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Abstract: Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar
macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed
multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through
evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS
proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins
perform multiple functions that intensify the virulence competence of M.tb majorly by modulating
immune responses, thereby affecting immune mediated clearance of the pathogen. The highly
repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over
other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that
masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding
of how these proteins subvert the host immunological machinery may add to the current knowledge
about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling
M.tb infections.

Keywords: decoy antigens; glycine; immune evasion; latency; pathogenicity; TB; virulence

1. Introduction

Tuberculosis (TB), caused by the opportunistic pathogen Mycobacterium tuberculosis
(M.tb), is a deadly disease and a major cause of death globally, [1] The prognosis of TB
is further worsened due to co-morbid conditions, such as infections of HIV, and now the
ongoing COVID-19 pandemic is posing additional challenges [2]. The emergence of drug
resistant forms (MDR and XDR) of M.tb is a cause of concern as it has slowed our efforts
to eradicate TB worldwide [3]. Macrophages are primarily efficient in clearing pathogens;
however, M.tb can survive intracellularly within the niche of macrophage itself. M.tb has
evolved various mechanisms that allow it to hijack the process of phagosome-lysosome
fusion, inhibit acidification of phagosome, suppress autophagy and apoptosis pathways
used by macrophage for the clearance of pathogens [4–7]. M.tb overpowers the extremely
microbicidal nature presented within the macrophages through a multifaceted and complex
interplay between its proteins and host immune responses [8,9]. Several M.tb proteins have
been reported to evoke innate and adaptive immune responses, though many of these act
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as decoy antigens to subvert the immune system. Decoy antigens mimic host-pathogen
effector components and can misdirect the immune response pathways that favor the
survival of the pathogen. Pathogenic bacteria such as M.tb also use decoy proteins as
a generic mechanism to mask themselves from immune surveillance, thereby evading
and subverting host immune responses [10,11]. The decoy antigens can be classified
into three broad categories, namely, receptor, bodyguard and sensing decoys. As the
name suggests, receptor decoys are employed by the pathogens to modulate host immune
signaling pathways. In contrast, bodyguard decoys act as inactive mimics to safeguard the
virulence factors of pathogens from the host response. Sensing decoys mimic the effector
functions of the target proteins of both the host and the pathogens [12].

The mycobacterial PE/PPE/PE_PGRS protein family, present only in the genus my-
cobacterium and nowhere else in the living kingdom, occupies approximately 10% of the
coding capacity of the M.tb genome. Despite the reductive genomic evolution of M.tb [13],
the PE/PPE/PE_PGRS family of genes has been expanding during mycobacterial evolu-
tion. The presence of this family only in pathogenic strains of the genus mycobacterium,
such as M.tb, M.marinum and M.bovis, points to its likely importance in disease pathogene-
sis [14]. The evolution of PE/PPE gene families was found to be associated with the ESX
secretion system [15], and proteins were majorly reported to be either surface exposed
or secreted [16–18]. Cell-surface localization of PE/PPE/PE_PGRS proteins may serve
an important function in host-pathogen interactions and in the virulence and pathogenesis
of M.tb [19]. PE_PGRS (polymorphic GC-rich sequences) proteins are a subclass of the PE
protein family and consists of a highly conserved N-terminal (approx. 110 amino acid long)
the PE domain followed by the C-terminal domain harboring multiple repeats of Gly-Gly-
Ala or Gly-Gly-Asn. Deciphering the role of proteins belonging to the PE_PGRS family
may reveal new aspects of the biology of M.tb. The presence of multiple tandem repeats of
GGA or GGN has been attributed to cause antigenic variations and aid in immune evasion
mechanisms, thereby facilitating pathogen survival. The repetitive nature of PE_PGRS
proteins and their surface localization both lead to the generation of immune responses by
macrophages and may aid in immune subversion [17].

In this review, we highlight the various hypothesis and published data to showcase the
role of antigenic M.tb PE/PPE/PE_PGRS proteins in evading and subverting host immune
responses, which in turn favor M.tb survival and dissemination. It is envisaged that a better
understanding of PE_PGRS proteins shall provide crucial insights about M.tb virulence
and immune evasion and may aid in designing alternative approaches to design better
vaccines and therapeutics.

2. Modulators of the Host-Immune Response: PE/PPE Proteins

PE_PGRS and PPE-MPTR (major polymorphic tandem repeat) make up the majority of
the PE/PPE proteins, which are associated with cell wall and are secretory in nature [20,21].
These proteins play an important role in the development of mycobacterial pathogenicity by
modulating the host immune system. PE and PPE protein are implicated in the manipula-
tion and evasion of the host immune system. M.tb primarily infects the macrophages, which
act as a reservoir for the pathogen. The expression pattern of these proteins is significantly
altered in M.tb when it infects the macrophage, pointing to their role in virulence [22]. M.tb
uses a variety of ways to counteract macrophage-mediated protective mechanisms [23].
M.tb exploits an extra lipoidal cell wall with the presence of PDIM (phthiocerol dimyco-
cerosates) to protect the pathogen from the host’s innate immune surveillance. Before the
adaptive immune response kicks in, M.tb establishes itself in the host macrophages [24,25].
A number of PE/PPE proteins influence macrophage activity by modulating or changing
the cellular dynamics. M.tb pathogenicity is influenced by the Esx5 secretion system and
its substrates, which include associated and non-associated PE/PPE proteins.

Although there is evidence that PE/PPE proteins have a variety of roles in modify-
ing the host intracellular milieu during infection, more research is necessary to under-
stand this. Many PE/PPE proteins control the host immune response by upregulating
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the production of cytokines that trigger pro-inflammation or anti-inflammation [23,26–28].
PPE37, for example, modulates the pro-inflammatory response in the host by lowering
the production of IL-1β, IL-6, and TNF-α [29]. PE5- and PE15-expressing M. smegmatis
recombinants increased the intracellular bacterial survival in the host, suggesting that
they may play a role in the host-pathogen interaction. Infected macrophages showed
up- and down-regulation of IL-4, IL-5, IL-10, and TGF-β (anti-inflammatory cytokines),
and IL-12 (pro-inflammatory cytokine). PE5, PPE15 and PPE2 inhibit reactive nitro-
gen species’ production and are predicted to be an anti-mycobacterial strategy of the
host [30,31].

T-lymphocytes are important contributors in the secretion of the cytokines. A critical
balance between the Th-1 and Th-2 subsets of the T-lymphocytes drives the response
against varied infections. Th1 response is critical in wiping out the intracellular pathogens
whereas Th-2 is essential in clearing the extracellular infections. Th1 polarization is inclined
towards the secretion of the pro-inflammatory cytokines and thus attracts the cytotoxic
cell population towards the infected cells to handle the intracellular pathogens. On the
contrary, Th-2 polarization is involved in the clonal expansion of the B-cells which leads
to an increase in the antibody titres in the system that act on the extracellular pathogens.
Th2 cells also secrete anti-inflammatory cytokines such as IL-1, IL-4 and IL-10, etc. During
inflammation, due to mycobacterial infection, Th-1 polarization is important to clear the
infection from the infected tissues. However, it should be balanced by the Th-2 response
to control the Th-1 mediated excessive tissue damage. Consequently, to counter host
defense, several PE/PPE proteins, such as PE4, PE5, and PE15, disrupt Th-1 and Th-2
equilibrium, bypassing the host immune response and allowing bacteria to survive longer
inside macrophages [30,32]. The sera of the TB patients generated a substantial antibody
response when probed against the antigen PPE41 [33,34]. The co-translated PE32/PPE65
heterodimer has recently been shown to influence host immune response in favor of the
pathogen by dampening the Th-1 response [35]. The Esx5 associated PE paralogs PE18 and
PE19 twisted the equilibrium towards Th1 bias [36]. PE/PPE proteins that drive the Th-1
response might play a role in diverting the immune attention away from the major virulent
effectors of M.tb.

PE13, which establishes cell wall function, was also discovered to be implicated in
the interplay between pathogen and host signaling, via the p38-ERK-NF-κB axis. It in-
duces macrophage apoptosis and subsequent cell-to-cell dispersion, resulting in increased
mycobacterial survival in macrophages over time. PE13 boosted macrophage secretion of
IL-1 and IL-6 and decreased the suppressor of cytokine signaling 3 (SOCS3) synthesis [37].
PPE32, such as PE13, promotes mycobacterial intraphagocyte survival through an aberrant
increase in cytokine production, particularly IL-12 and IL-32 [38]. ESAT-6 and PPE25,
proteins implicated in both bacterial pathogenicity and host immune recognition, were
found to interact in M. avium. PPE25 was shown to be localized to the bacterial cell mem-
brane after being expressed in M. smegmatis [39]. The localization of PPE25 in the cell
membrane suggests that it would install a direct contact with the host’s immune system
during infection.

PE11, also known as LipX, is shown to be elevated in active tuberculosis patients and
is restricted to the pathogenic mycobacterial species. It promotes virulence by changing the
structure, composition, or alignment of the outer cell wall [40]. PE_PGRS62, PE_PGRS30,
and PPE25 (homolog from a subspecies of M. avium) have also been linked to mycobac-
terial virulence and have been shown to hinder phagosome maturation [41]. The ppe38
deletion mutant of M. marinum modified the bacterial cell surface properties, lowering
pathogenicity via reducing macrophage phagocytic functions [42]. When the complete
pe/ppe genetic stretch was removed from the esx-5 gene locus, the deleted M.tb mutant
(∆ppe25–pe19) showed attenuation in host macrophages as well as in the severe combined
immunodeficient mice infection paradigm [20].

Only pathogenic mycobacteria have the ability to infect new uninfected cells, implying
that M.tb colonizes and multiplies by modulating programmed cell death [43]. We earlier
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reported that PGRS domain of PE_PGRS5 protein is implicated in TLR4-dependent endo-
plasmic reticulum (ER) stress-mediated cell death, which may aid pathogen dispersion
later in infection [44]. Furthermore, we demonstrated that low cellular iron content causes
PPE37 to be proteolytically cleaved, resulting in two segments at the N and C termini,
respectively. These segments are responsible for their extracellular and nuclear localization,
with the C-terminus inducing apoptosis and the N-terminus modulating the host immune
response to favor the pathogen [45]. Furthermore, it was postulated that the PE25/PPE41
heterodimer promotes necrosis in macrophages, rather than apoptosis, to aid in bacterial
multiplication and spread, perhaps leading to disease reactivation [46]. However, the
significance of apoptosis in M.tb infection, disease establishment, and proliferation is yet
unknown and hotly debated. Necrotic cell death, on the other hand, is a similar mechanism
that facilitates in the spread of bacterial cells from pre-infected macrophages to infect
new cells [46]. It is unclear how M.tb causes host cell necrosis while also managing its
proliferation, especially during the latency phase. To successfully resist the humoral and
cell-mediated adaptive immune responses of the host against the established infection,
mycobacteria employ necrosis as a cell death mechanism. Dheenadhayalan et al. showed
that recombinant M smegmatis expressing M.tb PE_PGRS33 exhibited increased persistence
within the macrophages as compared to the parental strain of M smegmatis. A significantly
higher number of nucleosomes in the culture supernatant of the macrophages infected
with M smegmatis expressing PE_PGRS33 pointed to greater cellular destruction. It was
found that PE_PGRS 33 altered the levels of TNF secretion in the macrophage, which
not only induced necrosis of the cell but also enhanced the survival of the recombinant
M smegmatis expressing PE_PGRS within the infected macrophages [47]. M smegmatis
expressing PE_PGRS33 induced necrosis in macrophages similar to that caused by infection
with virulent M tuberculosis, while M smegmatis expressed only that the PE domain failed to
induce cell death. This study pointed that the PGRS domain of the PE_PGRS protein can
have a specific role in part in inducing necrosis in macrophages.

3. Ambiguous Immune Responses of PE/PPE/PE_PGRS Proteins of M.tb

Numerous studies focusing on the moonlighting functions of the PE/PPE/PE_PGRS
family of proteins revealed their diverse functional implications in M.tb pathogenesis
during the course of infection. It is of prime importance to note that, while a dozen of these
proteins induce pro-inflammatory immune responses, others mount anti-inflammatory
responses via separate signaling cascades. The fine-tuning between the two eventually
decides the outcome of the disease progression and pathogen survival.

PE/PPE/PE_PGRS proteins serve as possible virulence factors and act as a source of
antigenic variation in different M.tb clinical strains [17,22]. In silico comparative genomic
and proteomic analysis of PE/PPE/PE_PGRS proteins revealed significant differences
between their sequences in M.tb H37Ra and H37Rv; that have been translated in terms
of specific globularity and antigenicity indexes of these proteins; it is thereby hypothe-
sized to serve as a potential basis for the differences in their immunogenic profiles [48].
PE-PGRS11 and PE_PGRS17, both cell wall associated proteins, have been shown to evoke
activation and maturation of human dendritic cells along with DC-induced stimulation of
CD4+ T-cells and enhanced pro-inflammatory cytokine responses [49]. The PGRS domain
of Rv0297 encoded PE_PGRS5 leads to the production of TNF-α and IL-12 in infected
macrophages [50] along with apoptosis induction [44]; the response generated was shown
to be dependent on calcium ions [51]. PE_PGRS33, coded by Rv1818c, was observed to
induce TNF-α; an important anti-mycobacterial cytokine, in a TLR-2 dependent man-
ner [26]. The highly disordered nature of the PGRS domain of PE_PGRS33 enables it to
aid the bacterium to enter the macrophages efficiently [52]. The PE and PGRS domains
of PE_PGRS33 evoke an unusual immune response against M.tb; PE domain vaccinated
mice splenocytes elicited cellular responses and IFN-γ production, while humoral response
was induced by immunization with the PGRS domain and not by the PE domain alone of
PE_PGRS33 [53]. Antibody responses against the PGRS domain of PE-PGRS33 had also
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been evident [54]. Higher B cell responses against PPE41, an immunologically important
protein coded by Rv2430c, in comparison to PPD and Hsp10 has also been reported in
TB patients [33]. Mycobacterium smegmatis over-expressing PE_PGRS33 and PE_PGRS26
promoted IL-10 cytokines in infected macrophages [55]. Up-regulation of pro-inflammatory
cytokines, such as IL-6, IL-12p40, IL-1β and TNF-α, accompanied by pathogen survival
was detected in response to PPE32 and PPE60 [38,56]. M. smegmatis expressing Rv1195
encoded PE13 was shown to increase IL-6 and IL-1β from infected macrophages through
the p38-ERK-NF-κB host-signaling pathway [57]. Rv0335c encoded PE6, a secretory protein
of M.tb, subdues immune responses by promoting the secretion of IL-12, IL-6 and TNF-α,
most important pro-inflammatory cytokines from host macrophages in TLR4 and Myd88
dependent manner [58]. IFN-γ and IL-2 have been shown to be upregulated from polar-
ized Th-2 cells and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) in response
to PPE57 of M.tb [57,59]. PE3 was overexpressed during the chronic infection of M.tb and
immunization with PE3 results in elevated protective immune response. [60] Bottai et al.
have shown that ∆ppe25–pe19 mutant of M.tb provided a strong attenuation and protection
due to cross reactivity of the PE/PPE family of protein [20].

An anti-inflammatory response in macrophages due to the PE_PGRS30 protein in
terms of the reduced production of IL-12, TNF-α and IL-6 has also been discovered [61,62].
PPE38 has been known to modulate the secretion of several other mycobacterial PE/PPE
proteins and dampens host pro-inflammatory immune responses [63]. PPE18 triggers
anti-inflammatory Th2 responses from macrophages by promoting IL-10 cytokines in
TLR-2/MAP kinase supported pathway [64]. M.tb is exemplified by the suppression of
pro-inflammatory cytokines (TNF-α and IL-12) for maintaining a Th-2 response to favor
infection progression and eventual bacterial survival. Nair et al. demonstrated the anti-
inflammatory roles of PPE18 in terms of suppressing TNF-α and IL-12p40 pro-inflammatory
cytokine production by obstructing the nuclear translocation of transcription factors, such as
NF-κB, c-rel, p50, and p65 [65]. PPE41, a highly polymorphic protein coded by Rv2608, has
been reported with respect to its ability to induce significantly higher B-cell responses and
decreased T-cellular responses [66]. PPE34 coded by Rv1917c has been shown to involve in
TLR-2 dependent maturation of DCs and the subsequent secretion of very high amounts
of IL-10, IL-4 and IL-5 anti-inflammatory cytokines; the production of Th-1 skewed IL-12
was not observed in response to PPE34 thereby supporting its immune evasion properties
during the course of mycobacterial infection [28]. PE5 (Rv0285) and PE15 (Rv1386) modify
host immune response by enhancing IL-10 and diminishing IL-12p40 cytokine levels [30].
PPE37, consisting of disordered stretches, involved in iron sequestration also leads to the
secretion of high levels of IL-10 but IL-12 and TNF-α are barely detectable; thus, serving
as a suitable environment for sustaining tolerant immune cells. Significant immune sero-
reactivity was also observed in response to full length PPE37 protein in TB patients [45].
Another protein PE_PGRS62 was reported to exhibit induction of IL-1β and IL-6 from
macrophages [67,68]. A domain-specific study exposed the preferential recognition of
full-length PE_PGRS17 and PE_PGRS62 over PE domains alone [69]. Two other members
of this family, PPE18 and PPE_MPTR34, were also known to modulate host responses in
a TLR2-dependent manner [28,64].

M.tb further exploits the additional complexity of the co-operonic nature of PE/PPE
protein pairs to evade the associated immune machinery by modifying Th-1 and Th-2
dependent immune balance to favor bacillary survival and the progression of disease
outcomes [35,46,70–72]. M.tb PE9–PE10 heterodimers and co-operonic PE35-PPE68 interact
with TLR-4 of macrophages to suppress levels of pro-inflammatory molecules IL-12 and
IL-1β; upsurges that of IL-10 and monocyte chemo attractant protein-1 (MCP-1) [73].
Higher humoral response along with significant IFN-γ and TNF-α cytokine production
against PPE41 and PE25/PPE41 co-operonic complex in comparison to PE25 alone has
been depicted in TB patients’ sera [34]. Substantially higher levels of TNF-α production
have been shown in macrophages stimulated with PE25/PPE41 complex protein; however,
interestingly it did not mount IL-10 cytokine levels [34]. Mice immunized with co-operonic
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a PE32/PPE65 protein pair showed inhibition of Th-1 immune cytokines such as IFN-γ and
IL-2 with high levels of IgG1 in serum depicting the modulation of immune responses [35].
PE/PPE proteins have also been hypothesized to act as possible exporters to augment
mycobacterial virulence and pathogenesis [74].

The diverse functions of PE/PPE/PE_PGRS proteins in both subverting and stimulat-
ing immune responses are thus evident thereby hindering an appropriate cellular response
required for the containment of disease [75]. Thus, further explanation of the molecular or
cellular basis of such contradictory responses of these proteins belonging to same family
and of almost similar structure is of utmost importance. It can be noted that the highly
disordered nature of multiple stretches in these proteins (discussed below) might play
an eminent role in either evoking or diminishing immune responses that augment the
pathogenesis of TB.

4. Immune Evasion and Subversion Properties of PE_PGRS Proteins: A Possible
Reflection of Antigenic Variation, Disordered Nature and Glycine Content

During the course of evolution, pathogenic bacteria developed multiple strategies
to avoid or subvert host machinery, especially the mechanisms that drive protective out-
comes of host immune response [76,77]. Pathogens also manipulate the outcome of the
host’s immune response by altering antigen presentation pathways and engaging host
immune machinery with multiple antigens [78,79]. M.tb utilize extremely progressive
and harmonized mechanisms of immune evasion that divert or subvert the host proteins
involved in neutralizing the virulence of the pathogen. In doing so, the host machinery gets
engaged in evoking immune responses against the decoy antigens, thereby neutralizing the
efficacy of host immune response in bacterial clearance [10,11]. Multiple PE_PGRS proteins
evoke different signals that allow the pathogen to evade the host immune response [80].
PGRS domain of PE_PGRS62 protects the PE protein from ubiquitin-proteasome mediated
degradation and also affects the ability of the CD8+ T-cells to recognize the protein, thereby
conferring protection to the pathogen present within the macrophages [81].

Several pathogens employ intrinsically disordered proteins (IDPs) or disordered short
stretches for a variety of moonlighting functions [82–84]. IDPs, by virtue of their conforma-
tional plasticity and short interaction motifs, can interact with different protein partners [85].
Such disordered effector proteins perturb host cellular cascades via favorable interactions
through molecular mimicry in both viruses and bacteria [83,84,86]. The PGRS domain of
PE_PGRS proteins lacks a definite three-dimensional (3D) structure and is intrinsically
disordered in nature [16,44,45,87]. The transition from an ordered to a disordered state
or vice versa will serve to hijack host immune machinery for subsequent survival of the
pathogen [13,16,88].

The generation of antigenic variation is one of the passive mechanisms of immune
evasion and subversion [89,90]. PE/PPE/PE_PGRS proteins are known to provide a major
source of antigenic variations in M.tb and its clinical isolates [17,59]. Thus, their prospective
importance in acting as a decoy antigen to the host is emphasized. The interaction of
M.tb with macrophage offsets the Ca2+ signaling that causes abnormality in phagosome
maturation. Ca2+ binds with the PE_PGRS33 and PE_PGRS61 proteins [80,91]. These
calcium dependent PE_PGRS proteins decrease the Ca2+ concentration during the initial
phase of non-specific attachment of M.tb with the alveolar macrophages. The decrease in the
Ca2+ in the macrophage suppresses the phagolysosomal fusion of the M.tb with the acidic
lysosome; thereby contributing to the survival of the M.tb. PE_PGRS 33 and PE_PGRS41
are cell wall associated proteins. While the PE domain of the PE_PGRS 33 is important for
cellular localization, the PGRS domain of this protein is important for cellular morphology
of the bacterium and its entry within the host cells. Knock-in of the PE_PGRS33 gene in
M smegmatis imparts endurance to the bacterium to overcome the cytotoxic effect of the
macrophage and enhances the level of TNF. Although M smegmatis does not effectively
infect host cells, recombinant strains of M smegmatis expressing PE_PGRS33 can colonize
the lungs, spleen and liver, which is a typical feature for virulent M tuberculosis [88].
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Ramakrishnan et al. showed that pathogenic M.marinum expresses two proteins (mag 24
and mag 85) that are homologous with M.tb PE_PGRS protein family, and are involved
in granuloma formation and the replication of the pathogen within the macrophage [92].
Mice immunized with the PE domain of the PE_PGRS 33 exhibit a higher cell-mediated
response while immunization with the complete PE_PGRS 33 leads to increased humoral
response [53]. These studies also suggest that differential expression and the regulation
of PE/PE_PGRS protein family during M.tb infection play a key role in enhancing the
virulence features of the pathogen.

The VaxiJen antigenicity prediction tool shows a high antigenicity index for PE_PGRS
proteins (Figure 1). The antigenicity index of PE_PGRS proteins increases as a direct
function of the glycine content of these proteins (Figure 2). PGRS domain of PE_PGRS
proteins was observed to be highly rich in glycine, with major chunks of Gly-Gly-Ala
stretches similar to EBNA-1 antigen [81]. Glycine, a highly conserved amino acid, is
known to initiate several protective and immunomodulatory responses in the host cells.
Glycine modulates the function of the macrophage and evokes inflammatory cytokines,
as compared to other amino acids [93]. Cell wall proteins that are rich in glycine exhibit
greater antigenicity and are notable targets in several autoimmune and food borne allergies.
It is important to note that the presence of high glycine content in proteins with high
antigenicity indices is not just a matter of chance but points to the role of glycine-rich
proteins in non-specific but targeted protective immune responses from host macrophages.

Figure 1. (A) Antigenicity index of PE_PGRS proteins of M.tb, as predicted by antigenicity prediction
tool VaxiJen. (B) Glycine content of PE_PGRS proteins of M.tb calculated by ExpasyProtParam tool.
All values were plotted in increasing order of their magnitude.
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Figure 2. Antigenicity index of PE_PGRS proteins increases with increase in glycine content of
PE_PGRS proteins. Antigenicity index was plotted against glycine percentage in linear ratio.

The role of PE_PGRS proteins in the immune evasion mechanism is attributed to
varied and diverse patterns of the cytokine profile during M.tb infections [57]. While
some of the PE_PGRS family of proteins, such as PE_PGRS5, PE_PGRS11, PE_PGRS17 and
PE_PGRS30, evoke pro-inflammatory responses; others such as PE_PGRS26 are known
to induce anti-inflammatory responses. This shows that PE_PGRS have contrasting roles
in immune response and can act as a molecular switch for skewing the response as pro-
host or pro-pathogen during tuberculosis [14,59]. The partial homology of PE-PGRS with
EBNA domain of the Epstein–Barr virus speculates that it may play a role in the evasion of
cytotoxic T-cell response to inhibit antigen processing [53,94].

Protein antigens are processed through the MHC (major histocompatibility complex)
class I and MHC class II. MHC I is ubiquitously expressed on nucleated cells whereas
MHC II is expressed on antigen presenting cells (APCs) including macrophages, dendritic
cells, etc. Within the macrophage, M.tb secreted proteins are processed into smaller pep-
tides and presented through the MHC II to the T-cells [95]. The proteins are processed
through the proteasomal degradation machinery of the cell, which are translocated to the
endoplasmic reticulum through the transporters associated with antigen processing (TAP)
proteins [96]. CD4+ T cells recognize these processed antigens primed on the MHC II lead-
ing to the generation of effector and memory T-cell response against the antigenic peptides.
M.tb involves multiple mechanisms to prevent or bypass antigen presentation processes
(pathways) by inhibiting the truncation of secreted proteins into 8–25 amino acid long short
peptides, required for the MHC II pathway [10,95,97]. Phagosomes, the main component of
the MHC class II mediated classical antigen presentation pathway is a critical spot within
the macrophages that is hijacked by the M.tb, resulting in inhibition of the proteasomal pro-
cessing of secreted antigens. Thus, M.tb antigens within the macrophage are masked from
being recognized by the T-cells, thereby protecting M.tb from cellular immune response [98].
PE/PPE/PE_PGRS proteins could be expressed as the early immunodominant antigens
followed by the other functionally dominant but immuno-subdominant virulence factors.
PE_PGRS proteins neutralize the effector functions of the host immune system, thereby
acting as “decoy” for allowing the safe passage of other important effector molecules of
the pathogen within the internal proximity of the host. Effector T cells primed against the
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decoy immunogen search for similar antigens throughout the cells of the host, which are
discontinued by the pathogen during a subsequent phase of infection. In this way, the
dominant virulent factors of M.tb remain unaffected by the cell-mediated immune response.
The consequent subversion of T-cell response allows the bacteria to successfully establish
its pathogenicity and disease progression within the host [99].

Several members of the PE_PGRS protein family were shown to induce a wide range
of contradictory T-cell and B-cell responses as described in earlier sections [100]. Such
responses are not specific to this protein family, rather a generalized and diverse im-
mune profile have been observed [57]. PE_PGRS11 and PE_PGRS17 proteins are involved
in the activation and maturation of human dendritic cells and boost pro-inflammatory
responses [49]. The PE and PGRS domain of PE_PGRS33 evoke different immune response
against M.tb. Mice immunized with PE domain of Rv1818c elicited cellular responses
and IFN-γ production, while the humoral response was induced upon immunization
with the PGRS domain and not by the PE domain alone [53]. Another study showed the
generation of B-cell responses against the PGRS domain of PE_PGRS33 [54]. M.smegmatis
over-expressing PE_PGRS33 and PE_PGRS26 show enhanced production of IL-10 cytokine
levels in macrophage cell lines [55]. An anti-inflammatory response of macrophages due
to the PE_PGRS30 protein in terms of the reduced production of IL-12, TNF-α and IL-6
was reported [61]. PE_PGRS33 is linked with the increased production of TNF-α and IL-10,
and reduced levels of IL-12p40 [47]. In contrast, the expression of PE_PGRS16 enhances
IL-12p40 levels but reduces IL-10 cytokine production [55]. The immune response gener-
ated by PE_PGRS16 was antagonistic to that of PE_PGRS26 [55,101]. These studies show
that the PGRS domain plays a key role in PE_PGRS proteins and is an important target for
manipulating immune response.

The elicitation of antibody responses specifically directed against the glycine and
asparagine repeats has been reported [66]. PPE18 and some other 20 PE proteins have
been shown to generate CD4 or CD8 mediated T-cell responses [102]. Th-2 responses
and reduced IFN-Υ levels have been detected against PPE44 protein of M.tb [103]. PGRS
domain of PE_PGRS5 protein induce TNF-α and IL-12 cytokines in macrophages [50] in
a calcium dependent manner [51].

One of the most widely used anti-TB vaccine strains, BCG, is not fully capable of
secreting a class of PE/PPE family proteins (specifically PE_PGRS and PPE-MPTR) due to
the absence of the RD5-genetic region (containing functional Esx-5 and PPE38/71 involved
in secretion) [104]. The BCG vaccine elicits a reduced repertoire of antigens during infection.
In order to assess the immunogenic potential of PE/PPE/PE_PGRS proteins, Ates et al.
restored the BCG strain with PPE38 locus, which improved the PE_PGRS and PPE_MPTR
secretion in infected mice. Restoration of PE_PGRS and PPE_MPTR secretion neither
enhanced the activation of immune cells nor boosted the protective efficacy of the restored
BCG mutant strain [104]. Further studies are warranted to reveal the role of PGRS domain
in improving the efficacy of recombinant BCG.

To summarize, these observations show that PE PGRS proteins have a variety of
contrasting implications, not simply the PGRS domain, which may aid in evasion and
modification of immune effector activities, and hence undermine the targeting of other
critical mycobacterial pathogenic proteins (Figures 3 and 4). This subversion may influence
the course of disease pathogenesis and lead to higher survival rates of M.tb within alveolar
macrophages. These observations are a pointer to reconsider the immunomodulatory
effects of PE/PPE/PE_PGRS proteins (Tables 1 to 4), few of which are considered in vaccine
formulations. Understanding the mechanisms of the PE/PE_PGRS family of proteins in
evading and subverting immune responses may aid in targeting these proteins for future
therapeutic interventions.
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Figure 3. M.tb PPE_PGRS antigens play a role of virulent determinants by acting as an immunological
decoy to capture the host immune machinery and evoke varied immune responses. This aids in
evasion and subversion of host immune cellular functions during M.tb infection.

Figure 4. PE/PPE proteins augment the immune system of the host using decoy strategies. M.tb
infection is most commonly found in macrophages, where the pathogen is endocytosed and trans-
ported to the endosome compartment. M.tb secretes non-PE/PPE and PE/PPE proteins along with
other effector molecules. PE/PPE proteins are involved in the activation of immune cells. These
proteins, according to the immune system, pose the greatest hazard to the cellular system. Other
non-PE/PPE effectors, on the other hand, infiltrate the system and take control of the machinery,
inflicting severe damage and pathogenicity.
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Table 1. Comprehensive table showing role of different PE proteins in immune modulation of host.

Sr. No. PE Proteins Role in Immune Modulation Reference

1. PE17

• Through JNK signaling, it regulates the transcription of
pro/anti-inflammatory cytokines [105,106]

• Increases macrophage apoptosis via chromatin remodeling in the host

2. PE6 • TLR-4 agonist
• Pro-inflammatory cytokines are stimulated [58,105]

3. PE31
• Inhibits apoptosis
• Pro-inflammatory cytokine production is inhibited
• Anti-inflammatory cytokines are stimulated

[58,107]

4. PE13 • Increases pro-inflammatory cytokines secretion
• Promotes macrophage apoptosis [37]

5. PE27 • Increases pro-inflammatory cytokines secretion
• Contributes to Th-1-biased response [108]

6. PE11 • Induces necrotic macrophage death
• Decreased the levels of IL-6 cytokine in macrophages [109]

7. PE5 • Reduces the release of pro-inflammatory cytokines
• Increases the production of anti-inflammatory cytokines [30]

8. PE15 • Reduces the release of pro-inflammatory cytokines
• Increases the production of anti-inflammatory cytokines [30]

Table 2. Comprehensive table showing role of different PPE proteins in host immune modulation.

Sr. No. PPE Proteins Role in Immune Modulation Reference

1. PPE18 • Antigen presentation by MHC class II antigens is inhibited
• B-cell response is inhibited [110]

2. PPE65 • TLR-2 agonist
• Pro-inflammatory cytokines are stimulated [111]

3. PPE57 • TLR-2 agonist
• Contributes to Th1-biased response [112]

4. PPE26
• Increases the pro-inflammatory cytokines.
• TLR-2 agonist.
• Contributes to Th1-biased response.

[113]

5. PPE60

• Initiates macrophage pyroptosis via caspases/NLRP3/gasdermin
• Pro-inflammatory cytokines are stimulated
• TLR-2 agonist
• Activates Th-1/Th-17 responses in macrophages

[114,115]

6. PPE11 • Promotes host-cell death
• Pro-inflammatory cytokines are stimulated [116]

7. PPE27 • Promotes host-cell death
• The secretion of pro-inflammatory cytokines is manipulated [117]

8. PPE44 • Promotes host-cell death
• The secretion of pro-inflammatory cytokines is stimulated (IL-12p40 and IL-6) [118]

9. PPE38 • Pro-inflammatory cytokines are stimulated
• Modulates macrophage inflammatory responses through NF-κB signaling [63]

10. PPE10 • Macrophages apoptosis was regulated by reducing the expression of caspases
• Pro-inflammatory cytokines are stimulated [119]

11. PPE32 • Through ERK1/2 signaling, it boosts the expression of IL-12p40 and IL-32
• Promotes macrophage apoptosis [38]

12. PPE57 • Enhances the type-I Interferon signaling pathway [106]
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Table 3. Comprehensive table showing role of different PE-PGRS proteins in host immune modulation.

Sr. No. PE_PGRS Proteins Role in Immune Modulation Reference

1. PE_PGRS41 • Promotes cytotoxic host-cell death
• Pro-inflammatory cytokine production is inhibited [120]

2. PE_PGRS18 • Modulates macrophages cytokines secretion
• Inhibits macrophage apoptosis [121]

3. PE_PGRS5
• TLR-4 agonist
• ER dependent UPR activation towards stress-mediated apoptosis
• Pro-inflammatory cytokines are stimulated

[44,50]

4. PE_PGRS11
• TLR-2 agonist
• Pro-inflammatory cytokines are stimulated
• Dendritic cells are activated, which stimulate CD4+ T-cells

[49]

5. PE_PGRS17
• TLR-2 agonist
• Pro-inflammatory cytokines are stimulated
• Dendritic cells are activated, which stimulate CD4+ T-cells

[49]

6. PE_PGRS33 • TLR-2 agonist
• Induces the secretion of TNF-α from the macrophages [26]

7. PE_PGRS62 • Latent and active TB patients shows strong antibody response [69]

Table 4. Comprehensive table showing role of different PE/PPE paired proteins in host immune modulation.

Sr. No. PE/PPE Proteins Role in Immune Modulation Reference

1. PE32/PPE65
• Inhibits pro-inflammatory cytokines
• Enhances anti-inflammatory cytokine
• Dampens Th1 response

[35]

2. PE9/PE10 • TLR-4 agonist
• Promotes apoptosis in macrophages [72]

3. PE25/PPE41 • Induces necrotic macrophage death [46]

4. PE35/PPE68 • Reduces the release of pro-inflammatory cytokines
• Increases the production of anti-inflammatory cytokines [70]
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