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Abstract. Concurrency can be studied at different yet consistent levels of ab-
straction: from individual behavioural observations, to more abstract concurrent
histories which can be represented by causality structurescapturing intrinsic, in-
variant dependencies between executed actions, to system level devices such as
Petri nets or process algebra expressions. Histories can then be understood as
sets of closely related observations (here step sequences of executed actions).
Depending on the nature of the observed relationships between executed actions
involved in a single concurrent history, one may identify different concurrency
paradigmsunderpinned by different kinds of causality structures (e.g., the true
concurrency paradigm is underpinned by causal partial orders with each history
comprising all step sequences consistent with some causal partial order). For
some paradigms there exist closely matching system models such as elementary
net systems (EN-systems) for the true concurrency paradigm, or elementarynet
systems with inhibitor arcs (ENI-systems) for a paradigm where simultaneity of
executed actions does not imply their unorderedness.
In this paper, we develop a system model fitting the least restrictive concurrency
paradigm and its associated causality structures. To this end, we introduceENI-
systems withmutexarcs (ENIM-systems). Each mutex arc relates two transitions
which cannot be executed simultaneously, but can be executed in any order. To
link ENIM-systems with causality structures we develop a notion of process fol-
lowing a generic approach (semantical framework) which includes a method to
generate causality structures from the new class of processes.
Keywords: concurrency paradigms, elementary net systems, inhibitorarcs, mu-
tex arcs, semantical framework, step sequences, process and causality semantics.

1 Introduction

Concurrency can be studied at different levels of abstraction, from the lowest level
dealing with individual behavioural runs (observations),to the intermediate level of
more abstract concurrent histories which can be represented by causality structures (or
order structures) capturing intrinsic (invariant) dependencies between executed actions,
to the highest system level dealing with devices such as Petri nets or process algebra
expressions. Clearly, different descriptions of concurrent systems and their behaviours
at these distinct levels of abstractions must be consistentand their mutual relationships
well understood.
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Abstract concurrent histories can be understood as sets of closely related obser-
vations. In this paper, each observation will be astep sequence(or stratified poset)
of executed actions. For example, Figure 1(a) depicts anEN-system generating three
step sequences involving the executions of transitionsa, b andc, viz. σ1 = {a, b}{c},
σ2 = {a}{b}{c} andσ3 = {b}{a}{c}. They can be seen as belonging to a single ab-
stract history∆1 = {σ1, σ2, σ3} underpinned by a causal partial order in whicha and
b are unordered and they both precedec. From our point of view it is also important
to note that∆1 adheres to thetrue concurrency paradigmcaptured by the following
general statement:

Given two executed actions (e.g.,a and b in ∆1), they can be observed as
simultaneous (e.g., inσ1) ⇐⇒ they can be observed in both orders (e.g.,a
beforeb in σ2, andb beforea in σ3). (TRUECON)

Concurrent histories adhering to such a paradigm are underpinned bycausal partial
orders, in the sense that each history comprisesall step sequences consistent with some
causal partial order on executed actions. Elementary net systems [18] (EN-systems) pro-
vide a fundamental and natural system level model for the true concurrency paradigm.
A suitable link between anEN-system and histories like∆1 can be formalised using
the notion of a process or occurrence net [1, 18]. Full consistency between the three
levels of abstraction can then be established within a generic approach (thesemantical
frameworkof [14]) aimed at fitting together systems (nets from a certain class of Petri
nets), abstract histories and individual observations.

(a)

c d

a b

(b)

c d

a b

(c)

c d

a b

Fig. 1. EN-system (a); ENI-system with an inhibitor arc joining the output place of transition b

with transitiona implying thata cannot be fired if the output place ofb is not empty (b); and
ENIM-system with a mutex arc between transitionsa and b implying that the two transitions
cannot be fired in the same step (c).

Depending on the exact nature of relationships holding for actions executed in a
single concurrent history, similar to (TRUECON) recalled above, [9] identified eight
general concurrency paradigms,π1–π8, with true concurrency being another name for
π8. Another paradigm isπ3 characterised by (TRUECON) with ⇐⇒ replaced by⇐=.
This paradigm has a natural system level counterpart provided by elementary net sys-
tems with inhibitor arcs (ENI-systems). Note that inhibitor arcs (as well as activator arcs
used later in this paper) are well suited to model situationsinvolving testing for a spe-
cific condition, rather than producing and consuming resources, and proved to be useful
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in areas such as communication protocols [2], performance analysis [4] and concurrent
programming [5].

For example, Figure 1(b) depicts anENI-system generating two step sequences in-
volving transitionsa, b andc, viz. σ1 = {a, b}{c} andσ2 = {a}{b}{c}. The two step
sequences can be seen as belonging to the abstract history∆2 = {σ1, σ2} adhering to
paradigmπ3, but not adhering to paradigmπ8 as there is no step sequence in∆2 in
whichb is observed beforea (even thougha andb are observed inσ1 as simultaneous).
Another consequence of the latter fact is that paradigmπ3 histories are underpinnednot
by causal partial orders but rather by causality structuresintroduced in [10] — called
stratified order structures— based on causal partial orders and, in addition, weak causal
partial orders. Again, full consistency between the three levels of abstraction can then
be established within the semantical framework of [14].

In this paper, we focus onπ1 which simply admits all concurrent histories and is
the least restrictive of the eight general paradigms of concurrency investigated in [9].
Concurrent histories conforming to paradigmπ1 are underpinned by yet another kind
of causality structures introduced in [9] — calledgeneralised stratified order structures
— based on weak causal partial orders andcommutativity. Intuitively, two executed
actions commute if they may be observed in any order in step sequences belonging to a
history, but they are never observed as simultaneous.

The aim of this paper is to develop the hitherto missing system level net model
matching paradigmπ1. The proposed solution consists in extendingENI-systems with
mutexarcs, where each mutex arc relates two transitions which cannot be executed si-
multaneously, even when they can be executed in any order. Mutex arcs are therefore
a system level device implementing commutativity (for an early attempt aimed at cap-
turing such a feature see [16]). The resultingENIM-systems provide a natural match for
histories conforming to paradigmπ1, in the same way asEN-systems andENI-systems
provided a natural match for histories conforming to paradigmsπ8 andπ3, respectively.

For example, Figure 1(c) depicts anENIM-system generating two step sequences
involving transitionsa, b and c, viz. σ2 = {a}{b}{c} andσ3 = {b}{a}{c}. They
belong to an abstract history∆3 = {σ2, σ3} adhering to paradigmπ1, in which the
executions ofa andb commute. Clearly,∆3 doesnot conform to paradigmsπ8 andπ3
as there is no step sequence in∆3 in whicha andb are observed as simultaneous.

We prove full consistency between the three levels of abstraction for paradigmπ1.
To this end, we once more use the semantical framework of [14]. In doing so, we define
processes ofENIM-systems and demonstrate that these new processes provide the de-
sired link with the generalised stratified order structuresof paradigmπ1. To achieve this
we introduce a notion of gso-closure making it possible to construct generalised strati-
fied order structures from more basic relationships betweenexecuted actions involved in
processes ofENIM-systems. Note thatENIM-systems were first sketched in [12] how-
ever this preliminary presentation was still incomplete. In this paper, we provide the
missing details and harmonise the treatment of paradigmπ1 with those of paradigms
π8 andπ3.

The paper is organised in the following way. To motivate our subsequent study
of causality in nets with mutex arcs, we first briefly recall the approach of [9] which
investigates general concurrency paradigms and the associated causality structures. We



4 J.Kleijn and M.Koutny

then recall the semantical framework of [14]. After that we formally introduceENIM-
systems and develop their process semantics. The paper concludes with the proofs of
various results which collectively justify our claim thatENIM-systems provide a fully
satisfactory system model for paradigmπ1.

Basic notions and notations

Composing functionsf : X → 2Y and g : Y → 2Z is defined byg ◦ f(x)
df
=⋃

y∈f(x) g(y), for all x ∈ X . Restricting functionf to a sub-domainZ is denoted
by f |Z . RelationP ⊆ X × X is irreflexive if (x, x) /∈ P for all x ∈ X ; transitive if
P ◦ P ⊆ P ; its transitive and reflexive closure is denoted byP ∗; and its symmetric
closure byP sym df

= P ∪ P−1.
A relational structureis a tupleR

df
= (X,Q1, . . . , Qn) whereX is a finitedomain,

and theQi’s are binary relations onX (we can select its components using the subscript
R, e.g.,XR). Relational tuples,R andR′, areisomorphicif there is a bijectionξ from
the domain ofR to the domain ofR′ such that if we replace throughoutR each element
a by ξ(a) then the result isR′. For relational structures with the same domain and
arity,R andR′, we writeR ⊆ R′ if the subset inclusion holds component-wise. The
intersection

⋂
R of a non-empty setR of relational structures with the same arity and

domain is defined component-wise.
We assumethat all sets in this paper arelabelled, with the default labelling being

the identity function. If the labelling is irrelevant for a definition or result, it may be
omitted. If two domains are said to be the same, their labellings are identical.

A partially ordered set(or poset) is a relational structurepo
df
= (X,≺) consisting

of a finite setX and a transitive irreflexive relation≺ onX . Two distinct elementsa, b
of X areunordered, a a b, if neithera ≺ b nor b ≺ a holds. Moreover,a ≺

a
b if

a ≺ b or a a b. Posetpo is total if the relationa is empty, andstratified if ≃ is an
equivalence relation, wherea ≃ b if a a b ora = b. Note that if a poset is interpreted as
an observation of concurrent system behaviour, thena ≺ b means thata was observed
beforeb, whilea ≃ b means thata andb were observed as simultaneous.

A step sequenceis a sequence of non-empty setsσ
df
= X1 . . . Xk (k ≥ 0). We

will call σ singular if the stepsXi are mutually disjoint. In such a case, we have
that spo(σ)

df
= (

⋃
iXi,

⋃
i<j Xi × Xj) is a stratified poset. Conversely, each strati-

fied posetspo induces a unique singular step sequencesteps(spo) = X1 . . . Xk, with
eachXi being an equivalence class of≃ and(Xi × Xj) ⊆≺ for all i < j, satisfying
spo = spo(steps(spo)). We will identify each stratified posetspo with steps(spo) or,
equivalently, each singular step sequenceσ with spo(σ).

2 Paradigms of concurrency and order structures

Let∆ be a non-empty set ofstratified posets(or, equivalently, singular step sequences)
with the same domainX (or X∆).3 Intuitively, each poset in∆ is an observation of
an abstract history of a hypothetical concurrent system. Following the true concurrency

3 Note that [9] also considered total and interval poset observations.
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approach, [9] attempted to represent∆ using relational invariants onX . The basic idea
was to capture situations where knowing some (or all) invariant relationships between
executed actions involved in∆ would be sufficient to reconstruct the entire set of ob-
servations∆.

The approach of [9] identified a number offundamental invariantswhich can be
attributed to the observations in∆, each invariant describing a relationship between
pairs of executed actions which is repeated in all the observations of∆. In particular,
≺∆ comprises all pairs(a, b) such thata precedesb in every poset belonging to∆; in
other words,≺∆ representscausality. Other fundamental invariants are:⇋∆ (commu-
tativity, wherea⇋∆b means thata andb are never simultaneous),⊏∆ (weak causality,
wherea ⊏∆ b means thata is never observed afterb) and⊲⊳∆ (synchronisation, where
a ⊲⊳∆ b means thata andb are always simultaneous). One can show that knowing⇋∆

and⊏∆ is always sufficient to reconstruct∆. This is done assuming that∆ is invariant-
closedin the sense that∆ comprises all stratified posetsspo with the domainX which
respect all the fundamental invariants generated by∆, e.g.,a ≺∆ b impliesa ≺spo b,
anda ⊏∆ b impliesa ≺

a

spo b. We then call each invariant-closed set of observations a
(concurrent) history. Being invariant-closed is a natural assumption when constructing
an abstract view of a possibly large set of individual observations, and has always been
tacitly assumed in the causal partial order view of concurrent computation.

Depending on the underlying system model of concurrent computation, some addi-
tional constraints on histories∆ may be added. In particular, each design may adhere
to the ‘diagonal rule’ — or ‘diamond property’ — by which simultaneity is the same as
the possibility of occurring in any order, i.e., for alla, b ∈ X :

(∃spo ∈ ∆ : a aspo b) ⇐⇒ (∃spo ∈ ∆ : a ≺spo b) ∧ (∃spo ∈ ∆ : b ≺spo a) . (π8)

For example,π8 is satisfied by concurrent histories generated byEN-systems.
Constraints likeπ8 — calledparadigmsin [8, 9] — are essentially suppositions or

statements about the intended treatment of simultaneity and, moreover, allow one to
simplify the invariant representation of a history∆. In particular, if∆ satisfiesπ8 then
one can reconstruct∆ using just causality≺∆ (which is always equal to the intersection
of ⇋∆ and⊏∆). This is the essence of the true concurrency paradigm basedon causal
partial order.

In general, knowing≺∆ is insufficient to reconstruct∆. For example, if we weaken
π8 to the paradigm:

(∃spo ∈ ∆ : a ≺spo b) ∧ (∃spo ∈ ∆ : b ≺spo a) =⇒ (∃spo ∈ ∆ : a aspo b) (π3)

then one needs to enhance causality with weak causality⊏∆ to provide an invariant
representation of∆. The resulting relational structure(X,≺∆,⊏∆) is an instance of
the following notion.

Definition 1 (stratified order structure [6, 11, 13, 14]).A stratified order structure(or
SO-structure) is a relational structuresos

df
= (X,≺,⊏) where≺ and ⊏ are binary

relations onX such that, for alla, b, c ∈ X :

S1: a 6⊏ a S3: a ⊏ b ⊏ c ∧ a 6= c =⇒ a ⊏ c
S2: a ≺ b =⇒ a ⊏ b S4: a ⊏ b ≺ c ∨ a ≺ b ⊏ c =⇒ a ≺ c .
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The axioms imply that≺ is a partial order relation, and thata ≺ b impliesb 6⊏ a. The
relation≺ represents the ‘earlier than’ relationship on the domain ofso, and the relation
⊏ the ‘not later than’ relationship. The four axioms capture the mutual relationship
between the ‘earlier than’ and ‘not later than’ relations between executed actions.

For every stratified posetspo, sos(spo)
df
= (Xspo ,≺spo ,≺

a

spo) is an SO-structure.
Moreover,spo is a stratified poset extensionof an SO-structuresos wheneversos ⊆
sos(spo). We denote this byspo ∈ ext(sos). Following Szpilrajn’s Theorem [19] that
any poset can be reconstructed by intersecting its total extensions, we have that any
SO-structure can be reconstructed from its stratified poset extensions.

Theorem 1 ([11]).If sos is anSO-structure thenext(sos) 6= ∅ and:

sos =
⋂

{sos(spo) | spo ∈ ext(sos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same domain, then⋂
{sos(spo) | spo ∈ SPO} is anSO-structure. ⊓⊔

The set of stratified poset extensions of anSO-structure is a concurrent history sat-
isfying paradigmπ3 [9]. Moreover, if a concurrent history∆ satisfiesπ3, then∆ =
ext(X∆,≺∆,⊏∆). Hence each abstract history∆ adhering to paradigmπ3 can be rep-
resented by theSO-structure(X∆,≺∆,⊏∆) [8].

If ∆ fails to satisfyπ3, knowing (X∆,≺∆,⊏∆) may be insufficient to recon-
struct∆. In the case of paradigmπ1 which places no restrictions of the kind captured
by π8 or π3 (i.e.,∆ is only assumed to be invariant-closed), one needs to usegeneral
SO-structures (GSO-structures).

Definition 2 (GSO-structure [7, 8]). A relational structuregsos
df
= (X,⇋,⊏) is a

GSO-structureif sos(gsos)
df
= (X,⇋ ∩ ⊏,⊏) is an SO-structure and the relation⇋

is symmetric and irreflexive. ⋄

In the above,⇋ represents the ‘earlier than or later than, but never simultaneous’ rela-
tionship, while⊏ again represents the ‘not later than’ relationship.

For a stratified posetspo, gsos(spo)
df
= (Xspo ,≺

sym
spo ,≺

a

spo) is aGSO-structure. Also,
spo is a stratified poset extensionof a GSO-structuregsos if gsos ⊆ gsos(spo). We
denote this byspo ∈ ext(gsos).

EachGSO-structure can be reconstructed from its stratified poset extensions, leading
to another generalisation of Szpilrajn’s Theorem.

Theorem 2 ([7, 8]).If gsos is a GSO-structure thenext(gsos) 6= ∅ and:

gsos =
⋂

{gsos(spo) | spo ∈ ext(gsos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same domain, then⋂
{gsos(spo) | spo ∈ SPO} is a GSO-structure. ⊓⊔
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The set of stratified poset extensions of aGSO-structure is a concurrent history.
Moreover, if∆ is a concurrent history, then∆ = ext(X∆,⇋∆,⊏∆). Hence each ab-
stract history∆ can be represented by theGSO-structure(X∆,⇋∆,⊏∆) [8].

As already mentioned, paradigmπ8 and its associated causal posets(X,≺∆) pro-
vide a match for concurrent histories generated byEN-systems. Similarly, one can
show that paradigmπ3 and its associatedSO-structures(X,≺∆,⊏∆) provide a match
for concurrent histories generated byENI-systems. In this paper, we will extendENI-
systems with mutex arcs. The resultingENIM-systems will provide a match for the most
general paradigmπ1, and the notion of an abstract history of anENIM-system will be
captured throughGSO-structures.

Constructing order structures

We end this section describing ways of constructingSO-structures andGSO-structures
from more basic, or direct, relationships. The idea is to proceed similarly as when
constructing posets from acyclic relations through the operation of transitive closure.
The definitions and results in this section are a new contribution to the theory ofGSO-
structures. Moreover, they are central for proving our subsequent results concerning
nets with mutex arcs.

We first recall how the notion of transitive closure was lifted to the level ofSO-
structures. Letµ = (X,≺,⊏) be a relational structure (not necessarily anSO-structure).
Intuitively,≺ indicates which of the executed actions inX are directly causally related,
and⊏ which are directly weakly causally related. Theso-closureof µ is defined as:

µso df
= (X,α, γ \ idX)

whereγ
df
= (≺ ∪ ⊏)∗, α

df
= γ ◦ ≺ ◦ γ and idX is the identity onX . Moreover,µ is

so-acyclicif α is irreflexive. In such a case,µso is anSO-structure [10].

We will now show how to constructGSO-structures. Letρ = (X,≺,⊏,⇋) be a
relational structure. In addition to the two relations appearing also in theµ above,⇋
indicates which of the executed actions may be observed in any order, but not simulta-
neously. Thegso-closureof ρ is defined as:

ρgso
df
= (X,ψ, γ \ idX)

whereψ
df
= αsym ∪ βsym ∪⇋ with β

df
= ⊏

∗ ◦ (⇋ ∩ ⊏
∗) ◦ ⊏∗, in addition toα andγ

being defined as forµso. Moreover,ρ is gso-acyclicif ψ is irreflexive and symmetric.

Proposition 1. If ρ is gso-acyclic thenρgso is a GSO-structure.

Proof. We first observe that(i) γ = (γ◦≺◦γ) ∪ ⊏
∗, (ii) γ = γ◦γ, and(iii)α∪β ⊆ γ.

Moreover,(iv) α−1 ∩ γ = ∅ and(v) β−1 ∩ γ = ∅. The two latter properties follow
from (ii) and irreflexivity ofα andβ (which in turn follows from irreflexivity ofψ and
α ∪ β ⊆ ψ).

Clearly,γ\idX is irreflexive, andψ is symmetric and irreflexive (by gso-acyclicity).
Hence it suffices to show thatsos

df
= (X,ψ ∩ (γ \ idX), γ \ idX) is anSO-structure.
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S1&S2:Clearly,γ \ idX is irreflexive, andψ ∩ (γ \ idX) ⊆ γ \ idX .

S3:(γ \ idX) ◦ (γ \ idX) ⊆ γ holds by(ii).

S4:We will show that(ψ∩(γ\idX))◦(γ\idX) ⊆ ψ∩(γ\idX). Our first observation is
thatψ∩(γ\idX) = ψ∩γ asψ is irreflexive. Hence it suffices to show that(ψ∩γ)◦γ ⊆
ψ ∩ γ. We have that:

ψ ∩ γ = (αsym ∪ βsym ∪⇋)∩ γ =(iv,v) (α ∪ β ∪ ⇋)∩ γ =(iii) α ∪ β ∪ (⇋∩ γ)

which in turn implies that:

(ψ ∩ γ) ◦ γ = (α ∪ β ∪ (⇋ ∩ γ)) ◦ γ =
(α ◦ γ) ∪ (β ◦ γ) ∪ ((⇋ ∩ γ) ◦ γ) =(i,ii)

α ∪ (β ◦ ((γ ◦ ≺ ◦ γ) ∪ ⊏
∗)) ∪ ((⇋ ∩ γ) ◦ ((γ ◦ ≺ ◦ γ) ∪ ⊏

∗)) =
α ∪ (β ◦ γ ◦ ≺ ◦ γ) ∪ (β ◦⊏∗) ∪ ((⇋ ∩ γ) ◦ γ ◦ ≺ ◦ γ) ∪ ((⇋ ∩ γ) ◦⊏∗) ⊆
α ∪ α ∪ β ∪ α ∪ ((⇋ ∩ γ) ◦⊏∗) =
α ∪ β ∪ ((⇋ ∩ ((γ ◦ ≺ ◦ γ) ∪ ⊏

∗)) ◦⊏∗) =
α ∪ β ∪ ((⇋ ∩ (γ ◦ ≺ ◦ γ)) ◦⊏∗) ∪ ((⇋ ∩⊏

∗) ◦⊏∗) ⊆
α ∪ β ∪ α ∪ β = α ∪ β ⊆(iii) ψ ∩ γ .

As a result,S4holds as its other part is symmetric. ⊓⊔

Proposition 2. If ρ is gso-acyclic then(X,≺,⊏) is an so-acyclic relational structure
and:

ext(ρgso) = {spo ∈ ext((X,≺,⊏)so) | aspo ∩⇋ = ∅} .

Proof. That (X,≺,⊏) is so-acyclic follows immediately from irreflexivity ofψ and
α ⊆ ψ.

(⊆) Let spo ∈ ext(ρgso). Thenψ ⊆≺sym
spo andγ \ idX ⊆≺

a

spo. Thusαsym ⊆≺sym
spo and

γ\idX ⊆≺
a

spo which together withα ⊆ γ and irreflexivity ofα imply α ⊆≺spo . Hence
spo ∈ ext((X,≺,⊏)so). Moreover, we have⇋ ⊆≺sym

spo implyingaspo ∩⇋ = ∅.

(⊇) Let spo ∈ ext((X,≺,⊏)so) andaspo∩⇋ = ∅. Thenα ⊆≺spo andγ\idX ⊆≺
a

spo

and⇋ ⊆≺sym
spo (by aspo ∩ ⇋ = ∅ and irreflexivity ofψ and⇋ ⊆ ψ). Therefore, it

suffices to show thatβ ⊆≺spo .
Suppose that(a, b) ∈ β. Then there arex, y such thata ⊏

∗ x and(x, y) ∈ ⇋ ∩⊏
∗

andy ⊏
∗ b. By (x, y) ∈ ⇋ and irreflexivity ofψ and⇋ ⊆ ψ, we have thatx 6= y.

Thus, by the fact that⊏∗ \ idX ⊆ γ \ idX ⊆ ≺
a
spo andaspo ∩⇋ = ∅, we have that

x ≺spo y. Moreover, again by⊏∗\idX ⊆ γ \ idX ⊆ ≺
a

spo , we havea = x ∨ a ≺
a

spo x

andy = b ∨ y ≺
a

spo b. Hence, sincespo is a stratified poset,a ≺spo b. ⊓⊔

The above result is similar to the following general characterisation of stratified
poset extensions ofGSO-structures.

Proposition 3. If gsos = (X,⇋,⊏) is a GSO-structure then

ext(gsos) = {spo ∈ ext(sos(gsos)) | aspo ∩⇋ = ∅} .
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Proof. (⊆) Let spo ∈ ext(gsos). Then⇋ ⊆≺sym
spo and⊏ ⊆ ≺

a

spo . Hence:

⇋ ∩⊏ ⊆ ≺sym
spo ∩ ≺

a

spo = ≺spo ,

yieldingspo ∈ ext(sos(gsos)). Moreover,aspo ∩⇋ = ∅, by⇋ ⊆≺sym
spo .

(⊇) Let spo ∈ ext(sos(gsos)) andaspo ∩ ⇋ = ∅. The latter and irreflexivity of⇋
implies ⇋ ⊆≺sym

spo . Moreover,⊏ ⊆ ≺
a
spo , by spo ∈ ext(sos(gsos)). Hencespo ∈

ext(gsos). ⊓⊔

3 Fitting nets and order structures

The operational and causality semantics of a class of Petri netsPN can be related within
a common scheme introduced in [14]. It is reproduced here as Figure 2 whereN is a
net fromPN and:

– EX are executions (or observations) of nets inPN.
– LAN are labelled acyclic nets, each representing a history.
– LEX are labelled executions of nets inLAN.
– LCS are labelled causal structures (order structures) capturing the abstract causal

relationships between executed actions.

In this paper, the executions inEX step sequences, and the labelled executions inLEX

are labelled singular step sequences.

N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ǫ
ı

κ

Fig. 2. Semantical framework for a class of Petri netsPN. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

The maps in Figure 2 relate the semantical views inEX, LAN, LEX, andLCS:

– ω returns a set of executions, defining theoperationalsemantics ofN .
– α returns a set of labelled acyclic nets, defining anaxiomatic processsemantics

of N .
– πN returns, for each execution ofN , a non-empty set of labelled acyclic nets, defin-

ing anoperational processsemantics ofN .
– λ returns a set oflabelledexecutions for each process ofN , and after applyingφ

to such labelled executions one should obtain executions ofN .
– κ associates a labelledcausalstructure with each process ofN .
– ǫ andı allow one to go back and forth between labelled causal structures and sets

of labelled executions associated with them.
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The semantical framework captured by the above schema indicates how the different
semantical views should agree. According to the rectangle on the left, the operational
semantics of the Petri net defines processes satisfying certain axioms and moreover all
labelled acyclic nets satisfying these axioms can be derived from the executions of the
Petri net. Also, the labelled executions of the processes correspond with the executions
of the original Petri net. The triangle on the right relates the labelled acyclic nets from
LAN with the causal structures fromLCS and the labelled executions fromLEX. The
order structure defined by a labelled acyclic net can be obtained by combining execu-
tions of that net and, conversely, the stratified extensionsof the order structure defined
by a labelled acyclic net are its (labeled) executions. Thusthe abstract relations be-
tween the actions in the labelled causal structures associated with the Petri net will be
consistent with its chosen operational semantics.

To demonstrate that these different semantical views agreeas captured through this
semantical framework, it is sufficient to establish a seriesof results calledaims. As
there exist four simple requirements (calledproperties) guaranteeing these aims, one
can concentrate on defining the semantical domains and maps appearing in Figure 2
and proving these properties.

Property 1 (soundness of mappings)The mapsω,α, λ, φ, πN |ω(N), κ, ǫ andı|λ(LAN)
are total. Moreover,ω, α, λ, πN |ω(N) andǫ always return non-empty sets. ⋄

Property 2 (consistency)For all ξ ∈ EX andLN ∈ LAN,

ξ ∈ ω(N)
LN ∈ πN (ξ)

}
iff

{
LN ∈ α(N)
ξ ∈ φ(λ(LN )) .

⋄

Property 3 (representation) ı ◦ ǫ = idLCS. ⋄

Property 4 (fitting) λ = ǫ ◦ κ. ⋄

The above four properties imply that the axiomatic (defined throughα) and opera-
tional (defined throughπN ◦ ω) process semantics of nets inPN are in full agreement.
Also, the operational semantics ofN (defined throughω) coincides with the operational
semantics of the processes ofN (defined throughφ ◦ λ ◦α). Moreover, the causality in
a process ofN (defined throughκ) coincides with the causality structure implied by its
operational semantics (throughı ◦ λ). That is, we have the following.

Aim 1 α = πN ◦ ω. ⋄

Aim 2 ω = φ ◦ λ ◦ α. ⋄

Aim 3 κ = ı ◦ λ. ⋄

Thus, the operational semantics of the Petri netN and the set of labelled causal
structures associated with it are related byω = φ ◦ ǫ ◦ κ ◦ α.
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EN-systems with inhibitor arcs

Usually, the fundamental net class for which processes and causality are introduced are
EN-systems [18]. Here, however, we take elementary net systems with inhibitor arcs
(ENI-systems) and use them to show how the semantical framework can be instantiated.

An ENI-system is a tupleENI
df
= (P, T, F, Inh ,Minit ) with P andT finite and

disjoint sets ofplaces— drawn as circles — andtransitions— drawn as rectangles —,
respectively;F ⊆ (P × T ) ∪ (T × P ) the flow relation ofENI — the directed arcs in
the diagrams;Inh ⊆ P ×T its set ofinhibitor arcs — with small circles as arrowheads;
andMinit ⊆ P its initial marking. (In general, any subset of places is amarking, in
diagrams indicated by small black dots.) IfENI has no inhibitor arcs,Inh = ∅, then it
is anEN-system.

As usual, for every transition or placex we define its inputs•x
df
= {y | (y, x) ∈ F}

and outputsx•
df
= {y | (x, y) ∈ F}. Moreover,◦t

df
= {p | (p, t) ∈ Inh} are the inhibitor

places of transitiont. We also define for any subsetU of T :

•U
df
=

⋃

t∈U

•t and U• df
=

⋃

t∈U

t• and ◦U
df
=

⋃

t∈U

◦t .

A step ofENI is a non-empty setU of transitions such that(•t∪t•)∩(•u∪u•) = ∅,
for all distinctt, u ∈ U . A stepU ofENI isenabledat a markingM ofENI if •U ⊆M
and(U• ∪ ◦U) ∩M = ∅. Such a step can then beexecutedleading to the marking
M ′ df

= (M \ •U) ∪ U•. We denote this byM [U〉ENIM
′ or byM [U〉M ′ if ENI is

clear.
Thus the operational semantics ofENI is defined:ω(ENI ) comprises all step se-

quencesξ = U1 . . . Uk (k ≥ 0) such that there are markingsMinit =M0, . . . ,Mk with
Mi−1[Ui〉Mi, for i = 0, . . . , k − 1. We callMk a reachablemarking ofENI.

In what follows we will assume that each inhibitor placep of an ENI-systemENI

has acomplement placẽp such that•p = p̃• and•p̃ = p•; moreover|{p, p̃}∩Minit | =
1. It is immediate that|{p, p̃} ∩M | = 1, for all reachable markingsM and all places
p. Note that complement places can always be added toENI as this does not affect its
operational semantics.

Thus, forENI-systemsEX are step sequences. In addition, the labelled causal struc-
turesLCS areSO-structures, and the labelled executionsLEX will be labelled singular
step sequences. Next we introduce the labelled acyclic netsthat will form the semantical
domainLAN for the process semantics ofENI-systems. These nets will have activator
rather than inhibitor arcs.

Definition 3 (activator occurrence nets).Anactivator occurrence net(or AO-net) is a
tupleAON

df
= (P ′, T ′, F ′,Act , ℓ) such that:

– P ′, T ′ andF ′ are places, transitions and flow relation as inENI-systems.
– |•p| ≤ 1 and|p•| ≤ 1, for every placep.
– Act ⊆ P ′ × T ′ is a set of activator arcs (indicated by black dot arrowheads) andℓ

is a labelling forP ′ ∪ T ′.
– The relational structureρAON

df
= (T ′,≺loc,⊏loc) is so-acyclic, where≺loc and

⊏loc are respectively given by(F ′ ◦ F ′)|T ′×T ′ ∪ (F ′ ◦ Act) andAct−1 ◦ F ′, as
illustrated in Figure 3. ⋄
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(a) t u (b) t u (c) t u

Fig. 3.Two cases(a) and(b) definingt ≺loc u, and one case(c) definingt ⊏loc u.

We use�t
df
= {p | (p, t) ∈ Act} to denote the activator places of a transitiont,

and�U
df
=

⋃
t∈U

�t for the activator places of a setU ⊆ T ′. As for ENI-systems, a
step ofAON is a non-empty setU of transitions such that(•t ∪ t•) ∩ (•u ∪ u•) = ∅,
for all distinct t, u ∈ U . A stepU of AON is enabledat a markingM of AON if
•U ∪ �U ⊆ M . The execution of such aU is defined as forENI-systems and leads to
the marking (M \ •U) ∪ U•.

The defaultinitial andfinal markings ofAON areMAON
init andMAON

fin consisting
respectively of all placesp without inputs (•p = ∅) and all placesp without outputs
(p• = ∅). The behaviour ofAON is captured by the setλ(AON ) of all step sequences
from MAON

init to MAON
fin . The setreach(AON ) of markingsreachablein AON com-

prises all markingsM reachable fromMAON
init such thatMAON

fin is reachable fromM .
One can show that each step sequenceσ ∈ λ(AON ) is singular, and that its set of ele-
ments is exactly the set of transitionsT ′. For such a step sequenceσ, φ(σ) is obtained
from σ by replacing eacht by ℓ(t).

We defineκ(AON )
df
= ρsoAON which is guaranteed to be anSO-structure by the so-

acyclicity ofρAON [10].
As far as the mappingsǫ andι are concerned,ǫ is the set of stratified poset extensions
(or, equivalently, singular step sequences) of anSO-structure, andι is the intersection
of theSO-structures (or, equivalently, singular step sequences) corresponding to a set of
stratified posets with the same domain. Thus Theorem 1 immediately yields Property 3.

Finally, we give the axiomatic and operational process semantics of anENI-system
ENI = (P, T, F, Inh,Minit ).

Definition 4 (processes ofENI -systems).A processof ENI is an AO-netAON such
that its labellingℓ:

– labels the places ofAON with places ofENI .
– labels the transitions ofAON with transitions ofENI .
– is injective onMAON

init andℓ(MAON
init ) =Minit .

– is injective on•t andt• and, moreover,ℓ(•t) = •ℓ(t) andℓ(t•) = ℓ(t)•, for every
transitiont of AON .

– ℓ is injective on�t andℓ(�e) = ◦̃ℓ(t) for every transitiont ofAON .

We denote this byAON ∈ α(ENI ). ⋄

Definition 5 (processes construction).An AO-net generatedby a step sequenceσ =
U1 . . . Un ∈ ω(ENI ) is the last element in the sequenceAON 0, . . . ,AON n where
eachAON k

df
= (Pk, Tk, Fk, Ak, ℓk) is anAO-net such that:

Step 0:P0
df
= {p1 | p ∈Minit} andT0 = F0 = A0

df
= ∅.
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Stepk: GivenAON k−1 the sets of nodes and arcs are extended as follows:

Pk
df
= Pk−1 ∪ {p1+△p | p ∈ U•

k}

Tk
df
= Tk−1 ∪ {t1+△t | t ∈ Uk}

Fk
df
= Fk−1 ∪ {(p△p, t1+△t) | t ∈ Uk ∧ p ∈

•t}
∪ {(t1+△t, p1+△p) | t ∈ Uk ∧ p ∈ t•}

Ak
df
= Ak−1 ∪ {(p̃ △p̃, t1+△t) | t ∈ U ∧ p ∈ ◦t} .

In the above, the label of each nodeℓk(xi) is set to bex, and△x denotes the number
of the nodes ofAON k−1 labelled byx. We denote this byAON n ∈ πENI (σ). ⋄

Note thatπENI (σ) comprises exactly one net (up to isomorphism). The same holds for
πENIM (σ) defined later.

As one can show that the remaining properties are also satisfied, the semantical
framework forENI-systems holds [14].

4 Mutually exclusive transitions

We now introduce a new class of Petri nets by extendingENI-systems with mutex arcs
prohibiting certain pairs of transitions from occurring simultaneously (i.e., in the same
step). Consider Figure 4 which shows a variant of the producer/consumer scheme. In
this case, the producer is allowed to retire (transitionr), but never at the same time as
the consumer finishes the job (transitionf ). Other than that, there are no restrictions
on the executions of transitionsr andf . To model such a scenario we use a mutex arc
between transitionsr andf (depicted as an undirected edge). Note that mutex arcs are
relating transitions in a direct way. This should however not be regarded as an unusual
feature as, for example, Petri nets with priorities also impose direct relations between
transitions.

p0 p7

p1

p2

p3

p4

p5

p6
fm a g ur

Fig. 4.An ENIM-system modelling a producer/consumer system with the actions: ‘make item’m,
‘add item to buffer’a, ‘get item from buffer’g, ‘use item’u, ‘producer retires’r, and ‘consumer
finishes’f . Note: the producer can only retire if the buffer is empty (i.e.,p3 is empty).

An elementary net system with inhibitor and mutex arcs(or ENIM-system) is a tuple
ENIM

df
= (P, T, F, Inh,Mtx ,Minit ) such thatund(ENIM )

df
= (P, T, F, Inh,Minit ) is

theENI-systemunderlyingENIM andMtx ⊆ T ×T is a symmetric irreflexive relation
specifying themutexarcs ofENIM . Where possible, we retain the definitions intro-
duced forENI-systems. The notion of a step now changes however. Astep ofENIM is
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a non-empty setU of transitions such thatU is a step ofund(ENIM ) and in addition
Mtx ∩ (U ×U) = ∅. With this modified notion of a step, the remaining definitions per-
taining to the dynamic aspects of anENIM-system, includingω(ENIM ), are the same
as for the underlyingENI-systemund(ENIM ).

Proposition 4. ω(ENIM ) = {U1 . . . Uk ∈ ω(und(ENIM )) | Mtx∩
⋃

i Ui×Ui = ∅}.

Proof. Follows from the definitions. ⊓⊔

For theENIM-system of Figure 4, we have thatM [{r}〉M ′′[{f}〉M ′ as well as
M [{f}〉M ′′′[{r}〉M ′, whereM = {p2, p4, p6} andM ′ = {p0, p4, p7}. However,
M [{r, f}}〉M ′ which holds for the underlyingENI-system does not hold now asr and
f cannot be executed in the same step.

To deal with the behaviours ofENIM-systems in the context of the semantical frame-
work, we adapt the approach followed forENI-system as recalled above. The labelled
causal structures,LCS, are nowGSO-structures, while labelled executions,LEX, are
labelled singular step sequences, as before. The labelled acyclic nets,LAN, used for
the process semantics ofENIM-systems are introduced next.

Definition 6 (activator mutex occurrence nets).An activator mutex occurrence net
(or AMO-net) is a tupleAMON

df
= (P ′, T ′, F ′,Act ,Mtx ′, ℓ) such that:

– und(AMON )
df
= (P ′, T ′, F ′,Act , ℓ) is theAO-netunderlyingAMON andMtx ′ ⊆

T ′ × T ′ is a symmetric irreflexive relation specifying themutexarcs ofAMON .
– ρAMON

df
= (T ′,≺loc,⊏loc,Mtx ′), where≺loc and⊏loc are defined as forAO-nets

in Definition 3, is a gso-acyclic relational structure. ⋄

The part of gso-acyclicityρAMON which deals with the mutex arcs is illustrated in
Figure 5. We have there three transitions satisfyinga ⊏loc b ⊏loc c ⊏loc a. Hence, in
any execution involving all these transitions, they have tobelong to the same step. This,
however, is inconsistent with a mutex arc betweenb andc, and the gso-acyclicity fails
to hold because(a, a) belongs to⊏∗

loc ◦ (Mtx ′∩ ⊏
∗
loc) ◦⊏

∗
loc.

d

a

b

c

Fig. 5. A net which is not anAMO-net as it fails the gso-acyclicity test.

Then we letκ(AMON )
df
= ρgsoAMON be theGSO-structure generated byAMON .

Note that Proposition 1 guarantees the correctness of this definition. Moreover, it is
consistent with theSO-structure defined by its underlyingAO-net.

Proposition 5. (T ′,≺loc,⊏loc) is an so-acyclic relational structure.
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Proof. Follows from Proposition 2. ⊓⊔

As far as the mappingsǫ and ι are concerned,ǫ is the set of stratified poset (or,
equivalently, singular step sequences) extensions of aGSO-structure, andι is the inter-
section of theGSO-structures corresponding to a set of stratified posets withthe same
domain. Thus Theorem 2 immediately yields Property 3. Otherproperties are dealt with
later in this section.

The default initial and final markings ofAMON , as well as its step sequence exe-
cutions are defined exactly the same as for the underlyingAO-net under the proviso that
steps do not contain transitions joined by mutex arcs.

The following results yield more insight into the labelled executions of an activator
mutex occurrence net relative to its underlyingAO-net.
LetAMON = (P ′, T ′, F ′,Act ,Mtx ′, ℓ) be anAMO-net andAON = und(AMON ).

Proposition 6. λ(AMON ) = {U1 . . . Uk ∈ λ(AON ) | Mtx ′ ∩
⋃

i Ui × Ui = ∅}.

Proof. Follows from the definitions. ⊓⊔

Proposition 7. Letσ = U1 . . . Uk ∈ λ(AON ) be such that there is noi ≤ k for which
there exists a partitionU,U ′ of Ui such thatU1 . . . Ui−1UU

′Ui+1 . . . Uk ∈ λ(AON ).
Thenσ ∈ λ(AMON ).

Proof. By Proposition 6, it suffices to show that, for everyi ≤ k, (Ui×Ui)∩Mtx ′ = ∅.
Suppose this does not hold for somei ≤ k. Let κ(AON ) = (T ′,≺,⊏). From the
assumption made aboutσ it follows thatt ⊏ u, for all distinctt, u ∈ Ui. This, however,
contradicts the gso-acyclicity ofρAMON . ⊓⊔

Proposition 8. reach(AMON ) = reach(AON ).

Proof. (⊆) Follows from Proposition 6.
(⊇) Follows from Proposition 7 and the fact that each step sequence inλ(AON ) can
be ‘sequentialised’ into the form from the formulation of Proposition 7 by splitting the
steps into smaller ones. ⊓⊔

Proposition 9. A markingM belongs toreach(AMON ) iff there are no placesp, p′ ∈
M for which(p, p′) ∈ F ′ ◦ (≺loc ∪ ⊏loc)

∗ ◦ F ′.

Proof. Follows from Proposition 8 and Proposition 5.15 in [14]. ⊓⊔

Figure 6 depicts anAMO-net labelled with places and transitions of theENIM-
system of Figure 4. We have that both{a}{g}{r}{f} and{a}{g}{f}{r} belong to
φ(λ(AMON 0)), however,{a}{g}{f, r} does not.

Now we are ready to introduce process semantics forENIM-systems.

Definition 7 (processes ofENIM -systems).A processofENIM is anAMO-netAMON

such thatund(AMON ) is a process ofund(ENIM ) and, for all t, u ∈ T ′, we have
(t, u) ∈ Mtx ′ iff (ℓ(t), ℓ(u)) ∈ Mtx . We denote this byAMON ∈ α(ENIM ). ⋄
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p1

p4

p5

p3

p2

p4

p6

p0

p7

a r

g f

Fig. 6. An AMO-netAMON 0 with labels shown inside places and transitions.

Definition 8 (processes construction).An AMO-netgeneratedby a step sequenceσ =
U1 . . . Un ∈ ω(ENIM ) is the last net in the sequenceAMON 0, . . . ,AMON n where
eachAMON k

df
= (Pk, Tk, Fk, Ak,Mk, ℓk) is as in Definition 5 except thatMk

df
=

{(e, f) ∈ Tk × Tk | (ℓk(e), ℓk(f)) ∈ Mtx} is an added component. We denote this by
AMON n ∈ πENIM (σ) ⋄

The way in which mutex arcs are added in the process construction entails that some
of them may be redundant when, for example, the transitions they join are causally re-
lated. However, eliminating such redundant mutex arcs (which is possible by analysing
paths in theAMO-net) would go against the locality principle which is the basis of the
process approach. Indeed, this approach does not remove redundant causalities as this
would compromise the local causes and effects in the definition and construction of
process nets.

The AMON-net shown in Figure 6 is a process of theENIM-system of Figure 4
with φ(λ(AMON 0)) =

{
{a}{g}{f}{r}, {a}{g}{r}{f}

}
. Figure 7 shows the result

of applying the construction from Definition 8 to theENIM-system of Figure 4 and one
of its step sequences. Note that the resultingAMO-net is isomorphic to that shown in
Figure 6.

p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4

p24

p6

p16

p0

p10

p7

p17

a

a1 r

r1

g

g1

f

f1

Fig. 7. Process generated for theENIM-system in Figure 4 andσ
df
= {a}{g}{r}{f}.

Having instantiated the semantical framework forENIM-systems, we can now for-
mally establish their connection withGSO-structures by proving the remaining Proper-
ties 1, 2, and 4. Below we assume thatENIM is anENIM-system.

Proposition 10. Let σ a step sequence ofENIM , AMON an AMO-net,gsos a GSO-
structure, andSPO a set of stratified posets with the same domain.
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1. ω(ENIM ), α(ENIM ), λ(AMON ) andǫ(gsos) are non-empty sets.
2. κ(AON ) andι(SPO) are GSO-structures.
3. πENIM (σ) comprises anAMO-net.

Proof. In what follows, we use the notations introduced throughoutthis section.

(1) We haveω(ENIM ) 6= ∅ as the empty string is a valid step sequence ofENIM .
To showα(ENIM ) 6= ∅ one can take theAMO-net consisting of the initial marking of
ENIM with the identity labelling and no transitions. Thatǫ(gsos) 6= ∅ follows from
Theorem 2. Thatλ(AMON ) 6= ∅ follows from Proposition 7,λ(AON ) 6= ∅ and the
fact that each step sequence inλ(AON ) can be ‘sequentialised’ into the form from the
formulation of Proposition 7 by splitting the steps into smaller ones.

(2) Follows from Theorem 2 and Proposition 1.

(3) We have that an element ofπENIM (σ) with deleted mutex arcs is anAO-net. It
therefore suffices to show that the relation⊏

∗
loc ◦ (Mtx ′∩ ⊏

∗
loc) ◦⊏

∗
loc is irreflexive.

Suppose that(t, t) ∈ ⊏
∗
loc ◦ (Mtx ′∩ ⊏

∗
loc) ◦⊏

∗
loc. Then there aret = t1, . . . , tk = t

such that(ti, ti+1) ∈ ⊏loc for all i < k, and(tm, tj) ∈ Mn for somem < j ≤ k.
But this means thatt1, . . . , tk have been generated in the same step of the construction,
contradicting the definition of executability inENIM-systems. ⊓⊔

Proposition 11. Let ξ ∈ ω(ENIM ) andAMON ∈ πENIM (ξ).

1. AMON ∈ α(ENIM ).
2. ξ ∈ φ(λ(AMON )).

Proof. (1) By Proposition 10(3),AMON is anAMO-net. Moreover, by [14], we have
thatund(AMON ) ∈ α(und(ENIM )). Finally, the condition involving mutex arcs fol-
lows from the construction in Definition 8.

(2) By [14], ξ ∈ φ(λ(und(AMON ))). Henceξ = φ(σ) for someσ = U1 . . . Uk ∈
λ(und(AMON )). The latter, together withξ ∈ ω(ENIM ) and the consistency between
mutex arcs inENIM andAMON , means that there is no mutex arc joining two ele-
ments of anyUi. Hence, by Proposition 6,σ ∈ λ(AMON ). Thusξ ∈ φ(λ(AMON )).

⊓⊔

Proposition 12. LetAMON ∈ α(ENIM ) andξ ∈ φ(λ(AMON )).

1. ξ ∈ ω(ENIM ).
2. AMON ∈ πENIM (ξ).

Proof. (1) By [14], ξ ∈ ω(und(ENIM )). Also there isσ = U1 . . . Uk ∈ λ(AMON )
such thatξ = φ(σ). The latter, together with the consistency between mutex arcs in
ENIM andAMON , means that there is no mutex arc joining two elements of anyUi.
Hence, by Proposition 4,ξ ∈ ω(ENIM ).

(2) By [14], und(AMON ) ∈ πund(ENIM )(ξ). Moreover, the mutex arcs are added in
the same (deterministic) way to the underlying process nets, leading toAMON ∈
πENIM (ξ). ⊓⊔



18 J.Kleijn and M.Koutny

Hence Property 2 holds. We then observe that Property 3 is simply Theorem 2, and
Property 4 is proved below.

Proposition 13. LetAMON be anAMO-net. Thenλ(AMON ) = ǫ(κ(AMON )).

Proof. We have:

ǫ(κ(AMON )) = ext(ρgsoAMON ) = ext((T ′,≺loc,⊏loc,Mtx ′)gso) =(Prop. 2)
{spo ∈ ext((T ′,≺loc,⊏loc)

so) | aspo ∩Mtx ′ = ∅} =
{spo ∈ ǫ(κ(AON )) | aspo ∩Mtx ′ = ∅} =
{spo ∈ λ(AON ) | aspo ∩Mtx ′ = ∅} =(Prop. 6)λ(AMON ).

Note that we identify stratified posets with their corresponding singular labelled step
sequences. ⊓⊔

Finally, we can claim the semantical aims forENIM-systems.

Theorem 3. LetENIM be anENIM-system, andAMON be anAMO-net.

α(ENIM ) = πENIM (ω(ENIM ))
ω(ENI ) = φ(λ(α(ENIM )))

κ(AMON ) = ι(λ(AMON )) .

5 Concluding remarks

We already mentioned that trying to avoid redundant mutex arcs when constructing
processes would require investigation of various paths in the constructedAMO-net. In
particular, it would not be sufficient to only consider the most recent transition occur-
rences. Consider, for example, theENIM-system shown in Figure 8 and its step sequence
σ

df
= {b}{c}{b}{a}. The corresponding process, also shown in Figure 8, has two mu-

tex arcs adjacent to the transitiona1. We then observe that dropping the joining ofa1

with b1 would not be right, as the resultingAMON-net would generate a step sequence
{a1, b1}{c1}{b2}, or {a, b}{c}{b} after applying labelling, which is not a valid step
sequence of theENIM-system.

p1

p2

p3

p4

a b c

p3

p13

p4

p14

p3

p23

p4

p24

p1

p11

p2

p12

b

b1

c

c1

b

b2

a

a1

Fig. 8. Mutex arcs may need to connect all potential mutex transitions.

Modelling mutually exclusive transitions can be done in PT-nets using self-loops
linking mutually exclusive transitions to a place marked with a single token (which has
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no other arcs attached to it). This is illustrated in Figure 9(a). An alternative would be
to use a mutex arc, as shown in Figure 9(b). At a purely modelling level, there is no
real difference between these two representations. However, at the semantical level, the
differences can be significant. The point is that mutex arcs represent concurrent histories
in a compact way. This should have a direct impact on the size of net unfolding used, in
particular, for model checking. For example, the single process in Figure 9(c) derived
for the representation of Figure 9(b) has to be replaced by two processes derived for
the representation of Figure 9(a) depicted in Figure 9(d). It is important to observe
that these two non-isomorphic processes cannot be equated using the so-called token
swapping technique from [1], as the PT-net is 1-safe, suggesting that the potential state
space reductions due to mutex arcs have not been considered so far. Intuitively, mutex
arc stem from a different philosophy to self-loops. Whereasthe latter are related to
resource sharing, mutex arcs are derived from semantical considerations and so can
provide a more convenient modelling tool.

(a)

p1

p2

p3

p4

p5

a b

(b)

p1

p2

p3

p4

a b

(c)

p1p11 p2 p12

p3p13 p4 p14

a

a1

b

b1

p1p11 p2 p12

p3p13 p4 p14

p5p15 p5 p25 p5 p35

a

a1

b

b1

(d)

p1p11 p2 p12

p3p13 p4 p14

p5p15 p5 p25 p5 p35

a

a1

b

b1

Fig. 9. Mutex arcs lead to more condensed process semantics than self-loops.

In our future work we plan to investigate the relationship between mutex arcs and
other modelling concepts such as localities [15] and policies [3], also from the point
of view of the synthesis of nets where unorderedness does notimply simultaneity of
executed actions.

In this paper we did not considerENM-systems, i.e.,EN-systems extended with mu-
tex arcs, as it was our intention to investigate a system model corresponding to the most
general paradigmπ1. In future, we intend to find out whereENM-systems fit into the
approach presented here.
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