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The mycobacterial bacillus is encompassed by a remarkably elaborate cell wall structure.
The mycolyl-arabinogalactan-peptidoglycan (mAGP) complex is essential for the viability
of Mycobacterium tuberculosis and maintains a robust basal structure supporting the upper
“myco-membrane.” M. tuberculosis peptidoglycan, although appearing to be unexceptional
at first glance, contains a number of unique molecular subtleties that become particularly
important as the TB-bacilli enters into nonreplicative growth during dormancy. Arabino-
galactan, a highly branched polysaccharide, serves to connect peptidoglycan with the
outer mycolic acid layer, and a variety of unique glycolsyltransferases are used for its assem-
bly. In this review, we shall explore the microbial chemistry of this unique heteropolysacchr-
ide, examine the molecular genetics that underpins its fabrication, and discuss how the
essential biosynthetic process might be exploited for the development of future anti-TB
chemotherapies.

THE MYCOBACTERIAL CELL
WALL—PEPTIDOGLYCAN
AND ARABINOGALACTAN

The remarkable molecular complexity of
the mycobacterial cell wall is a particularly

distinguishing feature that set Mycobacterium
species apart from the majority of other pro-
karyotes. Although classified as gram-positive
organisms, their envelopes do in fact share no-
table features with Gram-negative cell walls, such
as an outer permeability barrier acting as a pseu-
do-outer membrane (Minnikin 1982; Brennan
and Nikaido 1995). Much of the early structural
definition of the cell wall was conducted in the
1960s and 1970s (Adam et al. 1969; Petit et al.

1969; Lederer et al. 1975) and later continued by
Minnikin, who in 1982 proposed the currently
accepted structural model for the cell wall archi-
tecture (Minnikin 1982). The mycolyl-arabino-
galactan-peptidoglycan (mAGP) complex, as it
is commonly termed, represents the cell wall
core structure that encompasses the mycobacte-
rial bacilli.

Structural Features of Mycobacterial
Peptidoglycan

Peptidoglycan (PG) is a complex macromolec-
ular structure situated on the outside of the
plasma membrane of almost all eubacteria
(Schleifer and Kandler 1972; van Heijenoort
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2001). Its mesh-like arrangement confers rigid-
ity to the cell, allowing it to withstand osmotic
pressure maintaining cell integrity and cellular
shape. Relatively little is known about Mycobac-
terium tuberculosis PG synthesis, although it is
generally assumed to be analogous to that of
Escherichia coli (van Heijenoort 2001), also be-
ing classified as A1g according to the classifica-
tion system of Schleifer and Kandler (1972).
Mycobacterial PG forms the basal layer of the
mAGP complex and is composed of alternat-
ing N-acetylglucosamine (GlcNAc) and modi-
fied muramic acid (Mur) residues, linked in a
b(1 ! 4) configuration (Lederer et al. 1975).
Unlike E. coli PG, the muramic acid residues in
both M. tuberculosis and Mycobacterium smeg-
matis contain a mixture of N-acetyl and N-gly-
colyl derivatives, whereby the N-acetyl function
has been oxidized to a N-glycolyl function to
form MurNGly (Mahapatra et al. 2000, 2005;
Raymond et al. 2005). Although the precise
function of the N-glycolyl modifications is yet
to be elucidated, it has been hypothesized that
these additional glycolyl-containing residues
might have the potential for additional hydro-
gen bonding interactions, strengthening the
mesh-like structure of the PG layer (Brennan
and Nikaido 1995), as well as possibly protect-
ing the organism from degradation via lyso-
zyme (Chatterjee et al. 1991). Tetrapeptide side
chains consisting of L-alaninyl-D-isoglutaminyl-
meso-diaminopimelyl-D-alanine are cross-
linked with identical short peptides of neigh-
boring glycan chains (Petit et al. 1969). These
cross-links include the expected 3! 4 meso-
diaminopimelic acid (DAP) and D-alanine
bond that is common to most prokaryotes,
but also a high degree of 3 ! 3 bonds between
two residues of DAP (Ghuysen 1968; Wietzer-
bin-Falszpan et al. 1970). The proportion of
cross-linking in Mycobacterium species is
70%–80% (Matsuhashi 1966), significantly
more so than E. coli, with only 50% (Vollmer
and Holtje 2004). An additional deviation
from E. coli PG is the use of the muramic acid
residues as attachment sites for the galactan
domain of the arabinogalactan, whereby 6-OH
of some of the muramic acid residues form
a phosphodiester bond and are linked to the

a-L-rhamnopyranose – (1 ! 3)-a-D-GlcNAc
(1 ! P) linker unit of AG (McNeil et al. 1990).

One model proposed for the three-dimen-
sional topology of the mAGP complex, con-
sistent with the traditional models of PG archi-
tecture (Ghuysen 1968; Brennan and Nikaido
1995), suggests that the PG and the galactan
moiety run parallel to the plasma membrane.
However, an opposing model put forward by
other modeling studies predicts that the PG
and the AG polymers may in fact be coiled and
are thus orientated perpendicular to the plane of
the plasma membrane (Dmitriev et al. 2000,
2003). Minnikin et al. (2002) proposed that
both AG and LAM polymers form coiled strands
and integrate with the basal PG layer. Inter-
estingly, a study by Meroueh et al. (2006) pre-
sented compelling evidence in the form of
nuclear magnetic resonance (NMR) data that
suggests that the PG glycan strand is orthogonal
to the plane of the membrane; thus, the overall
three-dimensional structure and topology re-
main open to debate.

Biosynthesis of Mycobacterial Peptidoglycan

Cytoplasmic Steps of Peptidoglycan
Intermediate Metabolism

The biosynthesis of PG begins within the cyto-
plasm of all bacteria that contain a murein sac-
culus, and the activated sugar nucleotide UDP-
GlcNAc is usually considered to be the “start
point” of PG anabolism. UDP-GlcNAc is syn-
thesized from D-fructose-6-phosphate in four
steps and requires three enzymes. GlmS is an
aminotransferase that converts D-fructose-6-
phosphate to D-glucosamine-1-phosphate, and
although a clear ortholog is present in M. tuber-
culosis, there has been no investigation of this
gene or protein to date (Durand et al. 2008).
GlmM is a mutase enzyme that converts D-
glucosamine-1-phosphate to D-glucosamine-6-
phosphate and has been shown to be an essential
gene in M. smegmatis (Li et al. 2012). Indeed, the
conversion of D-glucosamine-6-phosphate to D-
glucosamine-1-phosphate is unique to prokary-
otes and is considered a potential drug target (Li
et al. 2011). GlmU is a bifunctional enzyme that
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carries out both acetylation and uridylation
reactions, ultimately forming UDP-GlcNAc
(Jagtap et al. 2012, 2013). The carboxy-terminal
domain of GluU is responsible for catalyzing
acylation of D-glucosamine-6-phosphatewhere-
as the amino-terminal domain catalyzes urid-
ylation of N-acetylglucosamine-1-phosphate.
GlmU has been shown to be an essential gene
in M. smegmatis (Zhang et al. 2008). Interesting-
ly, a single threonine residue within the carboxy-
terminal domain of GlmU is phosphorylated by
the serine/threonine protein kinase PknB, re-
sulting in a modulation of GlmU acetyltransfer-
ase activity (Parikh et al. 2009).

UDP-MurNAc is formed from UDP-
GlcNAc in a two-step process involving the
catalytic activities of two enzymes, MurA and
MurB. MurA is a UDP-GlcNAc enolpyruvyl
transferase that catalyzes the transfer of enolpy-
ruvate from phosphoenoylpyruvate to the 3-
position of the N-acetylglucosamine moiety of
UDP-GlcNAc, liberating inorganic phosphate
in the process. Fosfomycin is an analog of phos-
phoenoylpyruvate and it inhibits MurA by al-
kylating an active site cysteine residue (Kim et
al. 1996). However, although fosfomycin is con-
sidered to be a broad-spectrum antibiotic, it
has no ready utility as an antitubercular drug.
M. tuberculosis is inherently resistant to fosfo-
mycin because of the presence of an aspartic
acid in place of the aforementioned cysteine,
which usually confers sensitivity to the drug
(De Smet et al. 1999). MurB is a reductase
that uses NADPH as an electron donor to con-
vert the enolpyruvate moiety to D-lactoyl, thus
delivering UDP-MurNAc as a final product. To
date, the investigation of MurB from mycobac-
teria has been limited to in silico homology
modeling and molecular dynamics simulations
(Kumar et al. 2011).

The intracellular ATP-dependent muramic
acid ligase enzymes, MurC–MurF, work con-
secutively to synthesize UDP-N-acetylmuramyl
pentapeptideand UDP-N-glycolylmuramylpen-
tapeptide from either UDP-MurNAc or UDP-
MurNGlyc, respectively. M. tuberculosis UDP-
MurNGlyc is initially generated by hydroxyl-
ation of the methyl group of the MurNAc moiety
of UDP-MurNAc (Gateau et al. 1976; Essers and

Schoop 1978). Conversion of UDP-MurNAc
to UDP-MurNGlyc involves a monooxygenase
encoded by the namH gene (Raymond et al.
2005). Chemical analysis of the nucleotide-
linked PG intermediates from M. tuberculosis
strongly suggests that this pool of metabolites
is composed of a mixture of both MurNAc
and MurNGlyc subtypes, in which the pro-
portion of MurNAc precursors is heavily sup-
pressed by the presence of D-cycloserine but
not vancomycin (Mahapatra et al. 2005). The
UDP-MurNGlyc and UDP-MurNAc inter-
mediates are then perpetuated throughout the
PG pathway by the successive additions of L-
alanine (MurC), D-glutamate (MurD), meso-
DAP (MurE), and D-alanyl-D-alanine (MurF),
a unique prokaryotic pathway, which has been
extensively reviewed by other investigators
(Barreteau et al. 2008). The Mur ligases C–F
share a common mechanism whereby the car-
boxyl group appended to the UDP substrate is
activated by phosphorylation with ATP, generat-
ing ADP. The UDP-substrate phospho-interme-
diate is then attacked by an amino acid or dipep-
tide specific to the ligase catalyzing the reaction,
resulting in extension by aminoacylation of the
UDP precursor and the expulsion of inorganic
phosphate (Falk et al. 1996; Bouhss et al. 1999).
Both M. tuberculosis and Mycobacterium leprae
MurC orthologs have been shown to be capable
of ligating both L-alanine and L-glycine to UDP-
MurNAc (Mahapatra et al. 2000). Apart from
MurC, the onlyother ATP-dependent Mur ligase
that has been biochemically characterized is
MurE (Basavannacharya et al. 2010a,b).

Several other enzymes play vital roles in the
cytoplasmic assembly of PG, two of which are
the Alr and Ddl proteins that provide L-alanine
racemase activity and D-alanine:D-alanine li-
gase activity, respectively (Feng and Barletta
2003). Several recent biochemical studies have
provided comprehensive molecular insight into
how D-cycloserine (currently used as a second-
line anti-TB agent) inhibits the Ddl enzyme
(Prosser and de Carvalho 2013a,b). In this re-
gard, a number of high-throughput screening
studies have identified Alr as being an equally
interesting drug target (Anthony et al. 2011;
Lee et al. 2013).

The Mycobacterial Cell Wall
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Polyprenyl phosphates play a crucial role in
prokaryotic cell wall biosynthesis, providing a
hydrophobic lipid anchor that enables cell en-
velope biosynthesis to occur while being teth-
ered to the cytoplasmic membrane. In myco-
bacteria, MurX (usually termed MraY in other
prokaryotes) is an integral membrane protein
that transfers the phospho-MurNAc-pentapep-
tide to a decaprenol phosphate lipid. The result
is the displacement of the UDP nucleotide moi-
ety with a decaprenyl lipid carrier, thus forming
lipid I from Park’s nucleotide. Although the
molecular genetics or biochemistry of MurX
has not been studied in detail, it appears that
MurX from M. smegmatis is capable of in-
corporating the muramyl-pentapeptide from
both UDP-N-acetylmuramyl pentapeptide and
UDP-N-glycolylmuramyl pentapeptide precur-
sors with equal efficiency (Chen et al. 2013).
MurG is a GT-B glycosyltransferase that uses
UDP-GlcNAc as a substrate to form a b(1 !
4) glycosidic bond between GlcNAc and either
the MurNAc or MurNGlyc sugar of lipid I.
MurG from M. tuberculosis has been shown
to be able to complement a murG-deficient
strain of E. coli (Jha et al. 2012), and because
of the essential nature of MurG, it is a target for
the development of new antibacterial agents
(Trunkfield et al. 2010). MurG marks the final
“step” in the cytoplasmic pathway of PG biosyn-
thesis, and its product is a cell wall intermediate
termed lipid II.

The Latter Stages of Peptidoglycan
Assembly

The cytoplasmic membrane presents a physical
barrier that separates the cytoplasm from the
outer periplasmic space of the mycobacterial
cell, as well as a thermodynamic hurdle that
must be overcome by numerous cell wall inter-
mediates that are destined for deposition in the
mycobacterial envelope. Lipid II separates the
cytoplasm from the outer periplasmic space of
the mycobacterial cell. Several biochemical and
molecular genetic investigations in other non-
mycobacterial prokaryotes have identified both
MurJ and FtsW proteins as being candidate pro-
teins that translocate lipid II across the bacterial

cytoplasmic membrane (Ruiz 2008; Moham-
madi et al. 2011; Butler et al. 2013; Mohamed
and Valvano 2014). FtsW belongs to the shape,
elongation, division, and sporulation (SEDS)
family of proteins, all of which are integral
membrane proteins involved in translocation
of molecules across the cytoplasmic membrane.
Interestingly, RodA is also a member of the
SEDS family, and a recent study has shown
that this protein also contributes lipid II flip-
pase activity as well as having a direct interac-
tion with the polar growth organizing protein,
DivIVA (Sieger et al. 2013).

Two proteins, PonA1 and PonA2, encoded
by Rv0050 and Rv3682, respectively, are bifunc-
tional penicillin-binding proteins that carry out
both transglycoylase and transpeptidase enzy-
matic reactions, both of which use lipid II as a
substrate. Studies on PonA1 from M. smegmatis
have shown that apart from it being necessary
for maintaining cell shape, viability, and integ-
rity, this enzyme is also required for synergis-
tic regulation of PG hydrolysis by interacting
with the RipA-RpfB complex, a lytic transgly-
cosylase and endopeptidase, respectively (Hett
et al. 2010). PonA2 has also been attributed to
having an important role in maintaining cell
shape, integrity, and adaptation of M. tubercu-
losis into dormancy (Patru and Pavelka 2010).
However, a recent biochemical and structural
study of the PASTA domain from PonA2 has
shown that this protein is unable to bind clas-
sical cognate ligands, such as muropeptides,
b-lactams, or nascent PG (Calvanese et al.
2014).

PBPa and PBPb are two variants of the
high-molecular-mass penicillin-binding pro-
teins found in M. tuberculosis. PBPa is a class A
penicillin-binding protein that plays an impor-
tant role in the cell division process and main-
tenance of cell shape (Dasgupta et al. 2006).
PknB, a serine/threonine-specific protein ki-
nase, has been shown to phosphorylate PBPa
on two key threonine residues T362 and T437,
the latter of which is crucial to enable full signal
transduction–mediated control of this impor-
tant cell wall process (Dasgupta et al. 2006). In-
terestingly, both PBPa and PBPb have been
shown to directly interact with the cell division
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complex and septal formation machinery FtsZ,
FtsQ, and CrgA (Plocinski et al. 2011).

Although the PG of actively replicating
M. tuberculosis contains a network of classical
3! 4 transpeptide bonds, PG from nonrep-
licating M. tuberculosis contains significantly
more nonclassical 3 ! 3 linkages. Thus, a sig-
nificant molecular rearrangement must occur in
the PG of M. tuberculosis as its shifts its mode of
growth from one of propagation into one of
dormancy. The M. tuberculosis genome encodes
at least five nonclassical L,D-transpeptidases
(Ldt), which are the enzymes responsible for
generating 3 ! 3 linkages between opposing
stem peptides in mycobacterial PG. M. tubercu-
losis deficient in both LdtMt1 and LdtMt2 activ-
ities shows an altered cell surface morphology
and severely attenuates the growth and virulence
of M. tuberculosis (Schoonmaker et al. 2014).
Other biochemical studies have identified
LdtM2 as being important for resistance to b-
lactam antibiotics such as amoxicillin (Gupta
et al. 2010) as well as carbapenems, and the
structural basis for the inhibition of LdtMt2 by
meropenem has been elucidated (Kim et al.
2013; Li et al. 2013). The X-ray crystal structure
of LdtMt1 has also been solved in the apo and
meropenem-bound form, highlighting some
subtle differences between these two variants
of L,D-transpeptidases (Correale et al. 2013).

ARABINOGALACTAN

Structural Features of Arabinogalactan

Arabinogalactan (AG) is a heteropolysaccharide
that is covalently tethered to �10%–12% of the
muramic acid residues of PG via a phospho-
diester bond (Amar and Vilkas 1973). Collec-
tively, PG and AG form a huge macro polymer
positioned between the cytoplasmic membrane
and the outer mycolic acid layer of the TB bacilli.
Early work showed that AG was composed pre-
dominantly of arabinose and galactose and con-
stitutes �35% of the total mass of the cell en-
velope (Misaki and Yukawa 1966; Azuma et al.
1968; Kanetsuna 1968; Kanetsuna et al. 1969).
Both arabinose and galactose sugars are present
in the furanoid ring form, D-galactofuranosyl

(Galf ) and D-arabinofuranosyl (Araf ), which
appear infrequently in nature (McNeil et al.
1987). A comprehensive characterization of
oligomers generated from partial depolymeri-
zation of per-O-alkylated AG using gas chro-
matography–mass spectrometry (GC-MS),
fast-atom bombardment–mass spectrometry
(FAB-MS), and NMR spectroscopy resolved
the detailed structure of the AG complex
(McNeil et al. 1987; Daffé et al. 1990; McNeil
et al. 1994; Besra et al. 1995). The molecular
structure of AG can be segmented into three
separate constituents: the linker unit (LU), gal-
actan, and arabinan. Amar and Vilkas (1973)
initially reported that AG is tethered to PG at
intervals by a phosphodiester bond, supported
by the presence of muramyl-6-phosphate in cell
wall preparations from several mycobacterial
species (Liu and Gotschlich 1967; Kanetsuna
1968). The chemical nature of this link was
not answered until 20 years later when oligosac-
charides containing Galf from the galactan do-
main were isolated along with rhamnose (Rha)
residues (McNeil et al. 1990). The further dis-
covery of the disaccharide L-Rhap-(1! 3)-D-
GlcNAc led to the conclusion that these constit-
uents make up the linkage unit and the inference
that the GlcNAc is directly attached to the 6-
position of a proportion of the muramyl resi-
dues of PG (McNeil et al. 1990). The D-galactan
component of AG is composed of approximate-
ly 30 linear alternating b(1! 5) and b(1! 6)
Galf residues (Amar and Vilkas et al. 1973;
McNeil et al. 1987) and is attached to the rham-
nosyl residue of the LU. Three tricosamer do-
mains of D-arabinan, each composed of approx-
imately 23 Araf residues, are affixed to the C-5
hydroxyl of b(1 ! 6)-linked Galf units (Besra
et al. 1995) specifically to the 8th, 10th, and 12th
Galf residues of the galactan domain (Alderwick
et al. 2005). The arabinan domain is a highly
branched polysaccharide built on a backbone
of a(1! 5)-linked sugars with a number of
a(1 ! 3)-linked residues forming 3,5-Araf
branchpoints (Daffé et al. 1990). Further a(1
! 5)-linked Araf sugars are attached subsequent
to this branchpoint with the nonreducing ends
terminated byb(1 ! 2) Araf residues. The final
structural motif (Araf-b(1 ! 2)-Araf-a(1-)2
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! 3,5-Araf-a(1 ! 5)-Araf-a(1!)) is a dis-
tinctive hexa-arabinoside (Ara6) of which ap-
proximately two-thirds are esterified with my-
colic acids (McNeil et al. 1991). AG from M.
tuberculosis is also further decorated with suc-
cinyl residues and galactosamine (GalN) located
on the 2-position of an inner 3,5-a-D-Araf bi-
furcation point of approximately one-third of
the arabinan tricosamers (Draper et al. 1997;
Lee et al. 2006; Bhamidi et al. 2008; Peng et al.
2012). The last two decades has witnessed a dra-
matic increase in our understanding of how this
complex polymer is assembled. Much emphasis
has been placed on investigating the molecular
genetics of how this complex structure is assem-
bled in mycobacteria. The complete sequencing
of several genomes from mycobacteria and oth-
er closely related species has provided major
impetus in the identification and the study of
the enzymes involved in the biosynthesis of this
exceptional structure, with the hope of uncov-
ering new drug targets.

Biosynthesis of Arabinogalactan

Biosynthesis of the Linker Unit

The crucial structural role of the LU in the at-
tachment of AG to PG, as well as the presence of
L-rhamnose, a sugar absent in humans, makes
the biosynthetic pathway leading to the forma-
tion of this disaccharide an attractive drug tar-
get (Ma et al. 2001). In M. tuberculosis, LU bio-
synthesis is initiated on the isoprenoid lipid
carrier decaprenyl-phosphate (C50-P), whereby
GlcNAc-phosphate is transferred from the ac-
tivated sugar donor UDP-GlcNAc, thus form-
ing C50-P-P-GlcNAc, referred to as glycolipid 1
(GL-1) (Mikusova et al. 1996). Rv1302 shows a
high degree of homology with the WecA protein
from E. coli (Amer and Valvano 2002; Lehrer
et al. 2007). Recent biochemical characterization
of this enzyme shows that Rv1302 is indeed
a decaprenyl-phosphate a-N-acetylglucosami-
nyltransferase responsible for the formation of
GL-1 (Ishizaki et al. 2013), and the gene encod-
ing WecA is essential for growth in M. smegmatis
(Jin et al. 2010). The LU is completed by the
subsequent action of the rhamnosyltransferase

WbbL, which adds an L-Rhap to the 3-position
of the GlcNAc of GL-1, this forming glycolipid 2
(GL-2) (Mills et al. 2004). WbbL uses the high-
energy nucleotide sugar donor dTDP-rhamnose
as a substrate for the formation of GL-2. Because
formation of GL-2 is an essential biosynthetic
step (Mills et al. 2004), the biosynthetic pathway
leading to the formation dTDP-rhamnose has
been heavily investigated, and a number of in-
hibitors of this process have been reported (Ma
et al. 2001, 2002; Babaoglu et al. 2003; Kantard-
jieff et al. 2004). Synthesis of dTDP-Rha occurs
via a linear 4-stage pathway using the gene prod-
ucts of rmlABCD. RmlA (Rv0334) sets in mo-
tion the sequence of reactions, converting dTTP
þ a-D-glucose 1-phosphate to dTDP-glucose
þ PPi (Ma et al. 1997). The enzyme was cloned
from M. tuberculosis and transformed into an
E. coli strain devoid of four dTDP-Rha biosyn-
thetic genes. Cellular extract analysis revealed an
abundance of a-D-Glc-P thymidylyltransferase
activity confirming its proposed function (Ma
et al. 1997). The product of RmlA activity is then
shuttled through three sequential reactions
catalyzed by dTDP-D-glucose 4,6-dehydratase
(Rv3464, RmlB), dTDP-4-keto-6-deoxy-D-glu-
cose 3,5 epimerase (Rv3465, RmlC) and dTDP-
Rha synthase (Rv3266, RmlD) (Hoang et al.
1999; Stern et al. 1999; Ma et al. 2001). Both
rmlB and rmlC genes have also been shown as
being essential for mycobacterial growth (Li
et al. 2006).

Galactan Precursor Synthesis

The Galf residues of the galactan domain are
incorporated from the high-energy sugar nu-
cleotide donor UDP-Galf, which is formed via
two reactions. In E. coli, galactosyl residues in
the pyranose ring form (UDP-Galp) are syn-
thesized by the action of GalE, a UDP-glucose
4-epimerase, which uses UDP-glucopyranose
(UDP-Glcp) as its substrate (Lemaire and Mul-
ler-Hill 1986). A study using cell-free extracts
of M. smegmatis and radiolabeled UDP-Galp
showed the presence of UDP-glucose 4-epimer-
ase activity, and the amino-terminal sequence
of the isolated protein was shown to be similar
to that of M. tuberculosis Rv3634 (Weston et al.
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1997). Conversion of UDP-Galp to the furanose
form occurs via ring contraction catalyzed by
the flavoenzyme UDP-galactopyranose mutase
(Glf ) that was first recognized in E. coli (Nassau
et al. 1996) and subsequently in M. smegmatis
and M. tuberculosis (Rv3809c) (Weston et al.
1997). Allelic exchange experiments of glf in
M. smegmatis highlighted the essentiality of
this gene (Pan et al. 2001).

Arabinan Precursor Synthesis

As we shall see in the following section, my-
cobacterial D-arabinan assembly follows a linear
biosynthetic pathway that involves an assort-
ment of membrane-bound glycosyltransfer-
ases. Although D-arabinan contains a complex
mixture of glycosidic linkages, decaprenylphos-
phoryl-b-D-arabinofuranose (DPA) is used ex-
clusively by all of the enzymes involved in
this pathway as a lipid-linked, activated Araf
substrate (Wolucka et al. 1994; Xin et al. 1997;
Alderwick et al. 2005). Synthetically derived
DP[14C]A and an array of synthetic acceptors
have determined that DPA provides Araf units
in the in vitro formation of 2-linked, 3-linked,
and 5-linked arabinofuranosyl linkages present
in the arabinans of AG and LAM (Belanger et al.
1996; Lee et al. 1997; Xin et al. 1997).

Because DPA is such an indispensable mol-
ecule required for mycobacterial cell wall bio-
synthesis, the elucidation of the biosynthetic
pathway leading to its formation has received
much attention. Classical biosynthesis of such
polyprenylphosphate sugars chiefly involves the
donation of a glycosyl residue from an activated
sugar nucleotide donor to a polyprenylphos-
phate substrate. Interestingly sugar nucleotides
of arabinose (UDP-Ara or GDP-Ara) have not
been identified in mycobacteria. Instead, the
carbon skeleton of the arabinosyl residues are
derived from 5-phosphoribosyl-1-pyrophos-
phate (pRpp), a metabolite that emerges from
the nonoxidative pentose shunt pathway (Scher-
man et al. 1995). M. tuberculosis has a single
pRpp synthetase, which is responsible for the
formation of pRpp and uses both ribose 5-phos-
phate and ATP as its substrates (Alderwick et
al. 2011). The 5-phospho-a-D-ribose-1-pyro-

phosphate:decaprenyl phosphate 5-phosphori-
bosyl transferase (Rv3806c), also annotated as
UbiA, transfers the ribose-5-phosphate moiety
from pRpp to decaprenylphosphate, ultimate-
ly forming decaprenylphosphoryl-5-b-D-phos-
phoribofuranose (DPPR) (Huang et al. 2005,
2008). The essentiality of UbiA was highlighted
in a study that used Corynebacterium glutami-
cum as a model organism to investigate the
molecular genetics of mycobacterial D-arabinan
biosynthesis. A ubiA-deficient strain of C. glu-
tamicum resulted in a cell wall phenotype that
was completely devoid of arabinose, giving in-
controvertible evidence that DPA is indeed the
only Araf donor for D-arabinan biosynthesis
(Alderwick et al. 2005, 2006a). DPPR is dephos-
phorylated to decaprenylphosphoryl-b-D-ri-
bofuranose (DPR) by a phosphatase enzyme
encoded by Rv3807c. Genetic deletion and sub-
sequent phenotypic studies of the M. smegmatis
homolog (MSMEG6402) suggest that although
this gene is not essential, its enzymatic function
is required to enable cell wall biosynthesis to
continue unabated (Jiang et al. 2011). At this
point, DPR is epimerized to DPA in a two-step
epimerization process that involves two en-
zymes, DprE1 and DprE2. DprE1, encoded by
rv3790, is an oxidoreductase that serves to oxi-
dize the C-2 hydroxyl of the ribose moiety of
DPR to form decaprenylphosphoryl-2-keto-b-
D-erythro-pentofuranose (DPK), which is an in-
termediate metabolite of this essential pathway
(Mikusova et al. 2005). DprE2, encoded by
rv3791, then reduces the C2-keto of DPK, result-
ing in the complete synthesis of the sole Araf
donor, DPA (Mikusova et al. 2005).

At this point, it is worth giving special at-
tention to DprE1, primarily because several re-
cent chemical biology studies have shown that
this enzyme is particularly susceptible to inhi-
bition by a variety of small-molecule inhibitors
that also show potent antimycobacterial activi-
ty. Benzothiazinones (BTZs) are a new class of
sulfur-containing heterocyclic compounds that
kill M. tuberculosis with nanomolar potency
by targeting DprE1 (Makarov et al. 2009). Sev-
eral biochemical and structural biology studies
have shown that BTZs are suicide inhibitors,
whereby BTZ is activated by DprE1, a FAD-de-

The Mycobacterial Cell Wall

Cite this article as Cold Spring Harb Perspect Med 2015;5:a021113 7

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

 on August 23, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


pendent enzyme, forming a covalent semimer-
captal bond with a key active-site cystine residue
(Trefzer et al. 2010, 2012; Batt et al. 2012). Sub-
sequent high-throughput screening and high-
content screening experiments have revealed
that DprE1 is an extremely “druggable” enzyme,
with molecules such as the dinitrobenzamides
(DNBs), nitrotriazoles, pyrazolopyridones, aza-
indoles, and a benzothiazoles (TCA1) (Chri-
stophe et al. 2009; Stanley et al. 2012; Shirude
et al. 2013; Wang et al. 2013; Panda et al. 2014).

Because of the apparent vulnerability of
DprE1 as a key enzyme in cell wall biosynthesis,
it has been lauded by many within the myco-
bacterial research community as a “magic drug
target.” Targeting D-arabinan biosynthesis ulti-
mately results in the removal of covalent linkage
between peptidoglycan and the outer mycolate
layers and is a salutary approach to the develop-
ment of new antimycobacterial agents. Howev-
er, this is insufficient evidence to explain the
vulnerable nature of DprE1 as a “magic drug
target.” A recent investigation into the vulnera-
bility of DprE1 as a drug target showed that
the primary consequence of DprE1 inhibition
is not simply the loss of DPA formation, rather
it is the accumulation of DPR in the cytoplasmic
membrane that induces synthetic lethality, de-
pleting the TB bacilli of the limited supply of
decaprenylphosphate that is required for both
AG and PG biosynthesis to proceed unhindered
(Grover et al. 2014). As we shall see, a variety
of membrane-bound arabinofuranosyltrans-
ferases are required to assemble D-arabinan on
the periplasmic face of the cytoplasmic mem-
brane. Because DPA is synthesized on the in-
ner leaflet of the cytoplasmic membrane, it
is necessary for DPA to be translocated to posi-
tion this Araf donor in the correct orientation.
Rv3789 has been identified as a DPA flippase
responsible for this activity (Larrouy-Maumus
et al. 2012).

Galactan Biosynthesis

The assortment of glycosyl linkages within the
galactan moiety leads to the supposition that at
least two Galf transferases (GalTs) are required
for its complete biosynthesis. GlfT1 (Rv3782) is

classified as an inverting glycosyltransferase-2
(GT-2) of the GT-A superfamily, and it is re-
cognized as the GalT responsible for the initial
transfer of two Galf residues, using UDP-Galf
as a substrate, to form both C50-P-P-GlcNAc-
Rha-Galf (GL-3) and C50-P-P-GlcNAc-Rha-
Galf-Galf (GL-4) (Mikusova et al. 2006; Alder-
wick et al. 2008). Using a novel neoglycolipid
acceptor assay that contained isolated E. coli
membranes expressing GlfT2 (Rv3808c), it was
shown that this enzyme has dual functionality,
acting both as a UDP-Galf :b-D-(1 ! 5) GalT
and UDP-Galf :b-D-(1 ! 6) GalT, responsible
for the polymerization of approximately 30
Galf residues with alternating b(1 ! 5) and
b(1 ! 6) linkages (Kremer et al. 2001; Miku-
sova et al. 2006). Apart from being a bifunctional
GalT, GlfT2 displays additional interesting fea-
tures: By using a substrate tethering mechanism,
it is able to have intrinsic control of the chain
length of the galactan product (May et al. 2009).
Further structural analysis of GlfT2 using X-ray
crystallography and NMR has shed further light
on how this unique enzyme is tetrameric and
is able to control chain length processivity and
bifunctionality using a single active site (Szcze-
pina et al. 2009; Wheatley et al. 2012).

Arabinan Biosynthesis

A Brief Digression on Ethambutol. As dis-
cussed earlier, D-arabinan is a pivotal scaffold
structure, which serves to covalently connect
PG to the outer mycolic acid layer. Its biosyn-
thesis is also targeted by the frontline drug eth-
ambutol (EMB). EMB is a synthetic compound
that was first recognized as an antimycobacte-
rial agent in 1961 (Thomas et al. 1961). Early
work by Kilburn and Greenberg observed an
unanticipated increase in viable cells during
the initial 4 h after addition of EMB to M. smeg-
matis cultures (Kilburn and Takayama 1981). It
was postulated that large bacillary clusters dis-
aggregated because of a possible reduction in
lipid content, which would lead to the apparent
increase in colony-forming units (CFUs) (Kil-
burn and Takayama 1981). This theory was sup-
ported by Takayama and coworkers who con-
ducted a series of early studies into the effects
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of the EMB on M. smegmatis, reporting that
inhibition of mycolic acid transfer into the
cell wall and the simultaneous accumulation
of trehalose-monomycolate (TMM), treha-
lose-dimycolate (TDM), and free mycolic acids
occurred within 15 min of drug administration,
suggesting that the target may be a mycolytrans-
ferase responsible for the transfer of mycolic
acids onto the arabinan polymer (Takayama
et al. 1979; Kilburn and Takayama 1981). How-
ever, it was later discovered, from observing
the incorporation of [14C]glucose into the
cell wall D-arabinose monomers, that EMB in-
hibits the formation of D-arabinan (Takayama
and Kilburn 1989), whereas synthesis of D-ga-
lactan of AG remained unaffected (Mikusova
et al. 1995). A major breakthrough in the dis-
covery of the precise EMB cellular target arose
through exploitation of a moderately resistant
strain from the related Mycobacterium avium
species. A genomic library from the aforemen-
tioned strain was screened and overexpressed in
an otherwise susceptible M. smegmatis host,
leading to the identification of a resistance-con-
ferring region encompassing three complete
open reading frames (ORFs), embR, embA,
and embB (Belanger et al. 1996). Moreover,
use of an EMB-sensitive cell-free arabinan bio-
synthetic assay showed that arabinosyltransfer-
ase activity was restored with embAB overex-
pression. Interestingly, neither embA or embB
alone was sufficient to confer multicopy resis-
tance, thus supporting the supposition that
they are translationally coupled, possibly form-
ing a multienzyme complex (Belanger et al.
1996). EMB resistance was also used to identify
the embCAB gene cluster from M. smegmatis,
which was subsequently characterized in M. tu-
berculosis and M. leprae, all of which possess
the same syntenic organization and encode ho-
mologs of the embA and embB genes from M.
avium (Lety et al. 1997; Telenti et al. 1997).
Escuyer et al. (2001) created individual genetic
knockouts in M. smegmatis, embC, embA, and
embB, all of which were viable, with the most
profound effects observed in the embB mutant.
Individual inactivation of embA and embB
resulted in the diminished incorporation of
arabinose into AG, specifically, the terminal dis-

accharide b-D-Araf –(1 ! 2)-a-D-Araf, nor-
mally situated on the 3-OH of the 3,5-linked
Araf residue.

Identification of Novel
Arabinofuranosyltransferases and the Use
of C. glutamicum and M. smegmatis as
Model Organisms

The Emb proteins, although novel, possess
membrane topologies consistent with other gly-
cosyltransferases (GTs) that use lipid-linked pre-
cursors, and do not resemble the more typical
nucleotide-diphosphate (NDP) sugar donor re-
quiring GTs. To date, the carbohydrate-active
enzymes (CAZy) database has classified GTs
into approximately 95 families with three large
structural superfamilies, GT-A, GT-B, and GT-C
(Liu and Mushegian 2003). GT-A and GT-B en-
zymes use NDP-sugar donors and are either
globular or peripheral membrane proteins. The
GT-C superfamily are large integral membrane
proteins, all of which contain eight to 13 predict-
ed transmembrane (TM) domains, with typical-
ly low sequence similarity but aconserved amino
acid motif, called the DxD motif, generally po-
sitioned in the first or second predicted extrac-
ytoplasmic loop, and is thought to be required
for binding the polyprenylphosphosugar sub-
strate (Berg et al. 2007). The Emb proteins have
been classified as GT-Cs, comprising approxi-
mately 1100 amino acids and 12–13 TM-span-
ningregions (Berg etal.2005; Seidel etal. 2007b).
Efforts to generate viable embA/embB mutants
in M. tuberculosis and an embAB double mu-
tant in M. smegmatis have so far proven unfruit-
ful, highlighting their essentiality in mycobacte-
ria. The Corynebacterianeae taxon encompasses
Mycobacterium species as well as Corynebac-
terium species, such as Corynebacterium diph-
theriae and C. glutamicum. Corynebacterium
are deemed the archetype of Corynebacteria-
neae, and because they maintain a low frequency
of geneduplications andmodifications, theyalso
possess a cell wall core remarkably similar to M.
tuberculosis and have served as a useful tool and
model organism to study otherwise essential or-
thologous M. tuberculosis genes. Alderwick et al.
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(2005) successfully constructed a C. glutamicum
mutant with its singular emb gene disrupted
(Cg-emb), and subsequent phenotypic analyses
of this mutant revealed an almost total loss of cell
wall arabinan, except for terminal t-Araf residues
decorating the galactan backbone. Moreover,
EMB treatment of wild-type C. glutamicum pro-
duced a profile identical to that of the mutant,
illustrating that Cg-emb is indeed the target
of EMB and furthermore that another AraT
responsible for “priming” the galactan back-
bone must exist. As described earlier, disruption
of the 5-phospho-a-D-ribose-1-pyrophosphate:
decaprenyl phosphate 5-phosphoribosyl trans-
ferase ortholog (Cg-ubiA), resulted in total
ablation of Araf residues, indicating that the un-
identified AraTwas also DPA-dependent (Alder-
wick et al. 2005). This pioneering study paved
the way for the discovery of several novel GT-C
arabinofuransyltransferases, each of which plays
key roles in D-arabinan biosynthesis. AftA was
identified as the enzyme responsible for priming
the 8th, 10th, and 12th Galf residues of the gal-
actan backbone, which are elongated by the Emb
proteins in an a(1 ! 5)-linked fashion (Alder-
wick et al. 2006b). The M. smegmatis AftA
homolog (MSMEG_6386) could only be chro-
mosomally deleted in a merodiploid strain,
highlighting its essentiality in mycobacteria
(Shi et al. 2008). Both C. glutamicum and M.
smegmatis model systems were used in combina-
tion to identify AftC as the enzyme responsible
for introducing a(1 ! 3) Araf linkages into D-
arabinan of AG and lipoarabinomannan (LAM)
(Birch et al. 2008, 2010). Standing at 1400 amino
acids in length and with a molecular mass of
�150 kDa, AftD represents the largest of the
GT-C AraTs present in M. tuberculosis. It has
been shown that AftD shows a(1 ! 3) Araf
transferase activity, but because of its dispropor-
tionally large size, is speculated to have addition-
al functions, such as being a scaffold protein for
the recruitment of additional cell wall biosyn-
thetic enzymes (Skovierova et al. 2009). Again,
C. glutamicum was used to identify AftB as the
enzyme that transfers terminal b(1! 2) Araf
residues into the nonreducing Ara6 motif of
AG, thus bringing AG biosynthesis to a halt
(Seidel et al. 2007a).
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