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Abstract

Concurrency can be studied at different yet consistent levels of abstraction: from
individual behavioural observations, to more abstract concurrent histories which can
be represented by causality structures capturing intrinsic, invariant dependencies
between executed actions, to system level devices such as Petri nets or process
algebra expressions. Histories can then be understood as sets of closely related
observations (here step sequences of executed actions). Depending on the nature of
the observed relationships between executed actions involved in a single concurrent
history, one may identify different concurrency paradigms underpinned by different
kinds of causality structures (e.g. the true concurrency paradigm is underpinned by
causal partial orders with each history comprising all step sequences consistent with
some causal partial order). For some paradigms there exist closely matching system
models such as elementary net systems (EN-systems) for the true concurrency
paradigm, or elementary net systems with inhibitor arcs (ENI-systems) for a paradigm
where simultaneity of executed actions does not imply their unorderedness. In this
paper, we develop a system model fitting the least restrictive concurrency paradigm
and its associated causality structures. To this end, we introduce ENI-systems with
mutex arcs (ENIM-systems). Each mutex arc relates two transitions which cannot be
executed simultaneously, but can be executed in any order. To link ENIM-systems
with causality structures we develop a notion of process following a generic approach
(semantical framework) which includes a method to generate causality structures from
the new class of processes.

© 2011 Newcastle University.

Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.



Bibliographical details

KLEUN, J., KOUTNY, M.

The Mutex Paradigm of Concurrency

[By] J. Kleijn, M. Koutny

Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1289)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1289

Abstract

Concurrency can be studied at different yet consistent levels of abstraction: from individual behavioural
observations, to more abstract concurrent histories which can be represented by causality structures capturing
intrinsic, invariant dependencies between executed actions, to system level devices such as Petri nets or process
algebra expressions. Histories can then be understood as sets of closely related observations (here step sequences
of executed actions). Depending on the nature of the observed relationships between executed actions involved in
a single concurrent history, one may identify different concurrency paradigms underpinned by different kinds of
causality structures (e.g. the true concurrency paradigm is underpinned by causal partial orders with each history
comprising all step sequences consistent with some causal partial order). For some paradigms there exist closely
matching system models such as elementary net systems (EN-systems) for the true concurrency paradigm, or
elementary net systems with inhibitor arcs (ENI-systems) for a paradigm where simultaneity of executed actions
does not imply their unorderedness.

In this paper, we develop a system model fitting the least restrictive concurrency paradigm and its associated
causality structures. To this end, we introduce ENI-systems with mutex arcs (ENIM-systems). Each mutex arc
relates two transitions which cannot be executed simultaneously, but can be executed in any order. To link ENIM-
systems with causality structures we develop a notion of process following a generic approach (semantical
framework) which includes a method to generate causality structures from the new class of processes.

About the authors
Jetty Kleijn is a visiting fellow within the School of Computing Science, Newcastle University.

Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate.
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established
Readership at Newcastle. In 2000 he became a Professor of Computing Science.

Suggested keywords

CONCURRENCY PARADIGMS
ELEMENTARY NET SYSTEMS
INHIBITOR ARCS

MUTEX ARCS

SEMANTICAL FRAMEWORK

STEP SEQUENCES

PROCESS AND CAUSALITY SEMANTICS




The Mutex Paradigm of Concurrency

Jetty Kleijnt and Maciej Koutny

1 LIACS, Leiden University
P.0.Box 9512, NL-2300 RA Leiden, The Netherlands
kleijn@i acs. nl
2 School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom
maci ej . kout ny@cl . ac. uk

Abstract. Concurrency can be studied at different yet consistentidevieab-
straction: from individual behavioural observations, torsnabstract concurrent
histories which can be represented by causality structimeturing intrinsic, in-
variant dependencies between executed actions, to systeddevices such as
Petri nets or process algebra expressions. Histories @mhé understood as
sets of closely related observations (here step sequefieauted actions).
Depending on the nature of the observed relationships leet@recuted actions
involved in a single concurrent history, one may identifffetient concurrency
paradigmsunderpinned by different kinds of causality structureg.(ehe true
concurrency paradigm is underpinned by causal partialrerd@h each history
comprising all step sequences consistent with some caasaélporder). For
some paradigms there exist closely matching system modeffsas elementary
net systemsgN-systems) for the true concurrency paradigm, or elememtery
systems with inhibitor arcsEfui-systems) for a paradigm where simultaneity of
executed actions does not imply their unorderedness.

In this paper, we develop a system model fitting the leasticése concurrency
paradigm and its associated causality structures. To thiswe introduceeNI-
systems withmutexarcs ENIM-systems). Each mutex arc relates two transitions
which cannot be executed simultaneously, but can be exc¢auteny order. To
link ENIM-systems with causality structures we develop a notion afgss fol-
lowing a generic approach (semantical framework) whicluighes a method to
generate causality structures from the new class of presess

Keywords: concurrency paradigms, elementary net systems, inhiaits, mu-
tex arcs, semantical framework, step sequences, procégmasality semantics.

1 Introduction

Concurrency can be studied at different levels of abstactirom the lowest level
dealing with individual behavioural runs (observatiorts)the intermediate level of
more abstract concurrent histories which can be repredéyteausality structures (or
order structures) capturing intrinsic (invariant) depemcles between executed actions,
to the highest system level dealing with devices such as et or process algebra
expressions. Clearly, different descriptions of conaursystems and their behaviours
at these distinct levels of abstractions must be consiatghtheir mutual relationships
well understood.
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Abstract concurrent histories can be understood as setl®élg related obser-
vations. In this paper, each observation will bestap sequencéor stratified poset)
of executed actions. For example, Figure)ldepicts anEN-system generating three
step sequences involving the executions of transitigisandc, viz. o1 = {a,b}{c},
oo = {a}{b}{c} andos = {b}{a}{c}. They can be seen as belonging to a single ab-
stract historyA; = {01, 02,03} underpinned by a causal partial order in whicand
b are unordered and they both preced&rom our point of view it is also important
to note thatA; adheres to thérue concurrency paradigroaptured by the following
general statement:

Given two executed actions (e.g.,andb in A;), they can be observed as
simultaneous (e.g., ia;) < they can be observed in both orders (edq.,
beforeb in oy, andb beforea in o3). (TRUECON)

Concurrent histories adhering to such a paradigm are uirohesg bycausal partial
orders in the sense that each history compriaktstep sequences consistent with some
causal partial order on executed actions. Elementary ses\s [18] EN-systems) pro-
vide a fundamental and natural system level model for the¢ancurrency paradigm.
A suitable link between agN-system and histories like\; can be formalised using
the notion of a process or occurrence net [1, 18]. Full coeisty between the three
levels of abstraction can then be established within a geapproach (theemantical
frameworkof [14]) aimed at fitting together systems (nets from a cartéass of Petri
nets), abstract histories and individual observations.

¢ 9
ok [

Fig. 1. EN-system §); ENI-system with an inhibitor arc joining the output place ofnsaion b
with transitiona implying thata cannot be fired if the output place bfis not empty §); and
ENIM-system with a mutex arc between transitienand b implying that the two transitions
cannot be fired in the same step. (

Depending on the exact nature of relationships holding &ioas executed in a
single concurrent history, similar to RUECON) recalled above, [9] identified eight
general concurrency paradigms—rs, with true concurrency being another name for
ms. Another paradigm is3 characterised by (RUECON) with <> replaced by—.
This paradigm has a natural system level counterpart peoMiy elementary net sys-
tems with inhibitor arcsgnI-systems). Note that inhibitor arcs (as well as activatos ar
used later in this paper) are well suited to model situatiowslving testing for a spe-
cific condition, rather than producing and consuming resesirand proved to be useful
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in areas such as communication protocols [2], performanalysis [4] and concurrent
programming [5].

For example, Figure b depicts areni-system generating two step sequences in-
volving transitions, b ande, viz. o1 = {a,b}{c} andos = {a}{b}{c}. The two step
sequences can be seen as belonging to the abstract history{o;, o2} adhering to
paradigmms, but not adhering to paradigmyg as there is no step sequenceds in
whichb is observed before (even thouglu andb are observed ia; as simultaneous).
Another consequence of the latter fact is that paradigimistories are underpinneuht
by causal partial orders but rather by causality structimeeduced in [10] — called
stratified order structures— based on causal partial orders and, in addition, weak tausa
partial orders. Again, full consistency between the thesels of abstraction can then
be established within the semantical framework of [14].

In this paper, we focus on; which simply admits all concurrent histories and is
the least restrictive of the eight general paradigms of ameaicy investigated in [9].
Concurrent histories conforming to paradigmare underpinned by yet another kind
of causality structures introduced in [9] — callgeneralised stratified order structures
— based on weak causal partial orders aothmutativity Intuitively, two executed
actions commute if they may be observed in any order in stgpesees belonging to a
history, but they are never observed as simultaneous.

The aim of this paper is to develop the hitherto missing sysevel net model
matching paradignr;. The proposed solution consists in extending-systems with
mutexarcs, where each mutex arc relates two transitions whichatdre executed si-
multaneously, even when they can be executed in any ordaexXMuics are therefore
a system level device implementing commutativity (for arlyeattempt aimed at cap-
turing such a feature see [16]). The resultingM-systems provide a natural match for
histories conforming to paradigm, in the same way asN-systems an@NI-systems
provided a natural match for histories conforming to pagedins andrs, respectively.

For example, Figure &j depicts anENIM-System generating two step sequences
involving transitionsa, b and¢, viz. oo = {a}{b}{c} andos = {b}{a}{c}. They
belong to an abstract historys = {02, 03} adhering to paradigm, in which the
executions ofi andb commute. ClearlyA; doesnotconform to paradigmss andrs
as there is no step sequencedp in which e andb are observed as simultaneous.

We prove full consistency between the three levels of abistrafor paradigmr .

To this end, we once more use the semantical framework of [A4lping so, we define
processes ofNIM-systems and demonstrate that these new processes progide-t
sired link with the generalised stratified order structufgsaradigmr; . To achieve this
we introduce a notion of gso-closure making it possible tostauct generalised strati-
fied order structures from more basic relationships betw&eouted actions involved in
processes ofNIM-systems. Note thaNimM-systems were first sketched in [12] how-
ever this preliminary presentation was still incompletetHis paper, we provide the
missing details and harmonise the treatment of paradigmwith those of paradigms
mg andms.

The paper is organised in the following way. To motivate oulnsequent study
of causality in nets with mutex arcs, we first briefly recak #pproach of [9] which
investigates general concurrency paradigms and the assddausality structures. We
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then recall the semantical framework of [14]. After that wenfially introduceeNIm-
systems and develop their process semantics. The papdudesavith the proofs of
various results which collectively justify our claim thakiim-systems provide a fully
satisfactory system model for paradigm

Basic notions and notations

Composing functiong : X — 2¥ andg : Y — 27 is defined byg o f(z) <

Uyef(x)g(y), for all x € X. Restricting functionf to a sub-domairZ is denoted
by f|z. RelationP C X x X is irreflexive if (x,2) ¢ P for all x € X; transitive if
P o P C P; its transitive and reflexive closure is denoted BY;, and its symmetric
closure bypsm £ py P,

A relational structureis a tupleR = (X, Q1, ..., Q,) whereX is a finitedomain
and theR);’s are binary relations o (we can select its components using the subscript
R, e.g.,XR). Relational tuplesR and R’, areisomorphicif there is a bijectior¢ from
the domain ofR to the domain of?’ such that if we replace throughoRteach element
a by £(a) then the result isR’. For relational structures with the same domain and
arity, R and R’, we write R C R’ if the subset inclusion holds component-wise. The
intersectionf) R of a non-empty seR of relational structures with the same arity and
domain is defined component-wise.

We assumehat all sets in this paper atabelled with the default labelling being
the identity function. If the labelling is irrelevant for afihition or result, it may be
omitted. If two domains are said to be the same, their lafgglare identical.

A partially ordered se{or poset) is a relational structupe < (X, <) consisting
of a finite setX and a transitive irreflexive relatior on X . Two distinct elements, b
of X areunordereda ~ b, if neithera < b norb < a holds. Moreoverg < b if
a < bora ~ b. Posetpo is total if the relation~ is empty, andstratifiedif ~ is an
equivalence relation, whete~ b if a« ~ b ora = b. Note that if a poset is interpreted as
an observation of concurrent system behaviour, thenb means that was observed
beforeb, while a ~ b means that andb were observed as simultaneous.

A step sequencis a sequence of non-empty sets= X;...X; (k > 0). We
will call o singular if the stepsX; are mutually disjoint. In such a case, we have
thatspo(o) = (U; XisU;; Xi x Xj) is a stratified poset. Conversely, each strati-
fied posetspo induces a unigque singular step sequesteps(spo) = X ... X, with
eachX; being an equivalence class sfand(X; x X;) C< forall i < j, satisfying
spo = spo(steps(spo)). We will identify each stratified posepo with steps(spo) or,
equivalently, each singular step sequenceith spo(c).

2 Paradigms of concurrency and order structures

Let A be a non-empty set atratified posetgor, equivalently, singular step sequences)
with the same domairX (or X »).2 Intuitively, each poset im\ is an observation of
an abstract history of a hypothetical concurrent systertowing the true concurrency

% Note that [9] also considered total and interval poset alaiems.
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approach, [9] attempted to represehtising relational invariants oX . The basic idea
was to capture situations where knowing some (or all) imrgnielationships between
executed actions involved id would be sufficient to reconstruct the entire set of ob-
servationsA.

The approach of [9] identified a number faindamental invariantsvhich can be
attributed to the observations i, each invariant describing a relationship between
pairs of executed actions which is repeated in all the olagienvs of A. In particular,
< comprises all pairga, b) such that. precede$ in every poset belonging td; in
other words < 5 representsausality Other fundamental invariants are:, (commu-
tativity, wherea= b means that andb are never simultaneousj,, (weak causality
wherea C 4 b means that is never observed afté) and>a, (synchronisationwhere
a <14 b means that andb are always simultaneous). One can show that knowing
andrC , is always sulfficient to reconstruct. This is done assuming thatis invariant-
closedin the sense thaft comprises all stratified posetgso with the domainX which
respect all the fundamental invariants generated\bg.g.,a <A b impliesa <4, b,
anda Ca bimpliesa =<, b. We then call each invariant-closed set of observations a
(concurrent) historyBeing invariant-closed is a natural assumption when cootihg
an abstract view of a possibly large set of individual obagons, and has always been
tacitly assumed in the causal partial order view of conaircemputation.

Depending on the underlying system model of concurrent egatipn, some addi-
tional constraints on historied may be added. In particular, each design may adhere
to the ‘diagonal rule’ — or ‘diamond property’ — by which silttaneity is the same as
the possibility of occurring in any order, i.e., for allb € X:

(Fspo € A a ~gpo b) <= (Fspo € A a <gpo b)) AN(Tspo € A b <gpo a) . (7s)

For examplers is satisfied by concurrent histories generated kysystems.

Constraints likers — calledparadigmsin [8, 9] — are essentially suppositions or
statements about the intended treatment of simultanedy moreover, allow one to
simplify the invariant representation of a histafly In particular, if A satisfiesrs then
one can reconstruet using just causalityk A (which is always equal to the intersection
of = andC 4). This is the essence of the true concurrency paradigm lasedusal
partial order.

In general, knowing< 4 is insufficient to reconstrucl. For example, if we weaken
7 to the paradigm:

(Fspo € A: a <5po b) A (Fspo € A: b <gpo a) = (spo € Az a ~gpo b)  (m3)

then one needs to enhance causality with weak causalityto provide an invariant
representation ofA. The resulting relational structufe, <, C A) is an instance of
the following notion.

Definition 1 (stratified order structure [6, 11,13, 14]).A stratified order structur@r
so-structure) is a relational structurgos = (X, <,C) where< and C are binary
relations onX such that, for alla, b, c € X:

Sl: alZa S3: aCbCcANa#c = alCc
S2: a<b = aCbh S4: aCb<cVa<bCc = a<c.
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The axioms imply thak is a partial order relation, and that< b impliesb 7 a. The
relation< represents the ‘earlier than’ relationship on the domakwvpénd the relation
C the 'not later than’ relationship. The four axioms capture mutual relationship
between the ‘earlier than’ and ‘not later than’ relationsizeen executed actions.

For every stratified poseto, sos(spo) £ (Xspo, =<spo» 2gpo) IS @NSO-StIUCtUTE.
Moreover,spo is a stratified poset extensiaof an so-structuresos wheneversos C
sos(spo). We denote this bypo € ext(sos). Following Szpilrajn’s Theorem [19] that
any poset can be reconstructed by intersecting its totaineidns, we have that any
so-structure can be reconstructed from its stratified posensions.

Theorem 1 ([11]).If sos is anso-structure therext(sos) # @ and:

s0s = m{sos(spo) | spo € ext(sos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same donten, t
({sos(spo) | spo € SPO} is anso-structure. O

The set of stratified poset extensions ofsamstructure is a concurrent history sat-
isfying paradigmrs [9]. Moreover, if a concurrent historA satisfiesrs, thenA =
ext(Xa,<Aa,Ca). Hence each abstract histatyadhering to paradigms can be rep-
resented by theo-structure(X A, <a,CA) [8].

If A fails to satisfyms, knowing (XA, <a,Ca) may be insufficient to recon-
structA. In the case of paradigmy, which places no restrictions of the kind captured
by g or w3 (i.e., A is only assumed to be invariant-closed), one needs t@eseral
so-structures Gso-structures)

Definition 2 (Gso-structure [7,8]). A relational structuregsos £ (X,=,C) Is a
Gsostructureif sos(gsos) = (X, = N C,C) is an so-structure and the relatior=
is symmetric and irreflexive. o

In the above= represents the ‘earlier than or later than, but never saneltbus’ rela-

tionship, whileC again represents the ‘not later than’ relationship.

For a stratified posefo, gsos(spo) £ (Xspo, <205 25po) IS @GSOSHructure. Also,
spo is astratified poset extensioof a Gso-structuregsos if gsos C gsos(spo). We
denote this bypo € ext(gsos).

EachGso-structure can be reconstructed from its stratified pogetsions, leading

to another generalisation of Szpilrajn’s Theorem.
Theorem 2 ([7,8]).If gsos is aGso-structure therext(gsos) # & and:
gsos = ﬂ{gsos(spo) | spo € ext(gsos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same donten, t
({gsos(spo) | spo € SPO} is aGso-structure. O
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The set of stratified poset extensions ofao-structure is a concurrent history.
Moreover, if A is a concurrent history, thed = ext(Xa,=Aa,Ca). Hence each ab-
stract historyA can be represented by teso-structure( X o, =, C ) [8].

As already mentioned, paradigrg and its associated causal posets <) pro-
vide a match for concurrent histories generatedebysystems. Similarly, one can
show that paradigms and its associateslo-structure§ X, <, C ) provide a match
for concurrent histories generated byi-systems. In this paper, we will extershi-
systems with mutex arcs. The resultigim-systems will provide a match for the most
general paradigm, and the notion of an abstract history of erim-system will be
captured througlksso-structures.

Constructing order structures

We end this section describing ways of constructiiagstructures andso-structures
from more basic, or direct, relationships. The idea is tocpeal similarly as when
constructing posets from acyclic relations through therafpen of transitive closure.
The definitions and results in this section are a new corttabuo the theory ofsso-
structures. Moreover, they are central for proving our eghent results concerning
nets with mutex arcs.

We first recall how the notion of transitive closure was tifte the level ofso-
structures. Lets = (X, <, C) be a relational structure (not necessarilysarstructure).
Intuitively, < indicates which of the executed actions¥nare directly causally related,
andC which are directly weakly causally related. Té@-closureof . is defined as:

NSO g (Xvavﬁy\idX)

wherey = (< ULC)*, a = vy o0 <o~ andidx is the identity onX. Moreover,y is
so-acyclidf « is irreflexive. In such a casg;° is anso-structure [10].

We will now show how to construgsso-structures. Lep = (X, <,C,=) be a
relational structure. In addition to the two relations agiey also in theu above,=
indicates which of the executed actions may be observedyimater, but not simulta-
neously. Thegso-closuref p is defined as:

pgso = (XMPKY\ ZdX)

wherey) £ o™ U Y™ U = with 8 < C* o (=N C*) o C*, in addition toow and~y
being defined as fai*°. Moreover,p is gso-acyclidf v is irreflexive and symmetric.

Proposition 1. If p is gso-acyclic thep#*° is a Gso-structure.

Proof. We first observe thdt) v = (yo<ovy) U C*, (1) v = yoy, and(iii) aUS C .
Moreover,(iv) a~t Ny = @ and(v) 37! N+ = @. The two latter properties follow
from (i¢) and irreflexivity ofa and 5 (which in turn follows from irreflexivity ofy) and
aUp ).

Clearly,y\ id x is irreflexive, and) is symmetric and irreflexive (by gso-acyclicity).
Hence it suffices to show thabs < (X, N (v \ idx),~ \ idx) is anso-structure.
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S1&S2:Clearly,v \ id x is irreflexive, and) N (v \ idx) C v\ idx.
S3:i(y\idx)o (v )\ idx) C ~ holds by(iz).

S4:We will show that(yyN(y\idx))o(v\idx) C ¢¥N(v\idx). Ourfirstobservation is
thatyN(y\idx) = ¥nNvy asy is irreflexive. Hence it suffices to show thatN~) oy C
1 N ~. We have that:

YNy =(@¥MUBYTU=) Ny =(ive (0 U B U =)N7y =@y a U B U (=N7)

which in turn implies that:

(%
(%
«
«
«
«

As a resultS4holds as its other part is symmetric. a

Proposition 2. If p is gso-acyclic ther{ X, <, C) is an so-acyclic relational structure
and:
ext(pf°) = {spo € ext((X, <, C)%°) | ~gpo N ==} .

Proof. That (X, <, C) is so-acyclic follows immediately from irreflexivity o and
a C .

(C) Let spo € ext(p#°). Theny C<y0 andy \ idx C=,,. Thusa®™ C<¥" and
Y\idx €=, whichtogether withw C ~ and irreflexivity ofa imply @ C<,,. Hence

spo € ext((X, <,C)%). Moreover, we have= C<¥" implying ~sp, N = = .

spo

spo*

(2) Letspo € ext((X, <,C)*) and~ gy, N= = . Thena C=<,, andy\idx S,
and= C=<y7 (by ~sp0 N = = @ and irreflexivity ofy and= C ¢). Therefore, it
suffices to show that C <.

Suppose thafa, b) € 3. Then there are, y such that: C* z and(z,y) e =NC*
andy C* b. By (z,y) € = and irreflexivity ofy and= C ), we have that: # y.
Thus, by the fact that* \ idx C v\ idx C <,,, and~,, N = = &, we have that
T <spo Y. Moreover,againby *\idx C v\ idx C <,,,,wehaves =z Va =X, =

spo? spo
andy =b VvV y =<,,, b. Hence, sincepo is a stratified poset, <, b. a

spo

The above result is similar to the following general chagsation of stratified
poset extensions @so-structures.

Proposition 3. If gsos = (X, =, C) is aGso-structure then

ext(gsos) = {spo € ext(sos(gsos)) | ~epo N == D} .
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Proof. (C) Letspo € ext(gsos). Then= C<¥" andC C <. Hence:

N sym > .
=NC C <0 N <40 = <spo s

spo

yielding spo € ext(sos(gsos)). Moreover,~,, N = = &, by = C<¥™

spo*
(D) Let spo € ext(sos(gsos)) and~,,, N = = @. The latter and irreflexivity o=
implies = C<%™. Moreover,C= C X, by spo € ext(sos(gsos)). Hencespo €

spo* spo?

ext(gsos). O

3 Fitting nets and order structures

The operational and causality semantics of a class of R&BPIN can be related within
a common scheme introduced in [14]. It is reproduced heragagd2 whereN is a
net fromPN and:

— EX are executions (or observations) of net®.

— LAN are labelled acyclic nets, each representing a history.

— LEX are labelled executions of netsliiN.

— ILCS are labelled causal structures (order structures) caygfdinie abstract causal
relationships between executed actions.

In this paper, the executionsEX step sequences, and the labelled executiohdid
are labelled singular step sequences.

N € PN o LAN
T / T\ K
" s
¢ €
EX LEX

Fig. 2. Semantical framework for a class of Petri n&fS. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

The maps in Figure 2 relate the semantical view8i) LAN, LEX, andLCS:

w returns a set of executions, defining thgerationalsemantics ofV.

« returns a set of labelled acyclic nets, definingaaiomatic processemantics
of N.

m returns, for each execution 8f, a non-empty set of labelled acyclic nets, defin-
ing anoperational processemantics ofV.

A returns a set ofabelledexecutions for each process &f, and after applying

to such labelled executions one should obtain executios. of

— k associates a labelledwusalstructure with each process df.

— ¢ and+ allow one to go back and forth between labelled causal strestand sets
of labelled executions associated with them.
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The semantical framework captured by the above schemaitedibow the different
semantical views should agree. According to the rectanglénhe left, the operational
semantics of the Petri net defines processes satisfyingic@stioms and moreover all
labelled acyclic nets satisfying these axioms can be defiwen the executions of the
Petri net. Also, the labelled executions of the processgespond with the executions
of the original Petri net. The triangle on the right relates flabelled acyclic nets from
LAN with the causal structures froliCS and the labelled executions franEX. The
order structure defined by a labelled acyclic net can be éthby combining execu-
tions of that net and, conversely, the stratified extensiditise order structure defined
by a labelled acyclic net are its (labeled) executions. Tthesabstract relations be-
tween the actions in the labelled causal structures adsdoiéth the Petri net will be
consistent with its chosen operational semantics.

To demonstrate that these different semantical views ageaptured through this
semantical framework, it is sufficient to establish a seaesesults callecaims As
there exist four simple requirements (calle@pertie3 guaranteeing these aims, one
can concentrate on defining the semantical domains and npgesiang in Figure 2
and proving these properties.

Property 1 (soundness of mappingsjThe maps, o, A, ¢, Tn |w vy, &, € anda|yan)
are total. Moreovero, a, A, mx|,(n) ande always return non-empty sets. o

Property 2 (consistency)For all ¢ € EXand LN € LAN,

gewmm} » {LNEMN)

LN € mn(§) £ € d(A(LN)) .
<&
Property 3 (representation) 2 o € = idpcs. o
Property 4 (fitting) A\ = e o k. o

The above four properties imply that the axiomatic (defifredugha) and opera-
tional (defined through y o w) process semantics of netslkiN are in full agreement.
Also, the operational semantics 8f(defined throughv) coincides with the operational
semantics of the processesf(defined througlhp o A o o). Moreover, the causality in
a process ofV (defined through) coincides with the causality structure implied by its
operational semantics (through \). That is, we have the following.

Aml a=myow. o
Aim2 w=¢oloa. o
Am3 k=10 A\ o

Thus, the operational semantics of the Petri Neaind the set of labelled causal
structures associated with it are relateddoy: ¢ o e o ko a.
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EN-systems with inhibitor arcs

Usually, the fundamental net class for which processes ansidity are introduced are
EN-systems [18]. Here, however, we take elementary net systeith inhibitor arcs
(ENI-systems) and use them to show how the semantical framewarkeinstantiated.

An ENI-system is a tuplegNI = (P, T, F, Inh, M;,;;) with P andT finite and
disjoint sets oplaces— drawn as circles — anlansitions— drawn as rectangles —,
respectively;F’ C (P x T) U (T x P) the flow relation ofENT — the directed arcs in
the diagramsinh C P x T'its set ofinhibitor arcs — with small circles as arrowheads;
and M;,;; C P its initial marking. (In general, any subset of places imarking in
diagrams indicated by small black dots. VI has no inhibitor arcsinh = @, then it
iS anEN-system.

As usual, for every transition or plagewe define its inputéz = {y | (y,z) € F}
and outputs:® < {y | (z,y) € F'}. Moreover®t = {p | (p,t) € Inh} are the inhibitor
places of transition. We also define for any subgétof 1™

'UiU%f and U* < Ut' and°UiU°t.

teU teU teU

A step of ENT is a non-empty sét’ of transitions such thattUt®)N(*uUu®) = @,
forall distinctt, u € U. A stepU of ENI isenabledcat a markingV/ of ENT if *°U C M
and(U® U °U) N M = @. Such a step can then leeecutedeading to the marking
M' £ (M \ *U) U U®*. We denote this byM [U) ,; M' or by M[UYM' if ENI is
clear.

Thus the operational semantics BV is definedw(ENTI) comprises all step se-
quences = U; ... U, (k > 0) such that there are markings;,.;; = Mo, . .., M}, with
M, 1[U;)M;, fori =0, ...,k — 1. We call M}, areachablemarking of ENI.

In what follows we will assume that each inhibitor plagcef an ENI-systemENT
has acomplement placg such thatp = p® and®p = p°®; moreovet{p, p} N Mnit| =
1. It is immediate that{p, p} N M| = 1, for all reachable markings/ and all places
p. Note that complement places can always be addéd\ib as this does not affect its
operational semantics.

Thus, foreni-system€EX are step sequences. In addition, the labelled causal struc-
tureslLCS areso-structures, and the labelled executi@®i&X will be labelled singular
step sequences. Next we introduce the labelled acycli¢meatwill form the semantical
domainlLAN for the process semantics BfiI-systems. These nets will have activator
rather than inhibitor arcs.

Definition 3 (activator occurrence nets) Anactivator occurrence nébr AO-net) is a
tuple AON < (P',T’, F’, Act, () such that:

— P/, T"and F’ are places, transitions and flow relation asgni-systems.

— |*p| < landp®| <1, for every place.

— Act € P’ x T' is a set of activator arcs (indicated by black dot arrowheeeatsd ¢
is a labelling forP’ U T".

— The relational structure 4oy = (T", <10c, Cioc) IS SO-acyclic, where<;,. and
C1oc are respectively given by’ o F')|7r 7 U (F' o Act) and Act™ ' o F’, as
illustrated in Figure 3. o
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@ o Nn=e

Fig. 3. Two casega) and(b) definingt <., u, and one casg:) definingt Coc w.

We use*t < {p | (p,t) € Act} to denote the activator places of a transition
and*U = |J,_,, *t for the activator places of a sét C 7". As for ENI-systems, a
step of AON is a non-empty sdV of transitions such thgft U ¢®) N (*u U u®) = &,
for all distinctt,u € U. A stepU of AON is enabledat a markingM of AON if
*U U *U C M. The execution of such & is defined as foENI-systems and leads to
the marking {4/ \ *U) U U*.

The defaultinitial andfinal markings ofAON are M /0N and M4, “" consisting
respectively of all placeg without inputs ¢p = @) and all place® without outputs
(p* = ©). The behaviour o ON is captured by the sef AON) of all step sequences
from M2V to M7,V . The setreach(AON) of markingsreachablein AON com-
prises all markingg/ reachable from\/A9V such thatV 2OV is reachable frond/.
One can show that each step sequeneeA(AON) is singular, and that its set of ele-
ments is exactly the set of transitiofis. For such a step sequenggg(o) is obtained
from o by replacing eachby ¢(t).

We definex(AON) £ p%,, which is guaranteed to be @o-structure by the so-
acyclicity of paon [10].

As far as the mappingsand. are concerned; is the set of stratified poset extensions
(or, equivalently, singular step sequences) ofarstructure, and is the intersection
of theso-structures (or, equivalently, singular step sequencasg¢sponding to a set of
stratified posets with the same domain. Thus Theorem 1 imatedyiyields Property 3.

Finally, we give the axiomatic and operational process sgicgof anENI-system

ENI = (P, T, F, Inh, M;p;1).

Definition 4 (processes oENI-systems).A procesof ENI is anA0-net AON such
that its labelling?:

— labels the places afl ON with places ofENI.

— labels the transitions ol ON with transitions ofENI.

— isinjective onM 29N and ((MAIN) = M.

— isinjective on*t andt® and, moreover/(°t) = *¢(t) and{(t®) = £(t)®, for every
transitiont of AON.

— (isinjective on*t and/(*e) = °/(t) for every transitiort of AON.

We denote this by ON € o ENI). o

Definition 5 (processes construction)An A0O-netgeneratedy a step sequenee =
Ui...U, € w(ENI) is the last element in the sequend®Ny, ..., AON,, where
eachAON}, £ (Py, Ty, Fi, Ax, {x) is anAo-net such that:

Step 0:Py = {p' | p € My} andTy = Fy = Ag = .
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Stepk: Given AON ., the sets of nodes and arcs are extended as follows:

Py = Py U{p'*2P |peUp}
Th £ Tp 1 U {tlJrAt |t € U}
Fp £ Fq U{(p®P,t1 T2 [t e U, Ap € *t}
U {2t ptae) [t e Uy Ap €t}

Ap £ A  U{( AP, 02 [t e UAp et} .

In the above, the label of each nodig ) is set to ber, and Az denotes the number
of the nodes oflON ;. labelled byz. We denote this by ON,, € mgn; (o). o

Note thatrzn; (o) comprises exactly one net (up to isomorphism). The samestioid
meniv (o) defined later.

As one can show that the remaining properties are also satitfie semantical
framework foreni-systems holds [14].

4 Mutually exclusive transitions

We now introduce a new class of Petri nets by extendingsystems with mutex arcs
prohibiting certain pairs of transitions from occurringusiltaneously (i.e., in the same
step). Consider Figure 4 which shows a variant of the prodcaesumer scheme. In
this case, the producer is allowed to retire (transitiprbut never at the same time as
the consumer finishes the job (transitigh Other than that, there are no restrictions
on the executions of transitiomsand f. To model such a scenario we use a mutex arc
between transitions and f (depicted as an undirected edge). Note that mutex arcs are
relating transitions in a direct way. This should howeverb®regarded as an unusual
feature as, for example, Petri nets with priorities alsoasgdirect relations between
transitions.

Fig. 4. An ENIM-system modelling a producer/consumer system with theretimake item'm,
‘add item to buffer'a, ‘get item from buffer’g, ‘use item’w, ‘producer retiresr, and ‘consumer
finishes’ f. Note: the producer can only retire if the buffer is emptg.(ips is empty).

An elementary net system with inhibitor and mutex dae€NIM-system) is a tuple
ENIM = (P, T, F, Inh, Mtz, M,;;) suchthaund(ENIM) = (P, T, F, Inh, M) is
theeNI-systenunderlying ENIM and Mtz C T x T'is a symmetric irreflexive relation
specifying themutexarcs of ENIM . Where possible, we retain the definitions intro-
duced foreNI-systems. The notion of a step now changes howevstep of ENIM is
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a non-empty sel/ of transitions such thdf is a step ofund(ENIM ) and in addition

Mtz N (U x U) = @. With this modified notion of a step, the remaining definitqer-

taining to the dynamic aspects of anim-system, includings( ENIM ), are the same
as for the underlyingNi-systemund( ENTM).

Proposition 4. w(ENIM ) = {U; ... Uy € w(und(ENIM)) | MtznJ, Uy xU; = &}.
Proof. Follows from the definitions. O

For theeNImM-system of Figure 4, we have thaf [{r})M"[{f})M’ as well as
M{fHM"[{r})M', whereM = {ps,pa,ps} and M’ = {po,pa, pr}. However,
M{[{r, f}})M' which holds for the underlyingni-system does not hold now asind
f cannot be executed in the same step.

To deal with the behaviours @NimM-systems in the context of the semantical frame-
work, we adapt the approach followed fexi-system as recalled above. The labelled
causal structured,CS, are nowGso-structures, while labelled executiodsEX, are
labelled singular step sequences, as before. The labealledi@nets,LAN, used for
the process semantics BiiIM-systems are introduced next.

Definition 6 (activator mutex occurrence nets).An activator mutex occurrence net
(or AMO-net) is a tupleAMON £ (P, T', F', Act, Mtz ¢) such that:

— und(AMON) £ (P, T', F', Act, ¢) is theao-netunderlyingA MON and Mtz' C
T’ x T' is a symmetric irreflexive relation specifying tmeitexarcs of AMON.

— pamon = (T, <10c, Cloc, Mtz'"), where<,. and—,,. are defined as fono-nets
in Definition 3, is a gso-acyclic relational structure. o

The part of gso-acyclicity 4 ,;on Which deals with the mutex arcs is illustrated in
Figure 5. We have there three transitions satisfying;,. b Cioc ¢ Cioe a. Hence, in
any execution involving all these transitions, they haviedlmng to the same step. This,
however, is inconsistent with a mutex arc betwéemdc, and the gso-acyclicity fails
to hold becauséu, a) belongs ta—;,, o (Mtz'NC},.) o 7.

Fig. 5. A net which is not ammo-net as it fails the gso-acyclicity test.

Then we lets(AMON) £ &% . be thecsostructure generated by MON.
Note that Proposition 1 guarantees the correctness of #figitibn. Moreover, it is
consistent with theso-structure defined by its underlying-net.

Proposition 5. (77, <1c, Ci0c) IS an so-acyclic relational structure.
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Proof. Follows from Proposition 2. a

As far as the mappingsand. are concerned; is the set of stratified poset (or,
equivalently, singular step sequences) extensionsaf@structure, and is the inter-
section of thezso-structures corresponding to a set of stratified posets tvélsame
domain. Thus Theorem 2 immediately yields Property 3. Opine@perties are dealt with
later in this section.

The default initial and final markings of M/ON, as well as its step sequence exe-
cutions are defined exactly the same as for the underhdnget under the proviso that
steps do not contain transitions joined by mutex arcs.

The following results yield more insight into the labelleceeutions of an activator
mutex occurrence net relative to its underlyixgrnet.
Let AMON = (P', T, F', Act, Mtz', ¢) be anamo-net andAON = und(AMON).

Proposition 6. A(AMON) = {U; ...U, € A(AON) | Mtz' n|J, U; x U; = @}
Proof. Follows from the definitions. O

Proposition 7. Leto = U; ... Uy € A\(AON) be such that there is no< k for which
there exists a partitio/, U’ of U; such that; ... U;_1UU'U;41 ... Uy € A\(AON).
Theno € A(AMON).

Proof. By Proposition 6, it suffices to show that, for everyg k, (U; x U;)N Mtz' = @.
Suppose this does not hold for sorme< k. Let kK(AON) = (T’,=<,C). From the
assumption made aboatit follows thatt = wu, for all distinctt, u € U;. This, however,
contradicts the gso-acyclicity @fanon . a

Proposition 8. reach(AMON) = reach(AON).

Proof. (C) Follows from Proposition 6.

(D) Follows from Proposition 7 and the fact that each step sempigT\(AON) can
be ‘sequentialised’ into the form from the formulation obposition 7 by splitting the
steps into smaller ones. a

Proposition 9. A markingM belongs taeach(AMON) iff there are no placep, p’ €
M forwhich (p,p’) € F’ o (<joc U Cioe)* 0 F.

Proof. Follows from Proposition 8 and Proposition 5.15 in [14]. a

Figure 6 depicts amMo-net labelled with places and transitions of thgim-
system of Figure 4. We have that both}{g}{r}{f} and{a}{g}{f}{r} belong to
d»(AM(AMON,)), however{a}{g}{f,r} does not.

Now we are ready to introduce process semantics fok-systems.

Definition 7 (processes oENIM -systems)A proces®f ENIM is anAMO-netA MON
such thatund(AMON) is a process ofind(ENIM) and, for all¢t,u € T’, we have
(t,u) € Mtz"iff (¢(t),¢(u)) € Mtz. We denote this by MON € o ENIM). o
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®
B G —®

Fig. 6. An AMO-net AMON , with labels shown inside places and transitions.

Definition 8 (processes construction)An AMO-netgeneratedy a step sequenee=
U...U, € w(ENIM) is the last net in the sequeneeV/ONy, ..., AMON,, where
eachAMON;, £ (Py, Ty, Fr, A, My, ¢},) is as in Definition 5 except that/;, =
{(e, f) € T x Ti, | (bi(e),Lr(f)) € Mtx} is an added component. We denote this by
AMON,, € WENIM(U) O

The way in which mutex arcs are added in the process conistnuerttails that some
of them may be redundant when, for example, the transitioeg join are causally re-
lated. However, eliminating such redundant mutex arcsdlwls possible by analysing
paths in theamo-net) would go against the locality principle which is thesiseof the
process approach. Indeed, this approach does not remavedaat causalities as this
would compromise the local causes and effects in the defind@nd construction of
process nets.

The AMON-net shown in Figure 6 is a process of thrIM-system of Figure 4
with ¢(A(AMONg)) = {{a}{g}{f}H{r}, {a}{g}{r}{f}}. Figure 7 shows the result
of applying the construction from Definition 8 to teeiim-system of Figure 4 and one
of its step sequences. Note that the resuléingp-net is isomorphic to that shown in
Figure 6.

j2; rl o
a! (#2) (] D

ps 6 f! pr
T @

Fig. 7. Process generated for taeiim-system in Figure 4 and < {a}{g}{r}{/}.

Having instantiated the semantical framework gonm-systems, we can now for-
mally establish their connection withso-structures by proving the remaining Proper-
ties 1, 2, and 4. Below we assume ttid¥ 7/ is anENIM-System.

Proposition 10. Let o a step sequence &NIM, AMON an AMO-net, gsos a GSO-
structure, andSPO a set of stratified posets with the same domain.
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1. w(ENIM), a(ENIM ), N(AMON) ande(gsos) are non-empty sets.
2. K(AON) and((SPQ) are Gso-structures.
3. megniv (o) comprises amMO-net.

Proof. In what follows, we use the notations introduced througlhloistsection.

(1) We havew(ENIM) # @ as the empty string is a valid step sequenc& 7M.
To showa(ENIM) # & one can take themo-net consisting of the initial marking of
ENIM with the identity labelling and no transitions. Thdysos) # @ follows from
Theorem 2. Thah(AMON) # o follows from Proposition 7A(AON) # @ and the
fact that each step sequence\fd ON ) can be ‘sequentialised’ into the form from the
formulation of Proposition 7 by splitting the steps into $leraones.

(2) Follows from Theorem 2 and Proposition 1.

(3) We have that an element afzns (o) with deleted mutex arcs is amo-net. It

therefore suffices to show that the relatiof), o (Mtz'N C3,.) o T}, is irreflexive.
Suppose that, t) € £}, o (Mtz'n C},.)oC},. Thenthereare=ty,... .t =t

such that(t;, ti+1) € Ty foralli < k, and(t,,,t;) € M, for somem < j < k.

But this meansthat, . . . , ¢, have been generated in the same step of the construction,

contradicting the definition of executability ENIM-systems. a

Proposition 11. Let¢ € w(ENIM) and AMON € gy (€).

1. AMON € o(ENIM).
2. ¢ € $(N(AMON)).

Proof. (1) By Proposition 10(3)AMON is anAMO-net. Moreover, by [14], we have
thatund(AMON) € a(und(ENIM)). Finally, the condition involving mutex arcs fol-
lows from the construction in Definition 8.

(2) By [14], £ € ¢(A(und(AMON))). Henceé = ¢(o) for someo = U;...U; €
A(und(AMON)). The latter, together with € w(ENIM ) and the consistency between
mutex arcs iInENIM and AMON, means that there is no mutex arc joining two ele-
ments of any;. Hence, by Proposition &, € A(AMON). Thus¢ € ¢(A(AMON)).

O

Proposition 12. Let AMON € a(ENIM ) and{ € ¢(A(AMON)).

1. ¢ € w(ENIM).
2. AMON & 7TE‘N1M(§)-

Proof. (1) By [14], ¢ € w(und(ENIM)). Also there issc = Uy ... Uy € A(AMON)
such thatt = ¢(o). The latter, together with the consistency between mutes iar
ENIM and AMON, means that there is no mutex arc joining two elements oftany
Hence, by Proposition 4, € w(ENIM).

(2) By [14], und(AMON) € 7ynaenim)(§). Moreover, the mutex arcs are added in
the same (deterministic) way to the underlying process, hetsling to AMON €

menim (§). g
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Hence Property 2 holds. We then observe that Property 3 jggiiiheorem 2, and
Property 4 is proved below.

Proposition 13. Let AMON be anamo-net. Them\(AMON) = e(k(AMON)).
Proof. We have:

((AMON)) = ext(05%1 ) = ext((T"s <toes Ctoes Mt')¥) =(prop. 2
{spo € ext((T", <ioc, Tioc)®) | ~spo N Miz' = 2} =

{spo € €(K(AON)) | ~gpo N Mtz' = o} =

{spo € M(AON) | ~spo N Mtz" = &} =(prop. 6)\(AMON).

Note that we identify stratified posets with their corresgiog singular labelled step
sequences. O

Finally, we can claim the semantical aims fyim-systems.
Theorem 3. Let ENIM be aneENIM-system, andi MON be anaMO-net.

a(ENIM) = mgym(w(ENIM))
w(ENT) = ¢(Ao(ENIM)))
K(AMON) = L(A(AMON)) .

5 Concluding remarks

We already mentioned that trying to avoid redundant mutes arhen constructing
processes would require investigation of various pathkéncbnstructedmo-net. In
particular, it would not be sufficient to only consider theshrecent transition occur-
rences. Consider, for example, tieiM-system shown in Figure 8 and its step sequence
o = {b}{c}{b}{a}. The corresponding process, also shown in Figure 8, has two m
tex arcs adjacent to the transitiah. We then observe that dropping the joiningadf
with ' would not be right, as the resultimgioN-net would generate a step sequence
{a, b }{c }{b?}, or {a,b}{c}{b} after applying labelling, which is not a valid step
sequence of theNIM-system.
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Fig. 8. Mutex arcs may need to connect all potential mutex transtio

Modelling mutually exclusive transitions can be done inriets using self-loops
linking mutually exclusive transitions to a place markedhad single token (which has
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no other arcs attached to it). This is illustrated in Figu{@ 9An alternative would be
to use a mutex arc, as shown in Figurd)9@t a purely modelling level, there is no
real difference between these two representations. Haneéie semantical level, the
differences can be significant. The pointis that mutex apsasent concurrent histories
in a compact way. This should have a direct impact on the sinetaunfolding used, in
particular, for model checking. For example, the singlecpss in Figure 9f derived
for the representation of Figurei(has to be replaced by two processes derived for
the representation of Figure ®(depicted in Figure ). It is important to observe
that these two non-isomorphic processes cannot be equsitegl the so-called token
swapping technique from [1], as the PT-net is 1-safe, suggethat the potential state
space reductions due to mutex arcs have not been considefad Bituitively, mutex
arc stem from a different philosophy to self-loops. Whertes latter are related to
resource sharing, mutex arcs are derived from semanticeid®rations and so can
provide a more convenient modelling tool.

p1 Pp3 p1 p3

%f@ 7 P @) ®)p}

0]
(@ O (b) g) (©) pi @— b |02 p}
2 4 bl

p2 P4

pi (1 a |—@2) p} pi @—] a |—@2) p}
1 1
Pt (03) " (ps) p? ¢ ©s) p? 3 ¢ 5) p? " (p5) p2

p3 @3 —= b @) p} (@) pl@s b F—@4) p}

Fig. 9. Mutex arcs lead to more condensed process semantics tifidocgs.

In our future work we plan to investigate the relationshipA@en mutex arcs and
other modelling concepts such as localities [15] and pedi¢B], also from the point
of view of the synthesis of nets where unorderedness doesnpdy simultaneity of
executed actions.

In this paper we did not considenm-systems, i.e EN-systems extended with mu-
tex arcs, as it was our intention to investigate a system hoadeesponding to the most
general paradigmr . In future, we intend to find out whemnM-systems fit into the
approach presented here.
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