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Abstract- The MVP model-based sensor planning system for 
robotic vision is presented. MVP automatically synthesizes desir- 
able camera views of a scene based on geometric models of the 
environment, optical models of the vision sensors, and models of 
the task to be achieved. The generic task of feature detectability 
has been chosen since it is applicable to many robot-controlled 
vision systems. For such a task, features of interest in the environ- 
ment are required to simultaneously be visible, inside the field of 
view, in focus, and magnified as required. In companion papers 
we analytically characterize the domain of admissible camera 
locations, orientations, and optical settings for which each of the 
above feature detectability requirements is satisfied separately. In 
this paper, we present a technique that poses the vision sensor 
planning problem in an optimization setting and determines 
viewpoints that satisfy all previous requirements simultaneously 
and with a margin. In addition, we present experimental results 
of this technique when applied to a robotic vision system that 
consists of a camera mounted on a robot manipulator in a 
hand-eye configuration. The camera is positioned and the lens 
is focused according to the results generated by MVP. Camera 
views taken from the computed viewpoints verify that all feature 
detectability constraints are indeed satisfied. 

I. INTRODUCTION 

A. The Problem 

UTOMATION in practice is presently dominated by A special-purpose machines that perform predetermined 
functions in prespecified and tightly controlled environments. 
Since these systems are clearly inflexible and generally cost 
a great deal, considerable interest has been drawn to flexible 
sensor-based automation systems that are able to carry out 
functions in a more flexible working environment and at lower 
cost. Such systems are equipped with various types of sensors 
in order to interact in an intelligent and flexible manner with 
the environment. However, despite this added intelligence, 
many functions still require substantial human involvement. 
For instance, determining the appropriate conjiguration of the 
sensors, programming the sensor-based system itself or, in 
general, determining sensor parameter values that accomplish 
the task at hand to a prespecified degree of satisfaction, remain 
very human-intensive operations that considerably increase the 
development time, cost, and complexity of such automation 
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Fig. 1. MVP sensor planning system 

systems. Sensor planning attempts to automate functions such 
as these in order to produce more flexible and autonomous 
sensor-based systems. 

In particular, we are investigating the problem of model- 
based and task-driven sensor planning (see Fig. 1). That is, 
by making use of 

1) Models of the environment (e.g., CAD models of parts, 
calibration models of the sensors, illumination models) 
and 

2 )  The task requirements (e.g., feature resolution of 3 mils), 

planning algorithms are developed that automatically deter- 
mine sensor parameters values, such as sensor locations and 
sensor settings, satisfying the requirements of the task at hand. 

In currently employed robot controlled vision systems that 
observe known environments (e.g., visual inspection systems), 
appropriate sensor parameters values are determined by of- 
ten laborious and time-consuming techniques. Generally, a 
trial-and-error approach involving human interaction is taken. 
Sensor locations and settings are chosen and then tested in 
order to verify whether they meet the requirements of the 
task at hand. This procedure results in parameter values that 
are valid for only a specific setup and that can potentially 
become unsatisfactory when errors (e.g., robot inaccuracy) 
alter the environment. Such procedures constitute a major 
bottleneck when installing such systems, resulting in a design 
cost which often exceeds that of the equipment. As a result, 
these applications are costly and have limited intelligence and 
flexibility. 

While sensor parameter values are currently determined 
manually, information is often available which can be used to 
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Fig. 2. 
mechanical part measurement system. 

Example application of vision planning techniques to a robotic 

automatically determine many sensor parameters. For instance, 
the required geometric and physical information of objects can 
be extracted from the CAD/CAM models of these parts which 
are often available in today’s manufacturing environment. In 
addition to object models, camera and illumination models 
embodying their physical and geometric properties can provide 
the planning system with the required sensor and illumination 
characteristics. The planning algorithms can use this model 
information and augment it with knowledge regarding the 
functions the system is to perform. In this way, the sensor- 
based system will be able to reason about task related events, 
one of which is its own configuration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Motivation 

In this section we see that a sensor planning component 
would prove useful in several areas of automation. 

The importance of such a component for newer generation 
automated visual inspection systems has been recognized by 
several researchers [16], [30], [36]. In [30], a system is 
defined to automatically generate dimensional measurement 
applications from CAD models of parts. In [16], a concept- 
based inspe,ction system is outlined in which a model-base 
inspection system would be augmented with a generic set 
of principles in order to determine appropriate and flexible 
behavior in new situations. In [36], the need is underlined 
for machine vision development tools that will assist machine 
vision designers and will allow less specialized labor to be 
employed (see Fig. 2). The tool proposed would automatically 
generate the configuration of a machine vision system by 
selecting sensors, illumination, optics, and image processing 
algorithms. 

Vision sensor planning is also useful for robot-controlled 
vision systems in which cameras and light sources are mounted 
on robot manipulators (e.g. [ l ], [35]). In order for these 
systems to perform their task reliably (e.g., remote assem- 
bly/disassembly or manipulation of objects in space or in 
hazardous environments), selection of the proper vision sensor 
parameter values is critical. The developed planning tech- 

niques can be used in such systems in order to automatically 
position and orient the cameras and light sources, as well as 
to control the camera optics (e.g., controlling the zoom, focus, 
and aperture settings of programmable zoom lenses). 

Similarly, sensor planning techniques are applicable to 
areas such as the automatic synthesis of vision programs 
from task specifications and model information [7], [lo], 
[15]. For example, to a certain extent, a vision program to 
inspect an object can be automatically generated based on 
sensor planning techniques that determine appropriate camera 
and illuminator poses, optical settings, and image processing 
algorithms. 

It is important to note that such planning techniques de- 
veloped for vision sensors can also prove useful in other 
areas of automation, such as robotic grasp planning, automated 
machining, and dimensional inspection of mechanical parts 
[2], [22], [23]. For instance, accessibility of a surface in 
order to machine or probe it by tactile means is equivalent to 
visibility of this surface in the orthographic projection model. 
Planning in these latter domains of automation determines 
parameters such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas workpiece and probe orientation, machine 
selection, and cutter or probe type selection. 

C. An Overview of Our Approach: In this paper, we de- 
scribe a vision planning system named machine vision planner 
(MVP) (see Fig. 1). MVP automatically determines vision sen- 
sor parameter values that satisfy certain feature detectability 
task requirements [24]-[28], [32], [33]. MVP includes methods 
that take as input the object geometry information from a CAD 
database, as well as models of the camera and the lens, and 
determine camera poses and settings for which features of 
interest of polyhedral objects are 

1) Visible (occlusion-free positions of the sensor), 
2) Resolvable by the sensor to a given specification, 
3) In focus, and 
4) Contained entirely in the sensor field of view. 

Customarily, a viewpoint is considered to be the viewer 
location alone. However, it is useful to define the concept of 
a viewpoint in a broader sense that includes not only viewer 
orientation, but also the optical settings associated with the 
viewpoint at hand. These settings are also observer attributes 
affecting the resulting image of the scene. Examples of such 
attributes include the focus and aperture settings of a regular 
lens, the focal length settings of a zoom lens, as well as the 
diopter values for glasses of human observers. The param- 
eters that are planned in MVP include the three positional 
degrees of freedom of the sensor-rv(zv, yv,  zv)-and the 
two orientational degrees of freedom, pan and tilt angles, 
described by a unit vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY along the viewing direction. 
The third orientational degree of freedom corresponding to 
rotation around the optical axis (i.e., the swing angle) is not 
considered, since the image plane is taken to be circular with 
a diameter equal to the minimum of the two image plane 
dimensions. In addition to the previous geometric parameters, 
three optical parameters are also considered, namely, the back 
nodal point to image plane distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, the focal length j ,  and 
the entrance pupil diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa of the lens. Thus, planning in 
MVP is done in eight-dimensional imaging space [21] and 
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a point in this space is defined as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgeneralized viewpoint 
V(r1.. v ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ) .  

In MVP, a synthesis approach is taken to be problem. In this 
approach, the task constraints are characterized analytically. 
Using concepts from geometry and optics, each task require- 
ment is modeled by an equivalent analytical relationship which 
in turn is satisfied in a domain of admissible values in the 
space of parameters to be planned. Generally speaking, for 
each constraint, the admissible domain for sensor placement 
and settings is a region in eight-dimensional imaging space 
bounded by the hypersurfaces that are characterized by these 
analytical relationships. 

These component admissible domains obtained for each task 
requirement separately are then combined in order to find 
parameter values that satisfy all constraints simultaneously. 
For this purpose the problem has been posed in an optimiza- 
tion setting in which a globally admissible eight-dimensional 
viewpoint is sought that is central to the admissible domain, 
that is, far from the bounding hypersurfaces described by 
the constraint equations. Such a generalized viewpoint is 
considered desirable since it is robust in the event of inac- 
curacy of either sensor placement or setting. The analytical 
relationship for each task constraint provide the constraints of 
the optimization, while the objective function is chosen so as 
to characterize the distance between the viewpoint and these 
bounding hypersurfaces. 

Once a central generalized viewpoint is determined from 
the optimization, it is then realized in the actual sensor setup. 
In order to achieve these planned sensor parameter values, a 
mapping is established between the planned parameters (e.g., 
camera pose and optical settings) and the parameters that 
can be controlled (e.g., end effector pose, zoom, and focus 
settings). This mapping between the two parameter spaces is 
determined in the case of a sensor setup that consists of a 
camera in a handxye arrangement equipped with a lens that 
has zoom, focus, and aperture control. The optical system is 
modeled by a general thick lens model [9]. For such a lens 
model, the optical or perspective center of the lens defined 
in the pinhole model is replaced by the front and back nodal 
points. These are points on the optical axis whose properties 
are such that any ray passing through the front nodal point 
emerges from the back nodal point in the direction parallel 
to that of the original ray. Other characteristic properties of 
an optical system [12] that are employed include the aperture 
stop and the entrance and exit pupils. The aperture is the stop 
of the optical system that limits the angle of an axial cone of 
rays passing through the optical system. While the images of 
the aperture stop with respect to all lens elements preceding 
and following it are, respectively, the entrance and exit pupils. 
By maintaining such a generality regarding the optical model, 
the results are applicable to general lens systems such as a 
zoom lens and also it is possible to quantify the effect of any 
assumptions that may be made later. The resulting camera- 
lens-robot embody knowledge of the geometric relationships 
between the manipulator and the sensor and of the optical 
relationships among the various lens parameters. 

The MVP sensor planning and sensor modeling techniques 
have been used to automatically synthesize camera views for 

a robotic vision system. This system consists of a camera 
mounted on a robot manipulator in a handxye configuration. 
The camera is positioned and the lens is focused according 
to the results generated by MVP. Camera views taken from 
the computed viewpoints verify that all feature detectability 
constraints are indeed satisfied. 

Compared with other vision sensor planning systems [3], 
[4], [17], [19], [37], the MVP system is notable in that it 
takes a synthesis rather than a generate-and-test approach, 
thus giving rise to a powerful characterization of the prob- 
lem. In addition, the MVP system provides an optimization 
framework in which constraints can easily be incorporated 
and combined. For example, while MVP has concentrated on 
the camera planning part of the problem and thus now lacks 
an illumination planning component, it would be relatively 
straightforward to include in such a framework. Compared 
with other approaches to the camera planning problem, MVP 
studies the broadest range of feature detectability constraints. 
Furthermore, the MVP system stands out for its generality of 
handling general viewing configurations and scene geometries 
(e.g., nonorthogonal viewing, general convex, and concave 
polyhedral objects) and determining a complete set of imaging 
sensor parameters as described by its concept of a generalized 
viewpoint. Another advantage of the MVP system is that it 
addresses the associated sensor modeling problems which are 
typically ignored or treated naively in other systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. THE CONSTRAINT SATISFYING VIEWPOINT LOCI 

In this section, we briefly present the loci of admissible gen- 
eralized viewpoints that satisfy each of the feature detectability 
constraints of visibility, resolution, focus, and field of view. 
Details and derivations of the following can be found in [24] 
and [26]. 

A. The Feature Visibility Constraint 

The domain of admissible sensor locations is first limited to 
regions in three-dimensional space from where the features to 
be observed are visible (i.e., not occluded). We have developed 
techniques that compute the locus of all viewpoints from 
which features on known polyhedral objects can be viewed 
in their entirety without being occluded by anything in the 
environment (see Fig. 9). Convex and concave polyhedra with 
or without holes and the viewing model of perspective pro- 
jection are employed in this work. Initially, properties of the 
occlusion-free and occluded loci of viewpoints are determined. 
Based on these properties, two methods to construct these 
loci together with their complexity analysis are presented. In 
the first method, a boundary representation of the occlusion- 
free locus is obtained. In the second method, the locus of 
occluded viewpoints is expressed in terms of a constructive 
solid geometry (CSG) representation that consists of a union 
of component solids. The features to be observed can be of 
any polyhedral type: a point, line segment, or face (including 
concave faces). The details of both techniques are described 
in [24]. 

Of these two methods, the second can be readily imple- 
mented in a solid modeling environment and thus is discussed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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here briefly. In this technique, the boundaries of the polyhedral 
objects in the environment are considered to be comprised of 
one or more polygonal faces, and the occluded region of a 
feature due to the environment as a whole (more precisely the 
union of the occluded region and the objects in the environ- 
ment) is equal to the union of the component occluded regions 
generated by the individual object faces. In this method, the 
problem of computing the occluded region between a convex 
occluding polygon and a convex feature polygon is employed 
as a component step. A concave or multiply connected object 
face or feature is decomposed (i.e., partitioned) into convex 
polygons. As an example of convex partitioning, it is known 
that any simply or multiply connected polygonal domain can 
be triangulated [18]. The occluded region is the union of 
the component occluded regions generated between all pairs 
of convex polygons, one taken from the convex polygons 
of the object face and one from the convex polygons of 
the feature. Computing the occluded region in the case of a 
convex occluding polygon and a convex feature is relatively 
straightforward [4] and a linear time algorithm for this is 
presented in [26]. 

B. The Feature Resolution Constraint 

Pixel resolution is used to indicate the approximate size 
of the smallest scene feature which can be seen by the 
vision system. In many machine vision tasks it is required 
that a particular unit feature size on an object appear as a 
minimum number of picture elements on a sensor. This feature 
resolution constraint can be satisfied by properly selecting 
the image sensor (e.g., pixel size), as well as by carefully 
planning its placement and settings. The objective of sensor 
planning for the feature resolution constraint is to determine 
the sensor parameters that achieve this resolution. The type of 
features that are considered for the resolution constraint are 
line segments, thus including feature edges, linear features of 
interest (e.g., width between two edges) or generally features 
that can be approximated by a finite set of line segments (e.g., 
a circular patch approximated by a finite set of diameters). 
In [24] we have obtained the locus of camera poses and lens 
optical settings for which chosen linear features are magnified 
to meet a given resolution specification, for instance, feature 
AB has an image of length that is at least equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. 
This locus of resolution satisfying generalized viewpoints is 
described in vector form by the following formula: 

where rv,  T A ,  r B  are the position vector of the front nodal 
point V of the lens and the vertices, A and B of the linear 
feature AB, with respect to the object world coordinate 
system, d is the distance from the back nodal point of the 
lens to the image plane, Y is the unit vector along the optical 
axis in the viewing direction, U[ is the unit vector along the 
linear feature AB, 1 is the length of the linear feature AB, f is 
the intrinsic focal length of the lens, that is, the focal length of 
the lens for an object at infinity, and w is the required length 
of the image of the feature AB. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 

C. The Focus Constraint 

When planning camera placement and lens settings so that 
all features of interest in a scene are in focus simultaneously, 
this corresponds to determining the locus of generalized view- 
points for which the feature points that are farthest and nearest 
with respect to each viewing direction lie within the range 
described by the depth of field. The feature vertex pair that 
is farthest and closest from the front nodal point of the lens, 
can be computed when a viewing direction is given. Thus, the 
region that satisfies the depth-of-field constraint for general 
polyhedral object features is the band between the planes 
perpendicular to the viewing direction, and at distances D1 and 
0 2  from the farthest and closest feature vertices, respectively. 
Consequently, the functional relationship that describes the 
locus of generalized viewpoints satisfying the depth-of-field 
constraint is given in vector form by the following formulas: 

(2) 

(3) 

where rv is the position vector of the front nodal point V 
of the lens, v is the unit vector along the optical axis in the 
viewing direction. D1 is the far limit of the depth of field, 0 2  

is the near limit of the depth of field, rf is the position vector 
of the farthest feature vertex from the front nodal point.of the 
lens along the viewing direction, and rc is the position vector 
of the closest feature vertex from the front nodal point of the 
lens along the viewing direction. 

The far and near limits of the depth of field are given by 
the following relationships [ 131, [24]: 

gza: (r, - r V )  . v - D2 2 0 

g2b: D1 - (rf - r V )  . Y 2 0 

where c is the limiting blur circle diameter that is considered 
acceptable, a is the diameter of the entrance pupil of the lens 
system, d is the distance from the back nodal point of the lens 
to the image plane, and f is the intrinsic focal length of the 
lens. 

D. The Field-of-View Constraint 

For the visibility constraint posed in Section 11-A it was 
implicitly assumed that there were no field-of-view limitations, 
that is, the sensor was assumed to have an 180" field-of-view 
angle and therefore orientation of the sensor was immaterial 
provided that the features to be observed were in the half-space 
associated with the front of the camera. For a CCD camera, the 
field of view is generally limited by the minimum dimension 
Inlin of the active sensor area in the image plane. Any observed 
feature must project onto this sensor area; otherwise, it will 
either be totally outside the field of view or will be truncated. It 
has been shown in [24] that the relationship describing the field 
of view satisfying locus of generalized viewpoints is given in 
vector form by the following formula: 

93:  ( r K  - rV) . v - IIrK - rvll cos ($) 2 0 (6) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr\ is the position vector of the front nodal point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 

of the lens, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is the unit vector along the optical axis in the 
viewing direction, CY is the field-of-view angle and is given 
by o = 2 tan-' ( I ~ r , ~ ~ ~ / 2 d ) ,  I,,,, is the minimum dimension, 
width or height, of the active area of the sensor plane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is the 
distance from the back nodal point of the lens to the image 
plane, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT K  is the position vector given by the relationship 
f h  = rc - ROY, where Ro = Rf/(sinrr/2) and rc is the 
position vector of the center of a sphere circumscribing the 
object features and El f  is the radius of this sphere. 

111. INTEGRATION OF CONSTRAINTS 

A. Introduction 

The approach taken to this point is bottom up. Each task 
constraint has been modeled in detail and independently of 
the other constraints, and thus an understanding has been 
developed regarding the effect of each on the general plan- 
ning objective. At this point, these component admissible 
domains obtained for each task requirement separately are to 
be combined in order to find parameter values that satisfy all 
constraints simultaneously. For this purpose, the problem is 
posed in an optimization setting in which a globally admissible 
generalized viewpoint is sought that is central to the admissible 
domain. Such a viewpoint will, on the one hand, satisfy all the 
imposed constraints, but also, by favoring points far from the 
admissible domain boundaries, will do so with margin. Such 
a generalized viewpoint is desirable, since it is robust in the 
event of inaccuracy (e.g., due to sensor noise) of either camera 
placement or lens setting. 

B. Admissibility of a Viewpoint 

Constraint merging is formulated as a constrained optimiza- 
tion problem. The constraints of the optimization consist of 
the feature detectability requirements that must be satisfied. 
As discussed in the previous sections, these requirements are 
described by the visibility region and the analytical relation- 
ships given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(l)-(6). Consequently, in order to determine 
admissibility of a generalized viewpoint with respect to the 
resolution, field-of-view and depth-of-field requirements, it is 
sufficient to evaluate the following relationships: 

Compared to the resolution, field-of-view, and depth-of-field 
requirements where admissibility is determined by a function 
evaluation, visibility satisfaction, on the other hand, is de- 
termined by a point-in-polyhedron type classification, where 
the point is the location of the viewpoint under consider- 
ation and the polyhedron is the visibility region that has 
been constructed. Such a classification can be performed by 
shooting a ray from the point under consideration, computing 

the intersection of this ray with the faces of the polyhedron, 
determining whether the intersection point is inside each face, 
and keeping count of such face crossings. 

An additional optimization constraint ,95 expresses the unit 
vector condition for the viewing vector U that appears in 
relationships 91, gzar g 2 b .  and 93: 

This constraint 9s is an equality, whereas 91, ,9zn, 92b ,  and g:3 
are all inequalities. 

There is a 91 equation for each edge feature that is to 
be resolved, while for the depth-of-field and field-of-view 
constraints, there is a single zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgzar 9 2 6  and g3 relationship 
for all features. For the depth-of-field constraint, auxiliary 
geometric queries are implemented in order to determine r f  
and S,. for (8) and (9), where rf and r,. are the farthest and 
closest feature points for the particular viewing direction that 
the optimization scheme is investigating at any given stage. 
A similar geometric query is implemented for the resolution 
constraint as described by relationship (7), in order to find for 
a given viewing direction the farthest minifeature on the given 
feature edge with length equal to the minimum size that is to 
be resolved. 

C. Optimality of a Viewpoint 

While the constraints address the admissibility of the com- 
puted solution, the optimization function on the other hand is 
constructed so as to characterize the quality of the computed 
solution, according to some metric. The metric used currently 
is robustness. That is, a solution is considered preferable, if it 
satisfies the constraints with a greater degree of tolerance (i.e., 
more comfortably). As a result, the measures used to assess 
the goodness of a solution with respect to the resolution, field- 
of-view, and depth-of-field constraints are the values of the 
constraint relationships 9%) i = 1. 2n ,  2h, 3 themselves. This 
is appropriate since a large positive value of g1 indicates that 
the constraint is satisfied comfortably, a small positive value 
indicates marginal satisfaction, while inadmissible solutions 
give rise to negative values. More specifically, the value of 
the resolution constraint in the form given by relationship 
(7), expresses the difference between the actual and required 
lengths of the image of the minimum feature size. The values 
of the focus constraint in the form given by relationships 
(8) and (9), express the distances of the closest and farthest 
feature points from the near and far limits of the depth of 
field. The value of the field-of-view constraint in the form 
given by relationship (lo), expresses the angular distance of 
the viewpoint from the boundary of the field-of-view locus. 
Specifically, it is the difference between the cosines of the 
field-of-view half angle, and the angle between the axis of the 
cone defining the field-of-view locus, and the vector from the 
apex of the field-of-view cone locus to the viewpoint. 

It should be noted that a metric other than robustness may 
also be appropriate to assess the quality of a computed view- 
point. For example, in the previous discussion, viewpoints are 
considered more desirable with respect to the focus constraint 
if the features are located far from the depth-of-field limits. 

/ , 
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This, however, does not necessarily lead to a more focused 
(i.e., less blurred) image. The reason for this is that the case 
where the features are situated close to the position of perfect 
focus, may be less robust in that the features will be closer to 
one of the two limits of the depth of field. This is especially 
true since the location of perfect focus is not symmetrically 
located with respect to the near and far limits of the depth 
of field. 

Similar to the optical constraints, a measure of robustness 
of the computed viewpoint with respect to the visibility 
constraint, also needs to be formulated. For this purpose, the 
distance from the viewpoint to the polyhedron describing the 
visibility region is appropriate since such a metric corresponds 
to the maximum tolerance in camera placement that still avoids 
occlusion of the feature. 

The distance do from a point 0 to a polyhedron is defined 
as the minimum distance from the point to any of the faces of 
the polyhedron. The distance from the point to a face of the 
polyhedron is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdn, the distance from the point to the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII of the 
face, if the projection 0’ of the point 0 onto II lies 
inside the face, 

2) ( d i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ d2-o , )1 /2 ,  if 0’ lies outside the face, where de-,! 
is the minimum distance from 0’ to any of the edges 
of this face. 

In turn for the distance from a point to an edge is 
similarly given by 

1) The distance from the point to the line of the edge, if the 
projection of the point onto this line, lies inside the edge 

2) The distance to the closest of the two vertices of the 
edge, if the projection lies outside the edge. 

The quality of the solution with respect to the visibility 
constraint will be expressed by the signed distance d v ,  where 
the distance is taken to be positive if the viewpoint lies inside, 
and negative if the viewpoint lies outside the visibility region. 
Thus 

where d v  is the minimum distance from the viewpoint to the 
polyhedron describing the visibility region VR. 

Alternatively, an approximation of the distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdv can 
be employed by drawing several rays from the viewpoint 
under consideration and determining the points of intersection 
between these rays and the boundary of the visibility region 
polyhedron. The distance measure will then be 

g4 = IC min dr, (14) 
1 

where IC is 1, - 1 and 0 depending on whether the point is 
inside, outside or on the visibility region, respectively, T;  is a 
ray emanating from the viewpoint V, di is the length along the 
ray between the viewpoint and the boundary of the visibility 
polyhedron. 

. 

D. The Nonlinearly Constrained Optimization Problem 

The optimization function is taken to be a weighted sum 
of the above component criteria, each of which characterizes 
the quality of the solution with respect to each associated 
requirement separately. Thus the optimization function is 
written as follows: 

h = max ( a l g l  + a2ag2a + a 2 b g 2 b  + a3b.93 + a 4 g 4 )  (15) 

subject to 

and 

g s  = 0. (17) 

The weights ai in the above relationship are currently chosen 
so that the contribution of each constraint to the objective 
function is of the same order of magnitude at the start of 
the optimization. In this way, we avoid having a subset of 
the constraints dictate the optimization. Such a choice of 
weights may obviously have problems. For example, in the 
neighborhood of the local optimal and with the above choice 
of weights, the contribution of each constraint to the objective 
function may be of different orders of magnitude at the end of 
the optimization, thus leading to a biased optimization result. 
In general, determination of the appropriate weights in such a 
combining optimization function is a problem of its own [6] 
and many optimization routines (e.g., NCONF in IMSL [ 1 I]) 
include their own internal scaling procedures. In future work 
we shall investigate other weight settings that will depend on 
the particulars of the problem at hand. 

Given the above formulation, the optimization starts with an 
initial point in the domain of possible generalized viewpoints 
and then generates a generalized viewpoint that is globally ad- 
missible and locally optimal as described by the optimization 
function. In other words, all constraints are satisfied with the 
largest margin in a neighborhood of the initial point. 

This constrained optimization formulation constitutes a sim- 
ple integration scheme based on the assumption that multiple 
and coupled objectives can be combined in an additive sense 
into a single global objective. Such a formulation has inherent 
problems with conflicting objectives which do exist in this 
sensor planning problem. For example, smaller values of the 
sensor parameter d increase the field of view on the one hand, 
but give rise to shorter (i.e., less magnified) scene features. 
What is truly desired is to have an image that is very much in 
focus, magnified, centered in the field of view, and far from 
being occluded. Thus, the problem may also be posed as one 
of multiple objective optimization with each task constraint 
constituting an individual objective. For simplicity the problem 
has currently been formulated as one of global objective opti- 
mization. The result of the optimization will be locally optimal 
only with respect to the chosen optimization function. This 
result will generally be different than the optimal generated by 
a multiple objective optimization approach. In order to address 
this discrepancy, it may be possible to determine values of the 
weights (i.e., weight calibration) for which the two solutions 
coincide in certain cases. 
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Fig. 3. Experimental setup. Fig. 4. The object. 

Techniques that combine the admissible domains of indi- 
vidual constraints in order to determine globally admissible 
solutions need to be investigated further. Optimization used in 
MVP provides one such framework. However, further work is 
needed in order to study convergence properties, appropriate 
weight values and the dependence of the final solution on 
the quality of the initial guess. Furthermore, techniques that 
determine admissible regions rather than an optimal point 
should also be investigated. For example, a description of 
interval-based techniques for solving large systems of non- 
linear constraints is given in [SI. 

IV. EXPERIMENTS 

As part of the MVP system, we have implemented the 
machine vision planning algorithms that were discussed in 
the previous sections. In the experiments, we demonstrate the 
effectiveness of this approach using a robot vision system that 
plans its pose and the lens settings of its camera according to 
these techniques. 

In this section, we present how these techniques are applied 
to the robotic setup in order to determine a globally admissible 
generalized viewpoint (i.e., camera pose and optical settings). 
We then describe placement and setting of the camera and 
demonstrate satisfaction of all feature detectability constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  Setup Description 

The experimental setup is shown in Fig. 3. A Javelin CCD 
camera is fastened to the last joint of an IBM clean room robot 
(CRR). The CRR has two manipulators, each with seven joints, 
which consist of three linear joints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ) ,  three rotary joints 
(roll, pitch, and yaw) and the gripper joint. The manipulator 
can place and orient the camera according to the parameter 
values determined by the planning system. 

The Javelin CCD camera has 480 vertical and 384 horizontal 
sensor elements. The spacing between sensor elements in the 
horizontal and vertical directions are, respectively, 23 and 13.5 
pm. The ratio of the sensor element spacing in the horizontal 
direction to the picture element spacing after sampling by the 
image acquisition hardware was found to be 0.70642 from 
calibration [ 141. This horizontal scale factor relates the sensor 
element spacing to the pixel spacing in the frame buffer. 

Several lenses covering a range of focal lengths are available 
to be mounted on the CCD camera as needed. In addition, since 

Fig. 5 .  CAD model of the object. 

the back nodal point to image plane distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is a parameter 
that is planned, a set of lens extension tubes are also available 
in the event that the value of this planned parameter lies 
outside the working range specified by the closeup focusing 
capability of the lens itself. A computer controlled zoom lens 
with programmable zoom, focus, and iris functions has also 
been used in [32], but not in a general manner. The reason for 
this is that currently the operating range of the sensor has not 
been incorporated in MVP as a constraint of the optimization. 
If the sensor operating range is ignored, the computed sensor 
parameter values are typically not simultaneously achievable 
by the sensor at hand. For example, the optical parameters 
j’, d, and (I, often cannot simultaneously assume the planned 
values. As part of the MVP sensor modeling work discussed in 
[25], general purpose techniques to characterize the operating 
range of a general lens have been presented. At this point, the 
resulting relationships that characterize the set of achievable 
sensor parameter values need to be included as additional 
constraints in the constrained optimization problem. 

The object used in the camera placement experiments is 
shown in Fig. 4, and a CAD model of it is shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  
The features to be observed are the two edges of the enclosed 
cube shown in Fig. 5 .  This object is assembled from smaller 
primitive objectives (i.e., cubes, parallelpipeds, etc.) so that 
it can be reconfigured to test a variety of object geometry 
arrangements. 

B. Sensor Planning Results 

The domain of admissible camera locations is initially 
limited to the region in three-dimensional space from where 
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the edge features to be observed are visible. The visibility 
algorithm discussed in Section 11-A has been implemented 
in AMLR, an object-oriented programming language in- 
tended for use in design and manufacturing applications. The 
programs are run in the tiered geometric modeling system 
(TGMS) environment [5]. TGMS provides an object-oriented 
programming interface to an IBM in-house solid modeling 
system, geometric design processor (GDP) [34], as well as 
many geometry classes and methods. In this framework, the 
occluding objects, the feature, as well as the visibility and 
occluded regions themselves are represented as solids, and any 
operations on them (e.g., convex hull, Boolean set operations) 
are conveniently developed. 

The visibility region for each edge feature is computed 
separately. These two regions are then intersected in order 
to determine the region in space from where both edges are 
simultaneously visible. First, the component occluded regions 
are computed between each feature edge and the inside vertical 
faces as well as the bottom face of the overhang. The other 
faces do not need to be considered since they are backfacing' 
and it has been shown in [26] that the occluded regions of 
backfacing faces are subsumed by the occluded regions of 
faces that are not backfacing. Since the features are convex 
and the inside vertical faces are also convex, their respective 
occluded regions can be easily obtained. On the other hand, 
since the bottom face of the overhang is multiply connected, 
that is, it consists of two loops, this face is triangulated. 
The occluded regions between the edge feature and each 
triangle are unioned, resulting in the occluded region between 
the bottom face of the overhang and the edge feature. The 
component occluded regions between the edge feature on the 
one hand, and the inside vertical faces and the bottom face 
of the overhang on the other, are unioned, resulting in the 
total occluded region for each edge. The complement of the 
occluded region is the visibility region for each edge, which 
are shown in Figs. 6 and 7. For this particular case it is simpler 
to conceptualize the visibility region for each edge as the union 
of the visibility regions associated with the two loops zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL H  and 
SH, which correspond to viewing the target through the small 
hole S H  and the large hole LH of the object (see Fig. 5). In 
Fig. 8 it can be noted that the visibility region for the vertical 
edge diminishes quickly in the vicinity of the narrow slit of 
the larger hole L H .  The two edge visibility regions are then 
intersected resulting in the region shown in Fig. 9, that is, the 
space from where both edges are simultaneously visible. 

Viewpoints chosen from this visibility region must also 
satisfy the other constraints in order to be globally admissible. 
For this experiment the resolution specification is taken to be 
1 frame buffer pixel spacing for a minifeature size of I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.1 
in. The pixel spacing mentioned in Section 11-B refers to the 
distance between pixels on the sensor plane. An equivalent 

Fig. 6. Visibility region of the horizontal edge. 

Fig. 7. Visibility region of the vertical edge. 

Fig. 8. Closeup of the visibility region of the vertical edge. 

value corresponds to the diagonal direction of the sensor plane. 
This direction yields the worst case for the pixel resolution 
requirement since the image of the minimum feature length 
needs to be magnified the most in order to cover two diagonal 
pixels. We compute the sensor plane spacing in the diagonal 
direction corresponding up to 1 frame buffer pixel spacing as 
follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

f I 

I 

specification in terms of frame buffer pixels can be obtained 
using the scale factor that relates the sensor element spacing of 
the CCD m a y  to the Pixel dement spacing of the frame buffer 
[14]. Furthemore, this spacing between sensor elements varies 
along different directions on the sensor plane. The maximum 

'Faces with an interior half-space that includes the feature in its entirety 
are named backfacing faces. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = J(23 x .70642)2 + 13.52 = 21.12pm (18) 

where the spacing between sensor elements in the horizontal 
and vertical directions are, respectively, 23 and 13.5 pm and 
the ratio of the Sensor element spacing in the horizontal 

direction to the picture element spacing after sampling by 
the image acquisition hardware is found to be 0.70642 from 



80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. I I ,  NO. I ,  FEBRUARY 1995 

Fig. 9. Visibility region for both edges. 

calibration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141. For the field-of-view constraint, the minimum 
sensor plane dimension is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,,,,, = min(479 x 13.5, 383 x 
21) = 479 x 13.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY 6.5 mm where 480 and 384 are the 
number of sensor elements in the vertical and horizontal 
directions, respectively, for the Javelin CCD camera at hand. 
The diameter of the circle of confusion for the depth-of-field 
constraint is taken to be the minimum of the horizontal and 
vertical sensor element spacings, that is c = 13.5 bm. 

With this information, the objective function h and the 
optimization constraints given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy,, L = 1, 2a, 2b, 3. 4. 5, 
are constructed. From the two altematives discussed in Section 
111-C regarding the constraint ~ 4 ,  the exact signed distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d~ and not its approximation has been employed in the 
experiments since it did not adversely affect the speed of 
computation. In the experiments that follow, values of the 
entrance pupil diameter CL and the intrinsic focal length f 
are chosen a priori (f = 12.5 mm and U = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj/16). Thus 
values for the remaining parameters .rL , y ~ ,  , v, and d are 
computed. The reason for setting the value of the focal length 
beforehand is that the available lenses cover a discrete set 
of focal length values. As a result, the focal length parameter 
cannot be handled in the optimization as a continuous variable 
assuming any value in a given range, like the other parameters. 
On the other hand, the reason for presetting the entrance 
pupil diameter is that it affects both focusing and image 
brightness. Since the later is not incorporated as a sensor 
planning constraint, if the entrance pupil diameter is planned, 
the resulting images are often either too dim or saturated. As 
a result, since the sensor and illumination planning problems 
are coupled, it is important to include an illumination planning 
component in this work. 

The optimization is performed using the IMSL 1111 non- 
linear constrained optimization routine NCONF. This routine 
uses a successive quadratic programming method to solve 
the general nonlinear programming problem 1201. When using 
NCONF, adjustment of the initial guess point or the weights 
was needed in cases of premature program termination due 
to errors associated with attaining the maximum number 
of iterations, not satisfying the optimality condition due to 
roundoff errors, or not finding a search direction while the 
current iterate is still infeasible (the last indicates badly scaled 
problem functions 1201). It should be noted that NCONF 
assumes that all functions of the problem are assumed to be 

continuously differentiable. Strictly speaking this assumption 
is not satisfied by all the constraint relationships of our 
problem. For example, in the case of the focus constraint, as 
the viewing direction varies, different feature points become 
the farthest and closest points along this viewing direction, 
thus leading to a discontinuity in the associated constraint. 

In the first experiment, the visibility constraint is not taken 
into account in the optimization function, that is, 04 = 0. How- 
ever, the point-in-polyhedron classification is incorporated. 
The viewpoint determined by the optimization is classified 
with respect to the visibility region and thus satisfaction of the 
visibility constraint is checked. If the viewpoint lies inside or 
on the visibility region, then it is the viewpoint of choice, since 
it is a globally admissible generalized viewpoint that is locally 
optimal with respect to the resolution, depth-of-field and field- 
of-view constraints. However, if the viewpoint lies outside the 
visibility region, then the intermediate points that are generated 
by the optimization are checked for global admissibility, that 
is, satisfaction of all the constraints including Visibility. From 
among these, the one with the largest value of the objective 
function is chosen. The values of the other weights in the 
optimization function are taken to be 01 = loJ, 0 2 ~  = 
f f 2 b  = lop2, and 03 = lop1, where distances are expressed in 
millimeters, and the constraints are written in the form given 
by relationships (1)-(6). 

Both the initial and the computed camera viewpoints are 
listed in Table I, and are shown in Fig. 9 as points V ,  and V f ,  

respectively, along with their associated viewing vectors. It 
can be seen from Fig. 9 that the initial guess viewpoint for the 
optimization is chosen to lie on an edge of the visibility region 
with a viewing vector in the direction from the viewpoint 
to the center of the sphere that circumscribes the features to 
be observed (see Section 11-D). The viewpoint determined by 
the optimization Vf is classified with respect to the visibility 
region and is determined to lie inside the visibility region. Thus 
this viewpoint is chosen since it is both globally admissible and 
locally optimal with respect to the resolution, depth-of-field, 
and field-of-view constraints. 

In the following experiments, the visibility constraint is 
taken into account in the optimization function, with the value 
of the associated weight = 1. The values of the other 
weights in the optimization function are the same as in the 
previous experiment: 01 = lo2, ( ~ 2 ~  = ( ~ 2 6  = and 
c r ~  = 1, when distances are expressed in millimeters and 
the constraints are written in the form given by relationships 
( 1  )--(@. 

The two initial viewpoints that are chosen to start the 
optimization, V,, and V,,, and the corresponding camera 
viewpoints that are computed by the sensor planning system, 
Vf1 and V p ,  are listed in Tables I1 and 111, and are shown in 
Fig. 10 along with their associated viewing vectors. It can be 
seen from Fig. 10 that the initial guess viewpoint V, ,  is chosen 
to lie inside the visibility region with a viewing vector in the 
--z direction. For V, ,  , the field-of-view and focus constraints 
are violated. The initial guess viewpoint V , 2  is chosen to lie 
outside the visibility region with a viewing vector again in 
the --z direction. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl&, all constraints are violated. The 
viewpoints Vf1 and V f ,  that are determined by the technique 
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K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX Y Z v(1) v(2) v(3) f d a 

165.1 -279.4 368.3 -0.336 0.569 -0.750 12.5 1.2f U16 

" m m  mm 

107.58 -231.43 258.68 -0.389 0.694 -0.608 12.5 13.07 f/16 

" " m m  m m m m  

X Y Z v(1) v(2) v(3) f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V,, 228.6 0.0 368.3 0.0 0.0 -1.0 12.5 

" " m m  mm 

Vfl 197.10 100.58 330.45 -0.513 -0.255 -0.820 12.5 
" " m m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" "  

d a 

l . l f  f/16 

12.84 f/16 

can be seen in Fig. 10 to lie inside the visibility region with 
viewing vectors in the direction of the features. 

VG 

Vp 

C. Camera Placement, Lens Setting, and Ver$cation 
of the Sensor Planning Results 

In order to verify that all the constraints are indeed satisfied, 
camera views are taken from the computed viewpoints. Having 
determined from the sensor planning results of the previous 
section, the position vector of the front nodal point of the lens, 
the optical axis orientation, and the image plane to back nodal 
point distance, in this section we describe how the camera is 
placed and its lens is focused accordingly. 

The manipulator with the mounted camera is used to place 
the camera at the chosen viewing positions with respect to 
the object. The computed camera position is known only with 
respect to the object world coordinate system. What needs 
to be determined is the manipulator location that places the 
camera at the chosen position. As discussed in detail in the 
Appendix, this mr.,iipulator location can be computed from 
the handxye relationship and the pose of the object in the 

X Y Z v(l) v(2) v(3) f d a 

2.54 2.54 2.54 0.0 0.0 -1.0 12.5 1.lf f/16 

" " m m  nun 

112.78 110.49 159.77 -0.444 -0.583 -0.680 12.5 13.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf/16 

" m m m  m m m m  

robot world coordinate system. The object pose is determined 
by performing camera calibration [29] using features from 
the object itself and knowing their locations from the object 
model information. Details regarding the camera placement 
computations can be found in the Appendix. 

On the other hand, the image plane to back nodal point 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, which has been computed by the sensor planning 
system, needs to be realized in the camera-lens setup. From 
calibration of the lens [29], the image plane to back nodal 
point distances d can be determined for the Jr  = 12.5 mm 
lens at its various focus settings. The value of this distance 
for the computed viewpoint Vf is d = 13.07 mm. This value 
lies outside the limits of the focusing capability of the lens, as 
determined by calibration. As a result a lens extension is used 
in order to give the necessary lens to image distance d. 

Fig. 3 shows the manipulator placed at viewpoint \:f and ori- 
ented according to the computed viewing vector. The scene of 
the object taken from the computed viewpoint Vf is shown in 
both graphical simulation as well as in the robot vision system 
in Figs. 11 and 12, respectively. In both scenes, satisfaction 
of the visibility constraint can be readily verified. However, 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. Camera view of the features from the computed viewpoint 1-f. 

Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI O  Initial and the computed viewpoints 1 , I , 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;L, 1 and 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. f2 .  

Fig. 1 1 .  Simulated view of the scene from the computed viewpoint 1-f. 

this constraint is satisfied only marginally since the horizontal 
edge is very close to being occluded by the overhang. This 
emphasizes the importance of including the contribution of 
the visibility constraint to the objective function in order to 
thus avoid viewpoints close to the visibility region boundary. 
The graphical simulation has not been set to the same field- 
of-view limits as the real camera; thus satisfaction of field- 
of-view constraint should be observed in the actual camera 
image. Furthermore, the resolution requirement is verified by 
measuring the feature magnification in the image (see Fig. 12). 
The 1-in horizontal and vertical feature edges are imaged as 45 
and 39 frame buffer pixels, thus comfortably satisfying the 1 
frame buffer pixel per 0. I-in requirement. Finally, the depth- 
of-field requirement can also be qualitatively verified in the 
image. A quantitative measure of focus will also be employed 
in future work for a more accurate evaluation of the quality 
of focus. 

In a similar manner, the camera viewpoint is placed at 
points Vf1 and Vfz, and the camera is oriented according 
to the computed viewing vectors. As seen in Table 111, the 
value of the parameter d for the second computed viewpoint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vf2 is d = 13.25 mm, which also lies outside the limits 
of the focusing capability of the lens. As a result, a lens 
extension is again used in order to give the necessary lens 
to image distance cl. The scenes of the object taken from the 
computed viewpoints V’1 and V f 2  are shown in both graphical 
simulation and in the robot vision system in Figs. 13-16. In all 

Fig. 13. Simulated view of the scene from the computed viewpoint 1 .,- 1 . 

/ 
I 

/ 

Fig. 14. Camera view of the features from the computed viewpoint 1 I 

scenes, satisfaction of the visibility constraint can be readily 
verified. The graphical simulation has again not been set to the 
same field-of-view limits as the real camera, thus satisfaction 
of the field-of-view constraint should be observed in the 
actual camera images. Furthermore, by measuring the feature 
magnification in the image, it can be seen that the 1 frame 
buffer pixel per 0.1 -in resolution requirement is comfortably 
satisfied for both viewpoints. Finally, satisfaction of the depth- 
of-field requirement can also be qualitatively observed in the 
image. 

V. CONCLUSION 

We have presented the MVP system that automatically de- 
termines optimal camera poses and lens optical settings so that 
given visibility, field-of-view, depth-of-field, and resolution re- 
quirements are simultaneously satisfied with margin for chosen 
scene features. The problem is posed in an optimization setting 
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Fig. 15. Simulated view of the scene from the computed viewpoint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 2 .  

Fig. 16. Camera view of the features from the computed viewpoint I . fZ .  

and a viewpoint is sought that is both globally admissible 
and central to the admissibility domain. In the experiments, 
the technique determined viewpoints that satisfy all the above 
feature detectability requirements when starting from different 
inadmissible viewpoints. 

In future work we shall extend this research to include 
illumination parameters (e.g., illuminator pose) and investigate 
how such parameters can also be planned so that features of 
interest are again robustly detectable in the resulting image. 

These planning techniques can help automate robot vi- 
sion systems that configure and reconfigure themselves in 
an intelligent manner in order to optimize imaging quality. 
Furthermore, the results discussed in this paper are useful for 
automating the vision system design process, as well as for 
programming the vision system itself. 

VI. APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASetting the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACamera Pose 

While the camera pose is the parameter that is planned, the 
parameter that can be controlled in the sensor setup is the robot 
gripper pose. In this section, the objective is to obtain values 
for the controllable parameter of the robot gripper pose given 
the desired values for the planned camera pose parameters, 
rv and U, and the relationship between the camera and the 
robot gripper. 

Let us define the following Cartesian coordinate systems: 

1) G is the gripper coordinate system which is fixed to the 
robot gripper; 

2) C is the camera coordinate system which is centered 
at the front nodal point V of the lens, with the z 
axis coinciding with the optical axis, and the T ,  axes 
parallel to the image X ,  Y axes; 

3)  0 is the object world coordinate frame. This is an 
arbitrarily selected coordinate frame relative to which 
the coordinates of each point on the object are known; 

4) W is the robot world coordinate frame. It is fixed in 
the robot workstation, and as the robot arm moves, the 
encoder output of all the robot joints determines where 
the gripper is relative to W .  

The robot gripper pose can be expressed as the the transfor- 
mation matrix H,, from the robot gripper coordinate system 
G to the robot world coordinate system W .  Similarly, the 
relationship between the robot gripper and the camera can be 
expressed by the transformation matrix H,, from the camera 
coordinate system C to the robot gripper coordinate system G. 

The desired values for the planned parameters rv and v 
are expressed with respect to the object coordinate system and 
determine the desired geometric relationship H,, between the 
camera and object coordinate systems. In addition, the relation- 
ship between the camera and the robot gripper expressed by 
the transformation matrix Hc, can be obtained from existing 
hand-eye calibration techniques. Thus the gripper pose with 
respect to the object coordinate system can be obtained from 
the following relationship: 

H,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= H O ~ . ' H c ~ ' .  

What is needed, however, is H,,, the gripper pose with respect , / 
to its own world coordinate system. This transformation matrix 
H,, can be determined using a similar relationship, if in 
addition to H,, and Hcg, the homogeneous transformation 
H,, expressing the object pose in the robot workspace is also 
known: 

In the following, we shall obtain H,,, by determining each 
of the transformation matrices on the right-hand side of the 
above equation. 

HC,: The problem of obtaining this relationship has been 
addressed in robotic hand-eye calibration. The hand-eye cal- 
ibration technique that is used in the experimental part of this 
work is that of Tsai and Lenz [31]. 

Hoc :  The transformation matrix H,, can be obtained 
from the planned parameters rlr = (Q., yr., ~ 1 . )  and 
Y = ( l 3 ,  1113, 713) as follows: 

where the rotation matrix Roc. and the translation vector To, 

are given by 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 1 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl), ( 1 2 ,  7112, n 2 ) ,  and (13, 7113, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA713)  are the 
direction cosines of the :GC, yc, zc axes of the camera co- 
ordinate system with respect to the 20, y ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz o  axes of the 
object coordinate system. The viewing vector v specifies only 
the direction cosines of the zc axis. The extra orientational 
degree of freedom corresponding to the rotation of the zcyc 
image plane of the camera around the optical axis can be 
arbitrarily set. For example, it can chosen so that the resulting 
gripper pose is feasible (i.e., lies within the robot workspace). 
In the experiments this degree of freedom is specified by taking 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzc axis of the camera coordinate system to be parallel 
to the lcoyo plane of the object coordinate system. In this 
case (11, ml, 7 1 1 )  and ( l 2 ,  m 2 ,  712)  can be obtained from the 
following relationships: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It can be seen from the first of the above relationships 
that there are two possible solutions for the gripper pose. 
Each solution is checked whether the resulting gripper pose 
is attainable for the specific camera positioning gear at hand. 
With this information, the transformation matrix H,, between 
the object and camera coordinate systems can be obtained from 
(21). 

H,,,: Let us now address the last point in computing H,,, 
from (20); how to determine the position and orientation of 
the object with respect to the robot world coordinate system as 
described by the transformation matrix H,,,. This problem of 
object pose determination has received considerable attention 
in the literature. Since this problem is a research area in itself, 
a simple approach is taken in the experiments. The relationship 
H,,, is determined from a variant of (20). By observing the 
object from an arbitrary viewpoint and knowing the gripper 
and camera poses, as well as the camera-gripper relationship, 
the object pose H,, can be computed from the following 
relationship: 

This relationship is equivalent to that given by (20). Note the 
I following in the above equation. 

1) H,, is known from hand-eye calibration. 
2) H,,,, the location of the gripper within the robot work- 

cell, can be obtained from the encoder output of all the robot 
joints. 

3 )  H,, is obtained by computing the camera pose with 
respect to the object coordinate system using existing camera 
calibration techniques (e.g., [29]). While camera calibration is 
customarily performed using special purpose objects, it is pos- 
sible to use any known object with identifiable features. The 
association that is required between image and object features 
can be obtained in a feature matching step for example. In 
the experiments, the camera calibration method by Tsai [29] 
is applied using features (e.g., centers of circles, comers, etc.) 
of the object rather than a calibration pattern. 

Having computed H,,,,,, H,,,., and HI.,, the manipulator 
position H,,, that achieves a particular camera pose can be 

‘ computed from (20). The manipulator joint values that achieve 

this pose can be found simply using the calibration of the 
robot itself. There are several robot calibration techniques in 
the literature that can be used to map the gripper pose to joint 
values, at which point the robot can be commanded to the 
corresponding location and orientation. 
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