and cycloguanil, the muta-369

tion effect has a similar pattern: a negative effect at low drug370

concentrations, with a sign change (from negative to posi- 371

tive) as drug concentrations increase towards 1.0 𝜇𝑀 . As 372

drug concentrations get very high, mutation effects are low. 373

This change of of the sign of a mutation effect (from neg- 374

ative to positive) is a signature of a mutation that could be 375

described as "compensatory." For example, the mutation cor- 376

responding to S108N is conditionally beneficial, conferring 377

positive epistatic interactions in high drug concentration en- 378

vironments (Fig. 2A). These mutations restore growth in ge- 379

netic backgrounds where alleles are growing poorly (gener- 380

ally true in high drug concentrations). This compensatory 381

S108N mutation also serves as a ratchet that undermines the 382

reversal of evolution (from the IRNL quadruple mutant to- 383

wards the NCSI wildtype in this setting). 384

Figure 3 further describes how mutation interactions in- 385

volving the S018N mutation can influence evolution. In 3A, 386

we observe that alleles that contain S018N have a signifi- 387

cantly higher growth rate, across all drug concentrations of 388

both pyrimethamine (Kruskal-Wallis: 5A, pyrimethamine, p 389

= 0.0002). As mentioned, the S108N mutation is an ortholog 390

of a mutation, S117N, that has been described as a “pivot” 391

mutation, that both dictates the direction of adaptive evolu- 392

tion, and precludes reversal [49]. 393
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Figure 2: Mutation effect reaction norms (Mu-RN). The mutation effect reaction norm corresponding to the strength of in-
teractions. (A) The Mu-RN depicts interactions between individual loci associated with resistance within the Plasmodium
falciparum dihydrofolate reductase across a breadth of concentrations of pyrimethamine (x-axis title removed for clarity). The
binary notation corresponds to interactions between one of four individual loci within the P. falciparum dihydrofolate reductase.
(B) Mu-RN corresponding to a transformation of the data in (A), whereby the absolute mean of values of all the effects of a
certain order are combined, which provides a perspective on how higher-order epistasis varies across environmental context (see
Methods for details). (C) A Mu-RN for individual loci interactions effects on growth rate across cycloguanil concentrations
(x-axis title removed for clarity). (D) A Mu-RN depiction of higher-order epistasis for resistance across a set of cycloguanil
environments. Note that both A and C, the single mutation effects corresponding to **1* is emphasized with a thicker line.
This effect, corresponding to the average effect of the S108N mutation across genetic backgrounds and drug environments, is
of special interest, as discussed in the main text.

Figure 3B is a hypergraph summary of the predicted evo-394

lutionary trajectories in pyrimethamine [34]. Predictions can395

be made from the rank orders of alleles outlined in Fig-396

ure 1. That is, starting from NCSI, evolution may fol-397

low a path of increasing growth rate, a proxy for repro-398

ductive fitness in this setting. Figure 3B depicts “forward”399

evolution starting from the wild type (NCSI) allele evolv-400

ing at 106 𝜇𝑀 pyrimethamine, as summarized in previ-401

ous studies [34]. In addition, Figure 3B shows the pre-402

dicted “reverse” evolution trajectory, when the IRNL quadru-403

ple mutant evolves in a drugless environment. The pre-404

ferred trajectories for both forward and reverse evolution405

in pyrimethamine—Forward: NCSI → NCNI → NRNI406

→IRNI→IRNL; Reverse IRNL→IRNI all steps in the pre-407

ferred pathways—forward and reverse contain the S108N408

mutation. The mutation plays a central role in dictat-409

ing the direction of evolution in both high drug (106 𝜇𝑀410

pyrimethamine) and the drugless environment.411

IV. DISCUSSION

In this study, I introduce an abstraction called the muta- 412

tion effect reaction norm (Mu-RN), that depicts how muta- 413

tion effects and epistasis vary across environmental contexts. 414

To demonstrate how it works, I apply previously developed 415

mathematical methods introduced to measure higher-order 416

epistasis on combinatorially complete data sets, across drug 417

type and concentration. One of this study’s key messages are 418

about how the capriciousness of mutation effects and interac- 419

tions, as a function of environments and contexts, contributes 420

to the complexity of the relationship between genotype and 421

phenotype. 422

We should note the parallels between this perspective and 423

classical debates about the "gene’s-eye view of evolution" 424

between Sewell Wright and Ronald Fisher [3]. Though the 425

specifics of Wright’s arguments were different than the ones 426

outlined in this manuscript, he was an advocate of a more 427

complex view of genetic systems, and critical of a simple, 428
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Figure 3: An example application of the Mu-RN: The signature of a "compensatory ratchet" mutation. Here we depict how the
S108N mutation’s effect across environments plays a critical role in “forward” evolution and undermines "reverse" evolution.
(A) Averaged across pyrimethamine concentrations, alleles containing the S018N mutation grow significantly better than any
set of alleles containing any other single mutation (Kruskal-Wallis: 5A, pyrimethamine, p = 0.0002). This is because of the
compensatory effects of the mutation at high drug concentrations. (B) The hypercube represents the combinatorial set of 16
alleles as described in the Methods. Based on the rank-order in Figure 1, the predicted pathways of stepwise evolution from
the wild-type genotype (NCSI) through the adaptive landscape at a high drug concentration (black arrows) at 106 𝜇𝑀 , and
reversal in a drugless environment (dashed arrow). In this scenario, the compensatory nature of the S108N mutation provides
a "compensatory ratchet," that helps evolution evolve towards a fitness peak in the high drug concentration (black arrows) but
prevents it from reversing towards wildtype (NCSI) in a drugless environment (dashed arrow).

genic view of evolution [3, 4, 5]. The mutation effect reaction429

norm emerges from this intellectual tradition: it embodies430

complexity and the many types of interactions that define the431

shape of genetic systems and adaptive evolution.432

A. Tracking mutation effects across environmental contexts433

With the mutation effect reaction norm, several questions434

can be examined, such as how multi-dimensional environ-435

ments tune the phenotypic effects of mutations. We observe436

this through comparing the shape of the mutation effect re-437

action norms for a suite of mutations associated with re-438

sistance to pyrimethamine and cycloguanil (antifolate drugs439

used to treat malaria that are similar in structure) across a440

range of drug concentrations. In this case, we see how and441

why the adaptive landscapes differ for the two drugs: inter-442

actions between mutations in the P. falciparum dihydrofo-443

late reductase protein backbone differ as a function of both444

drug type (pyrimethamine or cycloguanil) and drug concen-445

tration. Though pyrimethamine or cycloguanil have a similar446

mechanism of action and are similar in size (pyrimethamine447

molecular weight = 248.7; cycloguanil molecular weight =448

251.7), these ostensibly subtle differences have meaningful449

consequences for patterns of resistance in nature [35].450

Moving past the specific case of antimicrobial resistance, 451

these findings speak to concepts that are of central impor- 452

tance in evolutionary theory. For example, the mutation ef- 453

fect reaction norm may inform models of how adaptive evo- 454

lution occurs in fluctuating environments, where context- 455

specific interactions can create opportunity and constraint 456

[18, 27, 33]. These ideas are especially germane to mod- 457

ern efforts to improve on notions of static adaptive or fitness 458

landscapes, towards the more realistic analogy of the fitness 459

seascape [50]. 460

B. The Mu-RN and the dynamics of adaptation and reversal 461

The study’s detailed examination of one mutation’s inter- 462

action (S108N) serves as an example of how tracking the 463

effects and interactions across environments allows one to 464

identify (i) the specific contexts in which a given mutation 465

is compensatory and (ii) the degree to which the effect is 466

compensatory or not. The story that I have revealed about 467

S108N likely applies to many "compensatory ratchet" muta- 468

tions: their effects are often not binary—as in, they are ben- 469

eficial in an environment or not—but rather, have stories that 470

are more nuanced. Other examples include studies of bac- 471

terial translation machinery, where the contingent nature of 472

compensatory mutations in evolution also manifests [51]. 473
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The findings surrounding "compensatory ratchet" muta-474

tions also highlights why reversal can be unlikely in circum-475

stances where phenotypic effects of mutations (and interac-476

tions) are specific to certain environmental contexts. This has477

practical relevance and informs public health and biomedical478

approaches to addressing the antimicrobial resistance prob-479

lem (for example). Studies have revealed why resistance480

management approaches that attempt to drive populations of481

resistant microbes “back” to more susceptible forms can be482

challenging [52, 53, 54]. And other studies have proposed483

methods and perspectives for how to reverse the effects of484

resistance [55]. We suggest that tracking mutation effects485

across environments, using the Mu-RN, can elucidate the486

molecular causes of irreversibility.487

V. CONCLUSION

The scientific world is full of models and abstractions that488

vary in their ability to describe relevant phenomena. What489

does the mutation effect reaction norm add? Is it just an-490

other abstraction that is engineered for clarifying purposes,491

but accomplishes the opposite? While only time will tell492

whether this new abstraction is useful, I have argued that it493

fills a notable gap, provides a simple, tractable, transposable494

depiction of how mutation effects and epistatic interactions495

can change across environmental contexts. This is consistent496

with prior descriptions of "environmental epistasis" [27], but497

made more generalizable, for potential applications across498

settings.499

In order to depict environmental epistasis in simple terms,500

I have used the reaction norm as a basis for conception501

and comparison. Table 1 describes the differences between502

the reaction norm and the mutation effect reaction norm,503

including how one can interpret the information contained504

within them. The mutation effect reaction norm abstrac-505

tion offers a different view of gene by environment interac-506

tions, by deconstructing genotype-phenotype maps in terms507

of the often peculiar interactions between genes and mu-508

tations across environments. This can offer a “mutation-509

centric” or "interaction-centric" view of genotype-phenotype510

maps where the object of interest is not entire haplotypes, but511

rather, the individual interactions between the mutations that512

compose those haplotypes, and environments. While evolu-513

tionary geneticists have long appreciated the importance of514

individual mutations, I argue that the mutation effect reac-515

tion norm appreciates another level of nuance, whereby we516

can author more detailed biographies of mutations and their517

interactions.518

Finally, I argue that the mutation effect reaction norm has519

important practical implications across several domains. By520

understanding how mutation effects and epistasis are driven521

by context, we can appreciate their role in obfuscating results522

from experimental studies of mutations [56], or in terms of523

how the context specificity of mutations may complicate ge-524

netic modification efforts [57]. For example, we should be 525

careful to consider the environments in which the effects of 526

engineered mutations evaluated. 527

The implications for predictive evolution are fairly obvi- 528

ous: the environmental mediator of nonlinear genetic inter- 529

actions frames the topography of genotype-phenotype space, 530

and by extension, how we expect the process of adaptive evo- 531

lution to occur [58, 59, 60]. In addition, recent studies that 532

support the role of contingency in evolution might be ex- 533

plained by the specificity of mutation effects, adaptive land- 534

scape topography or environmental context [61, 62]. In the 535

biomedical arena, the abstraction has obvious connections to 536

modern efforts to explain, predict or steer the evolution of 537

antibiotic resistance, all of which involve an understanding 538

of the effects of mutations[63, 64, 65, 66, 67]. 539

Beyond drug resistance, the mutation effect reaction norm 540

has practical applications to a range of other problems in 541

biomedicine and public health. For example, the Mu-RN 542

may allow us to better identify mutations in pathogens that 543

are associated with emergence such as the ones identified in 544

the form of a “watchlist” of mutations [68]. This notion has 545

become especially relevant in the context of the COVID-19 546

pandemic. A year after the start of the pandemic, several 547

variants of concern (VoC) began to circulate and define a new 548

wave of the pandemic globally. These VoCs are the prod- 549

uct of suites of mutations, some of which interact in a non- 550

linear fashion and have complicated our attempts to resolve 551

which mutations are sole signatures of pathogenic potential 552

(specifically, increased transmission and/or possible escape 553

from vaccine-induced immunity) [69, 70]. I argue that the 554

key to properly characterizing these mutations resides in an 555

understanding of how environmental context shapes their ef- 556

fect. That is, host structure, demographics (e.g., age), and 557

other factors may influence how a given SARS-CoV-2 muta- 558

tion interacts with others, creating a variant of concern. 559

Notably absent from my introduction of the mutation ef- 560

fect reaction norm are analytical descriptions in the formal 561

parlance of quantitative genetics. This is unlike the reaction 562

norm, which has been the subject of these efforts in the past 563

[71, 23, 72]. And the existence of analytically inspired stud- 564

ies in related topics, such as the use of rank orders of geno- 565

types to infer genetic interactions [48, 39], or those that have 566

examined the fate of mutations in fluctuating environments 567

[73] suggest that similar formalisms may exist for the muta- 568

tion effect reaction norm. This constitutes a future direction 569

of investigation. 570

These gaps notwithstanding, the mutation effect reaction 571

norm may encourage evolutionary geneticists to add nuance 572

to conversations about how genotype relates to phenotype. 573

Unidimensional questions about the contributions of a muta- 574

tion to a phenotype are mostly insufficient. Moving forward, 575

we should consider mutation effects with respect to the mul- 576

tidimensional environments which define the natural world. 577
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Term Data Interpretation

Reaction norm or norm of
reaction

The performance, phenotype or
trait value for different alleles,
strains, mutants, variants, or
forms, or populations, across an
environmental gradient (continu-
ous or other)

Used to identify and measure the effects
of genes, environments, gene x environ-
ment interactions, phenotypic plasticity,
and other related properties in quantitative
genetics, evolutionary genetics, and ecol-
ogy.

Mutation effect reaction
norm (Mu-RN)

The phenotypic effect of indi-
vidual or collections of muta-
tions across a set of environ-
ments (continuous or other)

Used to measure how environments in-
fluence the effect of individual mutations,
the interaction between suites of muta-
tions, and epistatic interactions. It can help
to explain how the environmental sculpts
the topography of adaptive landscapes via
environment-dependent mutation effects.

Table 1: Reaction norm vs. Mutation effect reaction norm. This table briefly describes the differences between the two
abstractions
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