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Abstract Transcription factor networks have evolved in order to control, coordinate, and separate, the functions
of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as
the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ)
proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression.
Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other
animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on
functional interactions among network members. We suggest that these network interactions serve to modulate
growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain
growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC
antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation,
progression and maintenance.
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Introduction: biological networks

Networks, in diverse fields including computer sciences,
telecommunications, sociology, and biology, are generally
defined as clusters of distinct nodes connected by what are
termed “edges.” In biology, complex systems are fre-
quently represented in terms of networks which can be
subdivided into smaller groups or modules thereby
revealing key relationships that underlie network activity
[3,4]. The ubiquity of network organization reflects its
potential to deploy interactions and functions in spatially
and temporally determined patterns and to accommodate
both antagonism and synergy among network components.
Moreover, networks often possess “tipping points”
whereby the loss- or gain-of-function of an individual
network member may act to alter or distort the activity of
the network as a whole. These concepts have been applied
to intermediary metabolism, neural circuits, signal trans-
duction pathways, developmental programs, immune
systems, and transcriptional regulatory mechanisms. In

the area of transcriptional regulation, well studied
examples of networks include the genes and their encoded
proteins that drive the circadian clock [6], induce
pluripotency [7,8], and determine commitment to T
lymphocyte differentiation [9]. In this review we focus
on the MYC transcription factor network (also known as
the MAX-MLX Network or the Extended MYC Network)
which has been strongly implicated in normal cell growth
and proliferation and in the etiology of a wide range of
cancers.

Components of the MYC network

Fig. 1 depicts one way to organize the components of the
MYC network, all of which have the capacity to function
in gene transcription and possess a highly conserved
protein–protein interaction and DNA binding domain
known as a basic-helix-loop-helix-zipper (bHLHZ). In its
simplest sense this network can be thought of as possessing
three major nodes with distinct inputs and transcriptional
properties: (1) MYC family proteins; (2) proteins in the
MXD family (as well as MNT and MGA); and (3) the
MLXIP and MLXIPL proteins (also known as MondoA
and ChREBP, respectively). Each of these network
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proteins employs its bHLHZ domain to form an individual
heterodimer with the bHLHZ domains of either MAX,
MLX or both (see Fig. 2 for crystal structures of MYC-
MAX and MXD1-MAX bHLHZ domain heterodimers). It
is heterodimerization with MAX and/or MLX that
constitutes the functional edges of the network. In what
follows we summarize the nature of the MYC network
modules and focus on the functional interactions among
modules (for recent reviews on the MYC network see
[5,10–13]).

MAX and MLX

Both MAX and MLX were discovered through indepen-
dent protein interaction screens that sought to identify
dimerization partners for MYC [14] and for MXD1 [15]
respectively. The amino acid sequences of the bHLHZ
domains of MAX and MLX are related to each other
(~50% identity), and also show significant similarity to the
bHLHZ domains of all of the MYC network proteins.
Outside of their bHLHZ domains MAX and MLX do not
exhibit significant homology with each other or with other
network members. Importantly, the heterodimerization
specificity of MAX and MLX for different network
members is restricted, as indicated by the double-headed
arrows in Fig. 1. MAX dimerizes with all three MYC
family proteins (MYC, MYCN, MYCL) and all six of the
MXD/MNT/MGA family proteins, while MLX dimerizes
with only a subset of the MXD family (MXD1, MXD4,
and MNT) as well as with MLXIP and MLXIPL [12,13].
Fig.2 shows the structures of the bHLHZ heterodimer
interfaces bound to E-box DNA of MYC-MAX and
MXD1-MAX [1]. For proteins such as MNT, that are
capable of dimerizing with either MAX or MLX, it appears
that the two types of heterodimer are equivalent in terms of
DNA recognition and transcriptional activity. However
more detailed biophysical analysis of the binding constants
related to dimerization and DNA recognition of the
different complexes remain to be carried out.
Unlike MYC, MAX is capable of forming homodimers

but these are inhibited from binding DNA in vivo due to
phosphorylation by casein kinase II [16]. Furthermore
structural differences in their leucine zipper regions dictate
that MAX preferentially heterodimerizes with MYC or
MXD rather than formMAX-MAX homodimers [1]. MLX

Fig. 1 The MYC network showing the three modules from left to right—MYC; MXD/MNT/MGA; and MLXIP/MLXIPL and the dimerization
interactions with MAX and/or MLX (indicated by double-headed arrows). The resulting heterodimers bind to E-box sequences in DNA.

Fig. 2 Crystal structures of the bHLHZ domains of (left) MYC-MAX
heterodimer (PDB:INKP) and (right) MXD1-MAX heterodimer (PDB:
INLW) bound to E-box DNA (5′-CACGTG-3′) at 19 nm and 2 nm
resolution, respectively [1]. Image created with the PyMOL Molecular
Graphics System, Version 1.5.0.4, Schrödinger, LLC.
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and its several isoforms have also been reported to
homodimerize and bind E-Box DNA but possess negli-
gible transcriptional activity, as is the case for MAX
homodimers [17]. Therefore, it is likely that the primary
functions of MAX and MLX are to drive formation of
heterodimers and facilitate their ability to specifically
recognize DNA.
Both MAX and MLX are stable proteins in vivo with

half-lives on the order of 6–8 h, while MYC, MXD, MNT,
and MGA have considerably shorter half-lives, generally
less than 1 h (dependent on cell type) suggesting that they
are rate-limiting for heterodimer formation [18–20](H.M.
unpublished data). Not surprisingly, the accumulation of
these short-lived proteins is highly regulated and depen-
dent on several factors. These include their rates of gene
expression, RNA half-lives, and translation efficien-
cies—all processes closely linked to environmental and
intra-cellular signaling. Interestingly the MLXIP and
MLXIPL proteins are relatively stable compared to the
MYC and MXD family proteins—possibly reflecting the
fact that their regulation derives in part from their ability to
shuttle between nucleus and cytoplasm (see below). The
differing half-lives, localizations, and the dependence on
signaling pathways are important contributors to the
dynamic nature of the MYC network and its role in gene
expression [10,21].
MAX serves as a network edge between MYC and the

MXD/MNT/MGA family. MLX acts similarly for MXD1,
MXD4 and MNT and the MLXIP/MLXIPL proteins,
which comprise the third branch of the MYC Network
[15,22] (see Fig. 1). Because MAX, MLX and all of the
proteins in the MYC network each contain only a single
bHLHZ domain, MAX and MLX do not physically
connect the modules to each other. Rather, within the
cellular populations of MAX and MLX proteins, indivi-
dual dimerization interactions with different module
members occur, based on their abundance, affinity, and
localization. The heterodimers thus formed must access
DNA to exert their transcriptional activities which in turn
determines the overall activity of the network. In the
following sections we briefly describe the properties and
activities of the MYC network modules.

The MYC module

The MYC protein family (comprised of MYC, MYCN,
and MYCL) can be considered the founding members of
the MYC network. TheMYC gene was initially discovered
as a oncogene (denoted v-myc) present in the genomes of a
small group of avian retroviruses responsible for transfor-
mation of fibroblast cells in tissue culture and for different
types of hematopoietic neoplasms in animals. It was
subsequently determined that the v-myc gene was derived
by retroviral acquisition of the cellular MYC gene [23,24].
Further studies showed that the cellular MYC gene (and its

paralogs MYCN and MYCL), while having critical
functions in normal animal growth and development, are
subject to frequent alterations in a significant fraction
( > 30%) of human cancers comprising a wide range of
tumor subtypes [25]. The alterations in MYC family genes
include gene amplifications, chromosomal translocations,
viral integration, and regulatory mutations in MYC
promoter or enhancer regions. Much evidence has
accumulated indicating that the alterations in MYC are
associated with key stages of tumorigenesis including
initiation, progression, and maintenance. Despite the
plethora of genetic rearrangements occurring at the MYC
locus, the vast majority of these do not directly affect the
MYC protein coding region. This is consistent with the
notion that it is the deregulation of MYC expression, rather
than altered or neomorphic changes in its protein function,
that is at the root of MYC driven cancers [26,27].

MYC deregulation

The significance of deregulation of MYC expression in
cancers became clearer when it was understood that in
normal cells MYC family genes are both directly and
indirectly controlled by multiple signal transduction path-
ways that are in turn activated by external and internal
stimuli such as growth factors, mitogens, or cytokines.
Many of these pathways induce MYC gene transcription as
an immediate early response (i.e., not requiring protein
synthesis) to mitogenic signals. For example, treatment of
quiescent fibroblast cells with mitogens results in the rapid
induction of MYC mRNA and protein associated with cell
cycle entry [28,29]. Many mitogenic signal transduction
pathways directly lead to the activation of transcription
factors that engage MYC enhancers and promoters. Other
factors regulate MYC mRNA transport, half-life and
translation. Moreover, MYC protein levels are maintained
by a balance between synthesis and regulated degradation.
Importantly, in many cancers in which MYC family genes
are rearranged, the tightly regulated control of MYC
expression is frequently lost, resulting in constitutive
expression of MYC at high levels compared to most
normal cells (with the exception of normal cells during
periods of high proliferative and metabolic demand, e.g., T
cell activation [30]). Thus in many cancer cells MYC
becomes insulated from environmental signals, the abun-
dance of its gene products increases and it fails to be
downregulated in response to appropriate signals for
growth arrest and differentiation (for reviews see
[10,31]). Indeed with some exceptions (e.g., where MYC
loss induces a dormant state [32]) enforced downregulation
of MYC in many tumors leads to regression [33,34].

Transcriptional regulation by MYC-MAX

As mentioned above, MYC family proteins function as
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transcriptional regulators. Heterodimerization with MAX
through the HLHZ regions of both proteins permits the
dimeric basic regions to form induced-fit helices that
recognize the symmetric DNA sequence CACGTG (Fig. 2
and Fig. 3). This sequence, which is likely to be
preferentially bound by all members of the network,
belongs to the more general class of E-box sequences
(CANNTG), variants of which are also recognized by
MYC-MAX at lower affinity relative to the canonical
CACGTG. DNA sequences harboring potential E-box
binding sites are relatively frequent in the genome. For
example, the canonical CACGTG sequence is present
approximately every 4 kilobases. In cells, binding to
genomic E-box-containing DNA is dependent on chroma-
tin structure. The presence of histone H3 trimethylated at
lysine position 4 relative to the H3 N terminus (H3-
K4me3) and of other DNA binding proteins such as
WDR5 have been shown to facilitate MYC-MAX binding
[35,36].
While MYC-MAX heterodimers directly bind to DNA,

they also recruit other proteins to genomic E-boxes. In
general, these are factors that mediate transcription
(Fig. 3). Several of these are associated with the N-
terminal transcription activation domain of MYC, such as
the NuA4 complex which contains the histone acetyl-

transferase GCN5, the pTEFb RNA polymerase pause-
release complex, and other factors that remodel chromatin
and promote transcription. Other factors, such as POZ
domain transcription factor MIZ-1, bind the MYC-MAX
heterodimeric interface region [37] and can significantly
influence the transcriptional and biological activity of
MYC-MAX [38]. The specific factors bound and their
functions at genomic binding sites are likely to depend on
the exact biological context [39]. Recent studies indicate
that MYC-MAX binds and amplifies cell-type specific
gene expression programs [40–42]. In addition, deregu-
lated, overexpressed MYC in several tumor types binds to
low-affinity non-canonical E-boxes and associates with
high-density enhancers (super-enhancers) to promote
expression of distinct gene subsets [40,43–47]. In other
words, deregulated MYC can bind MAX and alter normal
ongoing gene expression programs to impose a tumor-
specific transcription profile.
In taking an overview of the MYC family branch of the

network it is reasonable, as a first approximation, to view it
as a protein module that integrates mitogenic signals from
diverse sources and enables initiation and/or reinforcement
of gene expression programs compatible with the cellular
environment and the maintenance of cell fate during
growth and division.

Fig. 3 Organization of the MYC, MAX, MNT and MGA proteins. Heterodimers are formed by direct interaction of the basic-helix-loop-helix-
zipper (bHLHZ) domain of MAX with the bHLH-Z domains of either MYC, MNTor MGA (blue lines). Number of residues in each protein indicated
at C terminus. MYC: MBI–IV — conserved MYC boxes; PEST— region rich in proline, glutamic acid, serine and threonine; NLS— nuclear
localization sequence; Calpain cleavage site—proteolytic cleavage to generate MYC-Nick [2]. MNT: SID— binding site for the mSIN3 co-repressor
complex. MGA: repression mediated through assembly into a variant polycomb repressor complex (PRC1.6). Question mark indicates that the region
of MGA that directly interacts with the complex is unknown. Protein lengths not to scale. See text for details.
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The MXD/MNT/MGA module

In addition to forming heterodimers with MYC family
proteins, MAX heterodimerizes with all members of the
MXD family (MXD1, MXI1 (MXD2), MXD3, andMXD4)
and the related MNT protein, each of which possesses a
bHLHZ region [18,48–51] (Fig. 3). Moreover Max
dimerizes with the bHLHZ domain of the MGA protein,
the largest member of the MYC network, which also
contains a functional T-box DNA binding region [52]
related to the Brachyury/Tbx proteins, a family known to
play key roles in early vertebrate development [53–55] (Fig.
3). The MAX heterodimers formed with each of these
proteins bind canonical E-box DNA similar to MYC-MAX
dimers and crystallographic studies indicate that the bHLHZ
dimeric interfaces are nearly identical (limited to MAX-
MAX; MYC-MAX, and MXD1-MAX) [1,56] (Fig. 2).
It is not entirely straightforward to ascribe a broad

functionality to the MXD/MNT/MGA module as a whole.
While their heterodimerization with MAX and their ability
to bind E-box DNA might suggest that the MXD/MNT/
MGA module functions similarly to the MYC module, a
great deal of evidence argues against this idea. Indeed,
MXD/MNT/MGA appear to act as antagonists of MYC
function. First, whereas MYC-MAX binding predomi-
nantly promotes or reinforces active transcription (see
above), the MXD/MNT/MGA module proteins act as
transcriptional repressors. The MXD family members and
MNT contain a short conserved amino acid sequence,
which directly interacts with mSIN3A or mSIN3B co-
repressor complexes [18,49,57,58]. mSIN3 acts as a
platform upon which multiple proteins that mediate gene
silencing are assembled. Most notably, these include Class
I histone deacetylases (HDAC1 and HDAC2) that
enzymatically remove acetyl groups from histones H3
and H4, thereby contributing to silencing of active
chromatin [59–61] (Fig. 3). By recruiting mSIN3-HDAC
co-repressor complexes to their genomic binding sites,
MXD/MNT proteins appear to antagonize or reverse the
transcriptional activity of MYC family proteins which, as
noted above, recruit co-activator complexes leading to the
acetylation of histones H3 and H4, characteristic of active
chromatin (see below for discussion of antagonism).

MGA

MGA (pronounced mega) stands somewhat apart from the
MXD/MNT family due to its large size (with > 3000
residues MGA is ~14 fold larger than the MXD family and
5 fold larger than MNT) and the presence of both bHLHZ
and T-box domains (Fig. 3), as well as its apparent ability
to both activate or repress transcription in a context
dependent manner [52]. While, like the other MXD/MNT
family factors, MGA attenuates MYC-induced cell
transformation it does not contain a mSIN3 binding

domain. Interestingly however MGA-MAX has been
shown to comprise a subunit of a variant Polycomb
complex (PRC1.6) which suppresses meiosis in germ cell
development and is almost certain to possess other
functions [62–66]. Moreover MGA, unlike MXD family
proteins, is essential for early embryonic development and
has been shown to be involved in embryonic patterning
and maintenance of pluripotency [67–69]. In addition,
MGA sustains genomic alterations, including indels and
point mutations in a range of human tumors at a high
frequency relative to MXD/MNT. A subset of these
alterations is predicted to inactivate the MGA bHLHZ
domain proximal to its C terminus [70–74]. The
prevalence of potentially inactivating mutations as well
as its ability to oppose MYC transforming activity, makes
MGA a strong candidate for functioning as a tumor
suppressor.

MLX and the MLXIP/ MLXIPL module

MLX was first identified through its ability to dimerize
with MXD1, MXD4 and MNT (but not to MXD2/MXI1,
MXD3 or MGA) [17,22]. Moreover, MLX does not
dimerize with either MAX or MYC family members.
Importantly, later work revealed that MLX forms hetero-
dimers with two large bHLHZ proteins: MLXIP (Mon-
doA) and MLXIPL (ChREBP or MondoB) (referred to
here collectively as MLXIP proteins) [22] (Fig. 4). The
structural basis for the unique binding specificity of MLX
is unknown but it has been suggested that a conserved
tyrosine residue in the leucine zipper of the MLX bHLHZ
domain may, upon phosphorylation, permit a shift in
dimerization partners [11,66].
A key function of MLXIP- and MLXIPL-MLX

heterodimers is to mediate the cellular transcriptional
response to changes in glucose and glutamine levels.
MLXIP-MLX dimers are localized to the outer mitochon-
drial membrane and MLXIPL-MLX dimers are present in
the cytoplasm where they directly or indirectly sense G-6-P
(glucose-6-phosphate) and other metabolites derived from
glucose [12,75–78], relocalize to the nucleus, and bind
sequences known as carbohydrate response elements
(ChoREs) which are comprised of two closely spaced E-
boxes [78–80]. Many of the ChoRE-containing genes
bound and regulated by these MLXIP/MLXIPL-MLX
heterodimers play critical roles in cellular glucose and lipid
metabolism. For example, MLXIP-MLX bind to a ChoRE
sequence in the promoter of the gene encoding thior-
edoxin-interacting protein (TXNIP) which functions in
part to suppress glucose uptake and inhibit mTOR and
thioredoxin (for review see [11]). In this way the MLXIP-
MLX-TXNIP pathway acts as a negative feedback
regulator responsive to glucose stimulation and serves as
a nutrient sensor, communicating information from the
mitochondrion to the nucleus in order to maintain
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metabolic homeostasis. The importance of this module has
been underscored by studies in Drosophila melanogaster
where MondoA-Mlx (orthologs of vertebrate MLXIP-
MLX) acts as a master regulator of the physiologic
response to sugar by both directly and indirectly modulat-
ing expression of effector genes mediating lipid, carbohy-
drate, and amino acid metabolism [81,82]. Several
Drosophila MondoA-MLX target genes have human
orthologs that contain polymorphisms associated with
high levels of circulating triglycerides and coronary artery
disease [81]. In addition MLXIPL-MLX regulates gene
expression linked to glucose and lipid metabolism, and
genetic studies further implicate this heterodimer in
metabolic disease and cancer (for review see [83]).

MYC network dynamics and crosstalk

We earlier mentioned that among the advantages of having
an integrated network organization is the capacity to
separate, control, and coordinate the specific activities of
the network modules in time and space. This concept is
likely to apply to the MYC network. Moreover, the notion
of a “tipping point” — in which an imbalance in the
regulation, abundance or activity of an individual network
member may dysregulate the integrated function of the
network as a whole — can be considered to apply to the
oncogenic alterations leading to deregulation and increased
expression associated with the MYC module (for review
see [84]) as well as loss of function mutations in MAX
[71,85] and MNT [86,87]. To understand how this might
occur we will briefly describe the evidence for functional
interactions among network components and argue that a
functional balance among network members is critical for
cellular homeostasis.

Functional interactions between MYC and MXD/MNT

The notion that MYC-MAX and the MXD-MAX/MLX

arms of the network may act antagonistically was initially
prompted by the findings that MXD/MNT proteins contain
transcriptional repression domains that recruit histone
deacetylases to their DNA binding sites in chromatin
while, in contrast, MYC proteins recruit complexes that
promote transcription by facilitating chromatin accessi-
bility and release of paused RNA polymerase (Fig. 3). The
recruitment of distinct complexes with presumably oppos-
ing activities is the molecular basis for MYC vs. MXD/
MNT/MGA antagonism (Fig. 3) which is also manifested
at the level of their biological activities. MYC family
genes, when overexpressed, stimulate cellular growth and
proliferation balanced by apoptosis, eventually leading to
transformation and tumor formation. By contrast, there is
considerable evidence that MXD1, MXD2 (MXI1),
MXD4 and MNT act to retard cellular growth and
proliferation and have the capacity to block MYC induced
mitogenic effectors and transformation [18,49,88–91].
One setting where this antagonism serves to regulate

normal cellular events is during cell cycle entry. In the G0
to G1 transition MNT-MAX levels are constant while
MYC is strongly induced, resulting in an increased ratio of
MYC-MAX:MNT-MAX complexes, consistent with the
idea that MYC and MNT are in competition for available
MAX. Either MNT overexpression or MYC loss inhibits
cell cycle entry, suggesting that antagonism between these
proteins and their balanced expression may set the
threshold for the transition between quiescence and
proliferation [92]. However, given the multiple cellular
processes that are responsive to MYC, it would seem
unlikely that MXD/MNTwould antagonize every aspect of
MYC function. For example, there is evidence for
dependence or cooperation between MYC and MNT,
especially in situations in which MYC levels are elevated
and MNT acts to suppress MYC-induced apoptosis
[93,94]. Another example is MXD3, which has been
reported to stimulate neural cell proliferation and promote
apoptosis in response to radiation damage [95,96].

Fig. 4 Organization of MLXIP (MondoA) andMLX. MLXIP: highly conserved regions proximal to the N terminus are thought to be responsible for
binding to glucose metabolites. MLX interacts with MLXIP through their bHLHZ and DCD domains. MLX has 3 isoforms generated by alternative
splicing: MLX-g (nuclear localized), MLX-α and MLX-β (both cytoplasmic).
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Although the precise relationship of MXD3 to MYC
activity is unclear, it is possible that MXD3 can cooperate
with or substitute for MYC.
The above examples of functional interactions within the

network occur in contexts where MXD/MNT/MGA and
MYC proteins are present at the same time and in the same
sub-cellular compartment. However significant interac-
tions between MYC and MXD/MNT may also occur if the
proteins in question are not simultaneously present. This is
relevant considering that endogenous expression of many
of these proteins are correlated with different cell cycle and
differentiation states. MYC expression is predominantly,
but not solely, confined to proliferating cells while MXD1,
MXI1, and MXD4 are detected in resting or differentiated
cells and are downregulated when cells enter the cell cycle.
This inverse correlation with MYC expression does not
hold for MNT, which is co-expressed with MYC but is
maintained upon differentiation, when MYC is down-
regulated (for review see [97]). However, antagonism may
occur even if the MYC and MXD/MNT proteins are not
simultaneously present. For example, during terminal
differentiation MYC is generally downregulated while
MXD1 is sharply induced as cells arrest growth. During
this period a shift from MYC-MAX to MXD1-MAX
complexes is observed, leading to binding and repression
by MXD1-MAX at promoters previously transcriptionally
activated by MYC-MAX [19,89,98]. Why would repres-
sion by MXD1-MAX at these promoters be necessary if
MYC is already downregulated? One likely explanation is
that loss of MYC alone is insufficient to fully suppress
target gene expression. Most transcription is regulated by
multiple factors and at multiple levels such as chromatin
mediated promoter accessibility, pre-initiation complex
assembly, RNA polymerase initiation, pausing, elongation,
and termination. Recent evidence suggests that MYC,
rather than acting as an transcriptional on/off switch, is
primarily involved in release of paused RNA polymerase II
and the amplification of gene expression [41,42]. Further-
more MYC binding leads to histone acetylation and other
chromatin modifications compatible with active transcrip-
tion. Therefore simply removing MYC may leave certain
promoters susceptible to stimulation or induction and
permit them to remain active, hence the need for
expression of MXD1 to reverse MYC’s activity as an
early event in differentiation. This concept is supported by
genetic studies in Drosophila melanogaster where deletion
of dm1 (which encodes dMyc, the Drosophila ortholog of
MYC) produces growth arrest at an early stage of larval
development and diminished expression of growth related
genes. By contrast, flies lacking both dMyc and dMnt (the
single paralog of MXD/MNT in Drosophila) display
significantly augmented growth and development accom-
panied by a partial restoration of the expression of dMyc
activated growth genes [99]. Interestingly a similar type of

rescue dynamic has been reported for other antagonistic
pairs of transcription factors [100,101].

Regulation through degradation

Taken together, the evidence suggests that a regulated
balance between MYC and MXD/MNT factors is
important in maintaining growth homeostasis in response
to environmental signals (Fig. 5). In the case of the MYC
module, the signals leading to induction and maintenance
of MYC expression can be generally classed as mitogenic
and include a broad range of growth factors and cytokines
including CSF-1, LIF, Wnt, Notch, Sonic Hedgehog, EGF,
and IL2. While the MXD module is generally considered
to be induced by growth arrest, as well as by develop-
mental, and differentiation signals, the specific pathways
leading to MXD induction are not well defined. Because
the MYC family and MXD/MNT/MGA proteins all
possess relatively short protein half-lives, regulation of
their degradation is also an important aspect of setting the
balance between these modules. MYC degradation is
mediated by several ubiquitin ligases, one of which
(FBXW7), requires a specific set of phosphorylations
within a phosphodegron near the MYC N terminus (Fig. 3)
[102]. As these phosphorylation events are stimulated by
growth factor responsive signal transduction pathways
such as RAS-MAPK and PI3K-AKT-GSK3β, it is evident
that MYC degradation is responsive to environmental cues
(for review see [103]). Interestingly, MXD1 has also been
shown to be degraded subsequent to PI3K/AKT and
MAPK mediated phosphorylation [104] suggesting that
environmental signaling through these pathways may
contribute to the balance between MYC and MXD arms
of the network (see Fig. 5).

MAX inactivation

A loss of network balance may also come into play in the
case of the surprising findings that inactivating mutations
or deletions of MAX are associated with tumorigenesis,
particularly involving cells of neuroendocrine origin
[71,85]. MAX inactivation would be expected to cancel
MYC’s tumorigenic functions. However loss of MAX
should also result in reduction or loss of MXD family,
MNT and MGA binding. Although MXD1, MXD4, and
MNT might still retain some activity by dimerization with
MLX (see Fig. 1), the balance among network members
upon MAX loss is likely to be seriously compromised,
perhaps leading to aberrant activation of genes due to
abrogation of MXD/MNT/MGA repression, similar to the
effects observed upon double deletion of dMyc and dMnt
in Drosophila as described above [99]. Another, not
necessarily mutually exclusive, possibility is that MYC
can retain certain critical functions in the absence of MAX,
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as suggested by MAX deletion experiments in Drosophila
[105].

Functional interactions between MYC-MAX and
MLXIP-MLX

Given that deregulated MYC has been shown to stimulate
aerobic glycolysis and to reprogram multiple aspects of
metabolism [106] it is not entirely unexpected that
important functional interactions exist between MYC-
MAX and the MLXIP-MLX modules [11,21]. One aspect
of this interaction was revealed in a recent study showing
that, in a number of MYC-driven cancer cell lines (i.e.,
cells in which MYC is clearly deregulated and which
depend on continuedMYC expression for growth), the loss
or suppression of MLXIP or MLX results in growth arrest
and apoptosis, even though high MYC levels are
maintained [107]. In a neuroblastoma cell line, MYC-
MAX and MLXIP-MLX were found to cooperatively
regulate transcription of a subset of genes involved in
metabolism. These include genes encoding fatty acid
synthase (FASN) and sterol CoA-desaturase (SCD), both
rate limiting for fatty acid biosynthesis. Metabolomic and
carbon tracing experiments demonstrated a significantly

decreased contribution to the production of palmitate, an
initial step in the fatty acid biosynthesis pathway. The
resulting metabolic stress and cell death can be rescued by
either restoring MLXIP expression, or by addition of the
C18.1 monounsaturated fatty acid, oleate, supporting a
critical role for lipid production in the survival of these
tumor cells [107]. Importantly, cells in which MYC
expression is under normal regulation are largely unaf-
fected byMLXIP-MLX loss of function. This suggests that
at least one aspect of MLXIP-MLX cooperativity with
MYC-MAX is to modulate the expression of metabolic
genes, such as FASN and SCD, in order to meet the
increased metabolic demands imposed by MYC-MAX
driven cell transformation. In this scenario, deregulated
MYC, unlinked from its normal physiologic regulators,
drives anabolic metabolism and proliferation regardless of
the availability of extracellular factors that are normally
limiting for cell growth. This imbalance is expected to
result in stress, eventually leading to growth arrest and
apoptosis. However the stress response is at least partially
attenuated by MLXIP-MLX which remains responsive to
nutrient availability and can be thought of as a transcrip-
tional gatekeeper by adjusting gene expression in order to
match metabolic demand [108] (Fig. 5).

Fig. 5 A hypothetical representation of two states of the MYC network and their impact on gene expression programs that influence growth,
proliferation, differentiation, apoptosis and metabolism. (A) A balanced network in which gene expression is controlled through normal endogenous
regulation of the MYC network. Transcriptional effects of MYC-MAX are balanced by MNT (heterodimerized with either MAX or MLX), MGA-
MAX, and, under conditions of stress, by MLXIP-MLX or MLXIPL-MLX. (B) An unbalanced network due to deregulation of MYC expression. In
this state MYC-MAX suppresses differentiation, reprograms metabolism, and triggers the apoptotic pathway. The suppressive effects of MGA-MAX
and MNT-MAX/MLX on proliferation are overwhelmed by MYC-MAX which contributes to suppression of MYC-induced apoptosis. Increased
nuclear accumulation of MLXIP-MLX (in response to deregulated MYC and/or metabolic stress) adjusts metabolic reprogramming by MYC-MAX
and further reduces apoptosis. The effects on gene expression are presumed to occur through genomic binding and co-occupancy by network
members. Green arrows, transcriptional activation; red arrows, transcriptional repression. Arrow width proportional to estimated transcriptional effect.
Diagram adapted from [5].
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Involvement of MLXIP-MLX in the response to
cellular stress

If MLXIP-MLX functions to suppress stress in MYC-
driven cancers we might anticipate its involvement in other
forms of stress response. In this regard it has been reported
that MLX in C. elegans stimulates expression of
autophagy genes subsequent to golgi disruption [109]
and acts to inhibit TOR to promote longevity [110]. This is
consistent with a report that MLX is responsive to, and
suppresses, golgi stress in mammalian cell culture [110]. In
addition, MLX null mice fail to regenerate muscle,
compared to the rapid recovery of wildtype mice,
following damage due to cardiotoxin treatment [111].
Furthermore, normal physiologic processes entailing high
metabolic demand, such as T cell activation and sperma-
togenesis, are impaired in the absence of MLX (P.A.C. and
B.W.F. manuscript in preparation). While MYC is known
to be critical in both spermatogenesis [112] and T cell
activation [30], it is unclear whether MLXIP-MLX are
acting cooperatively with MYC-MAX in the manner
described above for MYC-driven neuroblastoma and other
tumor types [107]. Moreover in a triple negative breast
cancer (TNBC) cell line, and in BRAF mutant melanomas,
MYC and MLXIP appear to have opposing activities, at
least with regards to inducing expression of the TXNIP
target gene which encodes a negative regulator of glucose
transport [113,114]. For example, in the highly glycolytic
TNBC line, knockdown of MYC leads to MLXIP-
mediated activation of TXNIP and decreased glucose
uptake, indicating that MYC and MLXIP are acting
antagonistically [113]. These diverse examples imply that
the precise mechanisms underlying functional interactions
between MYC-MAX and MLXIP-MLX are likely to
depend on the specific biological context in which they
occur and the unique bioenergetic or metabolic wiring
present in those systems. Nonetheless, the available data
support the overarching concept that these network
interactions serve to modulate metabolism at the transcrip-
tional level in order to balance nutrient supply and demand
and influence cell fate [115].

Genomic binding by MYC network
heterodimers

The integrated functions of the network are dependent on
the binding of heterodimeric complexes of network
members to DNA (Fig. 1). Indeed, it is reasonable to
surmise that the cooperative or antagonistic interactions
among module heterodimers arises from direct interactions
between these proteins at target gene loci. Genomic
occupancies of many of these proteins have been mapped
by the Encode project (www.encodeproject.org). However,
as mentioned above, MYC-MAX binds to thousands of
genes whose identity is dependent both on the nature of the

cellular transcriptome and the abundance of MYC protein
[40–42]. It is plausible to assume that binding by other
network members will also be dependent on cellular
context. Therefore, genomic occupancy studies of the
MYC network will need to be carried out in biological
settings in which network function is active and relevant
and can be perturbed to reveal its critical functions.
A recent study employing in vitro selection for co-bound

factors found that cooperative transcription factor binding
to DNA is surprisingly common, estimating that ~25 000
distinct pairs of transcription factors may be associated
with mammalian genomic DNA [116](for review see
[117]). Cooperative binding is thought to contribute to the
presence of dense clusters of transcription factors as
observed primarily in nucleosome-free regions [118]. At
the simplest level the dimerization of MAX with MYC or
MXD proteins represents cooperative binding since these
proteins do not recognize DNA as monomers nor form
stable homodimers. However, an important question is
whether heterodimers from the different arms of the MYC
network interact cooperatively with DNA. Interestingly,
structural studies indicate that MYC-MAX heterodimers
could themselves dimerize to form heterotetramers in
solution [1] and MLXIPL-MLX is thought to function as a
dimer of dimers on the tandem ChoRE E-boxes in a
cooperative manner [119]. Detailed analysis remains to be
carried out on cooperative binding by different network
heterodimers, but initial work supports the idea that
MYCN-MAX and MLXIP-MLX can co-occupy the
TXNIP promoter region and act to cooperatively augment
TXNIP expression in MYC-driven neuroblastoma [107].
Cooperative binding is likely to account for the coopera-
tive effects of MYC-MAX and MLXIP-MLX on expres-
sion of other metabolic genes and may account for
antagonistic activity of MYC and MXD proteins (Fig. 5).
A detailed description of the network will involve

mapping the genomic binding sites of all members of the
three network modules as well as the effects of genetic and
chemical perturbation of the network on genomic binding
and expression of bound genes. In addition it is worth
noting that the MYC network itself belongs to the larger
super-family of bHLH transcription factors that recognize
E-box DNA [120]. These include proteins such as
CLOCK-BMAL and HIF among many others, whose
functions impinge on MYC network activity [121,122].
Given the importance of the MYC network, we anticipate
that the elucidation of its genomic binding, functional
interactions, and its integration with other cellular
transcriptional networks, will lead to deeper insights into
normal cellular functions and provide new pathways and
targets for cancer therapy.
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