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Abstract

Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal

malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from

74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco

exposure; human papilloma virus was detectable by sequencing of DNA from infected tumors. In

addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and

HRAS), the analysis revealed many genes not previously implicated in this malignancy. At least

30% of cases harbored mutations in genes that regulate squamous differentiation (e.g., NOTCH1,

IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More

generally, the results indicate the ability of large-scale sequencing to reveal fundamental

tumorigenic mechanisms.

HNSCC is the sixth most common non-skin cancer in the world, with an incidence of

~600,000 cases per year and mortality rate of ~50% (1). The major risk factors for HNSCC

are tobacco use, alcohol consumption, and infection with human papilloma virus (HPV) (2).

Despite advances in our knowledge of its epidemiology and pathogenesis, the survival rates

for many types of HNSCC have improved little over the past forty years (3). As such, a

deeper understanding of HNSCC pathogenesis is needed to promote the development of

improved therapeutic approaches.

We performed solution-phase hybrid capture and whole exome sequencing on paired DNA

samples (tumors and matched whole blood) from 92 HNSCC patients. Most anatomic sites

were represented (oral cavity, oropharynx, hypopharynx, larynx, and sinonasal cavity; Fig.

1C and table S1). Of these patients, 89% and 79% reported a history of tobacco and alcohol

use, respectively (table S1). Initially, 14% of all tumors and 53% of oropharyngeal tumors

were found positive for HPV based on HPV-16 PCR/in situ hybridization (Fig. 1 and table

S1). Tumor copy-number analysis using SNP arrays (fig. S1) replicated previous findings of

frequent CCND1 amplifications, CDKN2A deletions, and rarer MYC, EGFR, ERBB2, or

CCNE1 amplifications (4), indicating that the collection is genetically representative of

HNSCC.

We achieved 150-fold mean sequence coverage of targeted exonic regions, with 87% of loci

covered at >20-fold (figs. S2 and S3 and table S2). We excluded from further analysis 18

tumors in which initial analysis revealed extensive stromal admixture (figs. S3 and S4 and

supplemental methods), leaving 74 samples for analysis. We also performed whole genome

sequencing (31-fold mean coverage, table S3) on an oropharyngeal tumor and a

hypopharyngeal tumor.

On average, 130 coding mutations per tumor were identified, 25% of which were

synonymous (Fig. 1A). We queried 321 of these mutations by mass spectrometric

genotyping and validated 288 (89.7%). However, the validation rate increased to 95.7% for

mutations whose allelic fraction was >20% of total DNA, suggesting that the sensitivity of

mass spectrometric genotyping may be reduced in the setting of increased stromal

admixture.

The overall HNSCC mutation rate was comparable to other smoking-related malignancies

such as small cell lung cancer and lung adenocarcinoma (5, 6). The mutation rate of HPV-

positive tumors was approximately half of that found in HPV-negative HNSCC (mean of

2.28 mutations/Mb compared with 4.83 mutations/Mb; p = 0.004), consistent with
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epidemiologic studies suggestive of biological differences between HPV-positive and HPV-

negative disease. The two tumors that underwent whole-genome sequencing harbored 19

(HN_62469) and 111 (HN_62699) “high-confidence” somatic rearrangements, respectively

(fig. S5 and tables S4 and S5).

Although base mutation rates varied widely (0.59–24 mutations/Mb; Fig. 1A), the average

rate of guanosine-to-thymidine (G→T) transversions at non-CpG sites (12% ± 6%) was

characteristic of tobacco exposure (Fig. 1B). Among patients who reported a smoking

history, tumors with the highest fraction of G→T transversions showed a tendency toward

increased overall mutation rates (p = 0.02) (Fig. 1, B and C). Thus, the G→T transversion

frequency may represent a robust readout of “functional” tobacco exposure. We observed

differences in mutation rates and G→T transversion frequencies by tumor site even when

restricting the analysis to HPV-negative tumors. In particular, HPV-negative laryngeal

cancers exhibited higher mutation rates and G→T transversion frequencies compared to

HPV-negative cancers found in the oral cavity, oropharynx, hypoharynx, or sinonasal cavity

(p = 0.008 and p < 0.0001, respectively, Fig. 1, A to C, and fig. S8).

Notwithstanding the overall apparent correlation between G→T transversions and mutation

rates, several “outlier” tumors showed elevated mutation rates despite a low fraction of

G→T transversions. Some of these tumors contained mutations in one or more DNA repair

genes. Strikingly, both HNSCC tumors with the highest mutation rates occurred in non-

smokers (Fig 1). These results raise the possibility that some HNSCC tumors may contain

genetic alterations that promote elevated mutation rates apart from the effects of tobacco

(SOM).

To explore the biological basis of HNSCC in an unbiased manner, we used the MutSig

algorithm (7) to identify genes harboring more mutations than expected by chance, given the

total number of mutations detected. This analysis revealed 39 genes with high statistical

significance (False discovery rate q < 0.1; figs. S6 and S7 and tables S6 and S7). Compared

to recent cancer genome projects such as ovarian cancer and multiple myeloma (7, 8), our

analysis of HNSCC revealed a larger number of significantly mutated genes. However, the

majority of mutated genes did not reach statistical significance (table S6), suggesting that

many may contain passenger events. Thus, we hypothesized that the MutSig algorithm

identified an enriched set of genes that likely underwent positive selection during

tumorigenesis. Toward this end, numerous significant genes had previously been implicated

in HNSCC, including TP53, CDKN2A, HRAS, PTEN, and PIK3CA (4) (q < 0.1) providing

support for the validity of the approach. TP53, the most commonly mutated gene in

HNSCC, was also disrupted by a 100 kb deletion detected by whole genome sequencing,

and validated with a focal copy number change detected by SNP array (fig. S9). However,

most significantly mutated genes had not previously been implicated in HNSCC.

To explore their biological significance, we first considered mutated HNSCC genes that also

undergo frequent genetic alterations in other cancers. NOTCH1 was particularly noteworthy:

point mutations affecting this gene occurred in 11% of the HNSCC tumors (Figs. 2 and 3

and tables S6 and S7), and focal deletions were seen in two additional tumors (Fig. 2).

Previous evidence from animal models had implicated Notch dysregulation in cutaneous

squamous cell carcinoma (9), but somatic NOTCH1 mutations had not previously been

identified in squamous malignancies. In addition, we found non-synonymous point

mutations in NOTCH2 or NOTCH3 in 11% of the samples (Figs. 2 and 3 and table S6) and

a focal deletion of NOTCH3 in one additional case (Fig. 2). Whereas NOTCH1 contains

activating mutations in T-cell acute lymphoblastic leukemia and chronic lymphocytic

leukemia (10, 11) and NOTCH2 contains activating mutations in diffuse large B-cell
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lymphoma (12), the mutations in HNSCC appeared to be loss-of-function mutations,

consistent with those recently described for myeloid leukemia (13).

Several NOTCH1 nonsense mutations in HNSCC are predicted to generate truncated

proteins that lack the C-terminal ankyrin repeat domain, a region critical for transactivation

of target genes (Fig. 2) (14). Five additional mutations (four missense and one in-frame

deletion) cluster in highly conserved residues situated within or nearby the extracellular

ligand binding domain (Fig. 2). Two others are splice-site mutations that may generate

truncated proteins or delete critical functional residues (e.g., ligand binding or activation by

proteolytic cleavage; Fig. 2). Together, these findings suggested that NOTCH dysregulation

—and more generally mechanisms governed by NOTCH signaling—contribute to the

genesis or progression of HNSCC.

To further interpret the mutations identified in HNSCC, we looked for functionally related

“gene sets” harboring an excess of mutations. For this purpose, we considered an expanded

list of 76 genes (q < 0.25; table S7) and looked for enrichment in functional gene sets. The

highest-scoring gene set contained genes related to epidermal development (table S8). The

significantly mutated genes (q < 0.25) in this gene set included NOTCH1, IRF6, and TP63.

These genes are all clearly related to squamous differentiation. The most abundantTP63

protein product in squamous epithelia, known as ΔNp63, promotes renewal of basal

keratinocytes by a mechanism that requires downregulation of NOTCH1 and CDKN2A (15–

17). IRF6, in turn, has been implicated in the proteasomal degradation of ΔNp63 (18).

Furthermore, terminal differentiation in squamous epithelia is induced in response to

genotoxic stress by a mechanism involving p53-dependent transactivation of NOTCH1—an

activity antagonized by ΔNp63 (19). Because HNSCC involves transformation of the

squamous epithelial lineage, which is histologically similar to the epidermis, these findings

led us to hypothesize that mutations in such genes disrupt a stratified squamous

development/differentiation program in precursor cells of this malignancy.

Further inspection of recurrent mutations identified eleven additional genes carrying

disruptive mutations that function in the squamous differentiation program. The evidence

includes mouse knockouts with defects in squamous epithelial differentiation (Notch1,

Notch2, Irf6, Tp63, Ripk4, Cdh1, Ezh2, and Dicer1) (Fig. 3A) (20–25); human germline

mutations causing orofacial clefting syndromes (IRF6, TP63, CDH1, and MLL2) (26) and

knockdown or deregulated expression leading to a differentiation block and increased

proliferation in cultured human keratinocytes (TP63, NOTCH1, IRF6, MED1) (15, 27).

Thus, many mutated genes in HNSCC may govern squamous differentiation. These

mutations may promote an immature and more proliferative basal-like phenotype, consistent

with known stages of progression and markers of differentiation in HNSCC (Fig. 3B).

We also found recurrent mutations in less well-characterized genes. For example, mutations

in SYNE1 and SYNE2 were observed in 20% and 8% of HNSCC samples, respectively (fig.

S7 and tables S6 and S7). These genes have been implicated in the regulation of nuclear

polarity (28), a process that operates upstream of NOTCH1 in squamous epithelia (Fig. 3B)

(29). RIMS2 and PCLO mutations were seen in 11% and 12% of cases, respectively; the

corresponding proteins mediate calcium sensing (30), another crucial process for terminal

squamous differentiation (20).

Beyond the genes directly involved in squamous differentiation, we found mutations

involving two apoptosis-related genes: CASP8 (8%) and DDX3X (4%) (fig. S7 and table

S7). Thus, suppression of apoptosis may also contribute to HNSCC pathogenesis, perhaps in

concert with disrupted squamous maturation (Fig. 3B). The histone methyltransferases

PRDM9 (11%) and EZH2 (6%) also show highly significant mutation rates.
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Viral infection by HPV figures prominently into the etiology of a subset of HNSCC, and is

most frequently detected by in situ hybridization (ISH) or p16 immunohistochemistry. We

reasoned that HNSCC genome sequencing might also offer a robust HPV detection method.

We therefore utilized the PathSeq algorithm (31) and a viral sequence database to identify

HNSCC sequencing reads that aligned to HPV genomes. We observed HPV-16 sequence

reads in 14 tumors (19%) (range: 1–40,000 reads), 11 of which were also positive by

HPV-16 PCR (p < 0.0001; table S9). The three tumors that were HPV-negative by PCR had

very low HPV-16 sequence read counts (fig. S10); this may reflect reduced HPV dosage or

technical contamination. We observed an inverse correlation between HPV status

(determined by sequencing) and TP53 mutation, as shown previously (p = 0.006) (32).

These data underscore the potential utility of massively parallel sequencing to detect both

human and non-human etiologic agents in tumor specimens.

Given that NOTCH pathway inhibitors have entered clinical trials, the discovery of loss-of-

function NOTCH1 mutations in HNSCC may have important therapeutic implications. A

recent clinical trial of a gamma secretase inhibitor (which inhibits NOTCH) was halted in

part due to an increased frequency of skin cancers in the treatment arm (33). This clinical

observation is consistent with those mouse models, in which cutaneous knockout of Notch1

promotes skin tumor formation (24). Our results suggest that patients taking gamma

secretase inhibitors may require monitoring for the development of both cutaneous and

head/neck squamous malignancies.

Despite the anatomical distinctions that dominate current clinical management of HNSCC,

our results point to several unifying features at the molecular level. For example, TP53

inactivation–either through somatic mutation or HPV infection–appears nearly universal in

this malignancy. The present study suggests that disruption of the squamous differentiation

program may represent an additional overarching feature that occurs by numerous genetic

mechanisms across tumors from multiple anatomic sites. Thus, HNSCC pathogenesis may

involve a maturation arrest or a lineage dependency similar to that seen in other cancer types

(34). However, HNSCC appears to be unusual in that the mutational etiology is diverse, in

contrast to leukemia and prostate cancer where developmental pathologies appear to be

caused by lesions in only a few target genes. Rational therapeutic avenues targeting this

block in squamous differentiation may require synthetic lethal approaches to identify

specific cellular dependencies arising from NOTCH inactivation, TP63 alteration, or other

events that deregulate the program. Finally, our results demonstrate that whole exome

sequencing of large numbers of tumor/normal pairs should enable fundamental new insights

into tumor biology that are relevant to many human cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Mutation rates, base substitution frequencies, and rearrangements in head and neck cancers.

(A) Rate of synonymous and non-synonymous mutations, expressed in mutations per

megabase of covered target sequence. Non-synonymous mutation rates range from 0.43 to

17.1 mutations/megabase (mean = 3.3). (B) Breakdown of individual base substitution rates

used for mutation significance, for the same samples as panel (A). The samples were

ordered by the rate of G→T transversions, which are indicative of smoking-induced

mutations. (C) Key clinical parameters for the samples described in panels (A) and (B)

(table S10). The first row indicates HPV detection by sequencing, the second row indicates

HPV detection by real-time PCR.
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Fig. 2.
NOTCH gene mutations identified in head and neck cancer. A. schematic diagram of the

domain structure of NOTCH1. (domain structures of NOTCH2 and NOTCH3 are similar).

All nonsense mutations occur upstream of the TAD domain, which is required for

transactivation of target genes. Each arrowhead represents a single point mutation in an

individual tumor, of the class indicated to the left.
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Fig. 3.
Genetic disruption of a squamous differentiation program in head and neck cancers. (A)

Heatmap representation of individual mutations present in a series of 74 tumors, represented

in columns. (Top) HPV status by tumor. (Middle) Matrix of mutations in individual genes

by type of mutation and tumor. (Left) Number of mutations in each gene. Percentages

represent the fraction of tumors harboring at least one mutation in the specified gene. (Right)

Delected recurrently mutated genes ranked by q-value. Genes that define the core

differentiation cluster are listed in red. (B) Proposed partial wiring diagram of the molecular

circuitry of HNSCC. Blue, loss of function; red, gain of function. Numbers listed beneath

each protein represent the fraction of tumors harboring mutations, amplifications, or

deletions in the corresponding genes.
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