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Abstract

We have taken the first steps towards a complete reconstruction of the Mycobacterium

tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with

system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-

aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis

pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same

factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This

network model revealed a direct interconnection between the hypoxic response, lipid catabolism,

lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to

oxygen availability we observe substantial alterations in lipid content and changes in gene

expression and metabolites in corresponding metabolic pathways. The regulatory network reveals

transcription factors underlying these changes, allows us to computationally predict expression

changes, and indicates that Rv0081 is a regulatory hub.

Mycobacterium tuberculosis (MTB) has been associated with human disease for thousands

of years and its success is due in part to the ability to survive within the host for months to
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decades in an asymptomatic state. The mechanisms underlying this persistence in the host

are poorly understood, although adaptations to hypoxia are thought to have a prominent

role1,2. Hypoxia produces widespread changes in the bacterium and induces a non-

replicating state characterized by phenotypic drug tolerance. Within the host, MTB also

shifts to lipids, including cholesterol, as a primary nutrient3–6. Lipid catabolism is, in turn,

linked to the biosynthesis of lipids that serve as energy stores, factors associated with

virulence and immunomodulation, and components of the unique and complex cell wall of

MTB7–9.

The regulatory mechanisms underlying these and other adaptations are largely unknown, as

functions for only a small fraction of the 180+ MTB transcription factors (TFs) are known,

direct DNA binding data exist for only a handful of sites, and the interactions between TFs

necessary for complex behaviour have not been studied. We also lack a comprehensive

understanding of the cellular changes underlying pathogenesis, with existing studies

typically focused on specific molecular components that can be difficult to integrate with

results from other studies. To address these challenges, we have performed a systems

analysis of the MTB regulatory and metabolic networks, with an emphasis on hypoxic

conditions thought to contribute to MTB persistence in the host.

Mapping and functional validation of TF binding sites

To systematically map TF binding sites, we performed chromatin immunoprecipitation

followed by sequencing (ChIP-Seq)10–12 using Flag-tagged transcription factors episomally

expressed under control of a mycobacterial tetracycline-inducible promoter13–15

(Supplementary Fig. 1). The inducible promoter system allows us to study all MTB TFs in a

standard and reproducible reference state without a priori knowledge of the conditions that

normally induce their expression. Using a custom pipeline (Supplementary Fig. 2 and

Supplementary Table 1) we identified binding sites in regions of enrichment with high

spatial resolution. Using this method, we mapped 50 TFs. We compared the results with

previous reports for two well-studied regulators for which strong evidence for direct binding

exists: the activator DosR (Rv3133c) and the repressor KstR (Rv3574).

Our method shows high sensitivity and reproducibility. We identified all known direct

binding regions for DosR (Supplementary Fig. 3) and KstR (Fig. 1a) and recovered the

known motifs for these factors (Supplementary Material). Coverage for enriched sites is

highly correlated between replicates (Fig. 1b and Supplementary Fig. 4). There is also high

reproducibility in binding location, with distances between replicate binding sites less than

the length of predicted binding site motifs for the vast majority of sites (Fig. 1b). Moreover,

for 11 different TFs we also see substantial concordance between binding observed in

normoxia and binding observed in hypoxia (Supplementary Fig. 5).

ChIP enrichment is a function of the number of cells in which a site is bound16 which in turn

is governed by the affinity of the site and the concentration of the factor. Thus, increasing

TF induction was predicted to increase the occupancy of strong sites up to a saturation limit

while occupying weaker affinity sites. This is confirmed by comparing ChIP-Seq
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experiments after inducing three different factors to different expression abundances (Fig.

1c, Supplementary Fig. 6 and Supplementary Fig. 7).

Consistent with this observation, at the highest levels of TF induction we identify more

binding sites than previously reported for DosR and KstR (Fig. 1a); most, but not all, of

these newly-identified sites have lower ChIP-Seq coverage than the majority of previously

identified sites. Abundant binding of transcription factors, particularly to low affinity sites,

has been reported in yeast, worm, fly and mammalian cells16–18 but, to our knowledge, these

data represent the first large-scale observation in a prokaryote. We have confirmed that

many novel sites can be bound at physiological levels of these TFs, and that sites show

sequence specificity for each TF. In addition, for DosR, nearly all novel sites are also found

when performing ChIP using anti-DosR antibodies in a wild-type background

(Supplementary Material Section 2.4).

To assess the degree to which binding is associated with transcriptional regulation, we

performed transcriptomic analysis from the same cultures in which regulators were induced

for ChIP-Seq. Using these data we developed a procedure for determining the possible

regulatory roles of identified binding sites (Supplementary Fig. 11). This method identified a

regulatory effect for 92% and 80% of previously identified DosR and KstR sites,

respectively, and associated regulation with 43% and 36% of new DosR and KstR binding

sites revealed using ChIP-Seq (false discovery rate (FDR) = 0.15). Many, but not all, newly

identified sites show weaker ChIP-Seq enrichment, indicating evidence for regulatory

effects of weak binding even for well-studied regulators19–21. This was corroborated by

knockout expression data for these TFs (Supplementary Fig. 12).

Applying our method to all peaks from all 50 TFs, we could assign a potential regulatory

role to 25% of peaks within 1,000 base pairs (bp) on either side of the site (FDR = 0.15;

18% of sites were significant with q value = 0) (Fig. 1e). Stronger binding sites are more

often associated with regulation than weaker sites, independent of window size, suggesting a

possible correlation between binding strength and regulatory impact (Supplementary Fig.

13). Such a correlation could explain why the stronger sites have been reported, as they

would be more easily detected. The use of a 1-kilobase (kb) window ensures that predictions

are not a priori biased to proximal promoter regions. However, even with 4-kb windows, the

distance between binding sites and associated target genes is consistent with expectation:

binding sites are typically located within 500 bp of the start codon of the predicted regulated

gene (Fig. 1f), with 24% located in the upstream intergenic region. By contrast, 76% of sites

fall into annotated coding regions and a significant proportion are associated with regulation.

Extensive genic binding has been reported17,18 and there remains no consensus on its

functional significance. Prokaryotic binding sites have been largely mapped with lower

resolution ChIP-Chip that frequently show broad binding overlapping both genic and

intergenic regions22. Our method detects binding at high spatial resolution and indicates that

some genic binding may reflect the extension of promoter regions into upstream genes,

alternative promoter regions within genes, or errors in the current annotation of genic

regions. As with previous reports17, we cannot assign regulatory roles to all detected binding

sites (Supplementary Fig. 13). We discuss potential issues with false positives and negatives

in Supplementary Material.
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We also tested the degree to which observed binding could be used to develop models

predictive of gene expression. We developed computational models relating the expression

of target genes to the expression of TFs predicted to bind the target (Supplementary Fig. 14).

The relationship between TFs and target genes was parameterized based on subsets of the

overexpression data and tested on the remaining using cross-validation. We could generate

models that predict more accurately than random TF assignments for 28% of genes with

binding (positive false discovery rate (pFDR) < 0.15; Supplementary Table 4). More

importantly, as described below, we confirmed the ability of these models to predict

expression for genes in an independent data set.

An MTB regulatory network model

Using the combination of binding site mapping and functional validation via expression

profiling, we analysed the regulatory interactions of 50 TFs (26% of predicted MTB TFs).

Our TF selection was weighted towards those that respond to hypoxia or are associated with

lipid metabolism. By linking TFs with genes based on binding proximity (Supplementary

Text) and potential regulation, we constructed the regulatory network model shown in

Supplementary Fig. 15 (also Supplementary Fig. 16). The TB regulatory network model has

topological features seen for other organisms (Supplementary Text), including the presence

of ‘hubs’ or TFs that interact with many genes. Surprisingly, Rv0081 forms the largest hub

identified among the TFs reported, and interacts with another hub, Lsr2, an MTB analogue

of the H-NS nucleoid binding protein23,24 (Supplementary Text).

The network also begins to reveal interactions between transcription factors mediating

responses of MTB to its environment (Supplementary Material). Of particular interest is a

subnet work involving responses to altered oxygen status and lipid availability (Fig. 2).

These responses, among the most extensively studied in MTB, have been viewed largely as

separate phenomena. DosR and Rv0081 mediate the initial response to hypoxia, whereas a

larger stimulon termed the enduring hypoxic response (EHR) is induced later in hypoxia25.

KstR controls a large regulon mediating cholesterol degradation and lipid and energy

metabolism26,27. KstR was identified as part of the EHR, but the biology linking these

responses was unclear.

We identified two potential regulators for KstR. Rv0081 is predicted to repress both Rv0324

and KstR, whereas Rv0324 is predicted to activate KstR. Rv0081 is the only regulator in the

initial hypoxic response apart from DosR, and our network identifies an interaction

underlying the known induction of Rv0081 by DosR. Rv0324 is a regulator associated with

the EHR25.

We also identify several potential regulators of DosR: Rv2034, Rv0767c and PhoP

(Rv0757). Rv2034 is an EHR regulator predicted to activate DosR, thus providing possible

positive feedback from the enduring to the initial hypoxic response (during revision, this

link between Rv2034 and DosR was confirmed28). PhoP mediates a range of responses,

including upregulating DosR29–31, although direct regulation of DosR by PhoP had not been

previously demonstrated. PhoP binding to DosR is the strongest among 50 TFs, providing a

mechanism for this regulatory link and supporting the conclusion that regulation of hypoxia
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a daptation by PhoP is indirect through this connection with DosR29. PhoP also mediates pH

adaptation and our data confirm direct binding between PhoP and the aprABC locus required

for this32. PhoP is known to modulate the production of virulence lipids and we predict

PhoP to bind upstream of and directly regulate WhiB3 (Rv3416), which codes for a redox-

sensitive protein that directly regulates the production of these lipids33. In addition to PhoP,

both Rv0081 and Lsr2 also display binding to whiB3, with activation predicted by Rv0081.

Taken together, the data reveal an interconnected subnet work linking hypoxic adaptation,

lipid and cholesterol degradation, and lipid biosynthesis (Supplementary Text).

Profiling and prediction during hypoxia and re-aeration

To broadly assess the changes associated with altered O2 availability, and assess the

explanatory power of the regulatory network in these responses, we performed systems level

lipidomic, proteomic, meta-bolomic and transcriptomics profiling of MTB during a time

course of hypoxia and subsequent re-aeration (Supplementary Fig. 17 and Methods). We

cultured MTB in a medium without detergent or exogenous lipids. All measurements were

normalized to baseline levels before hypoxia, and integrated with a manually curated model

of MTB metabolism (Supplementary Fig. 18). We summarize key results here and provide

additional details and results in Supplementary Text.

Changes in oxygen availability result in expression changes to nearly one-third of all MTB

genes (Supplementary Fig. 19A). To identify temporal trends and associate them with

possible regulators, we clustered expression data into paths using DREM34 (Supplementary

Text). We identified Rv0081 as a candidate high-level regulator broadly predictive of the

overall expression of sets of genes during hypoxia and re-aeration (Supplementary Fig.

19b).Abroad regulatory role for Rv0081 is thus supported by three independent sources of

evidence: Rv0081 overexpression in normoxia alters the expression of numerous genes,

Rv0081 ChIP-Seq reveals a large number of binding sites which are also detected during

hypoxia (Supplementary Fig. 20), and the expression and predicted regulatory role of

Rv0081 correlates with the expression of the genes it binds during hypoxia.

We next sought to assess the degree to which the regulatory network could be used to

predict changes in the expression of individual genes during hypoxia and re-aeration. We

used the regression models described above—parameterized by independent ChIP-Seq and

TF overexpression transcriptomics data (Supplementary Material)—and generated

predictions that are significantly better than random for 66% of genes with significant

changes. Examples are shown in Fig. 3 and Supplementary Fig. 21. In particular, we

correctly predict the pattern of expression of KstR, confirming an implication of the network

topology. Importantly, these data also indicate that the regulatory network, built from a

normoxic baseline, can generalize to hypoxia.

Alterations in lipid metabolism

Consistent with predictions of the regulatory network during hypoxia, we found strong

induction of genes associated with lipid catabolism and cholesterol degradation, including

the regulator kstR (Fig. 3, Supplementary Fig. 18 and Supplementary Fig. 22). KstR

induction by hypoxia is predicted by the core regulatory network. However, kstR is a
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repressor26 and kstR-repressed cholesterol degradation genes are among those induced.

KstR de-repression occurs during growth on cholesterol27.However, no cholesterol or other

exogenous lipids are present in our medium. Follow-up studies suggest that de-repression of

kstR may be due to fatty acids endogenous to MTB or their metabolites (Supplementary

Text).

The accumulation of triacylglycerides (TAGs) during hypoxia and in TB patient sputum

samples, and their utilization upon re-aeration, has been reported7,8,35. We also observe

TAG accumulation during hypoxia and rapid depletion during re-aeration (Fig. 4).A detailed

systems view associated with these changes (Supplementary Text) suggests a scenario in

which metabolites upstream of DAG decrease in production, and TAG accumulation results

from conversion of existing DAGs to TAGs via triacylglyceride synthase. We also observe

changes potentially related to TAG utilization. The regulatory network identifies several

regulatory links potentially relevant to these changes (Supplementary Fig. 18). Induction of

tgs1 by DosR is well established7,36,37, and we identify this link. The network also identifies

oxygen-responsive regulators of tgs2 (Rv0081, Rv0324) and tgs4 (DosR, Rv0324) and our

models predict positive regulation of these genes in hypoxia by these TFs (Fig. 3). Further,

three of four lipase genes (Rv3176, Rv1169c and Rv3097c) induced during hypoxia are

influenced by regulators in the core network, and in these three cases we are able to predict

their expression profiles using our gene expression models (Fig. 3).

MTB uses methylmalonyl-CoA as a precursor to synthesize a complex set of surface-

exposed methyl-branched lipids including acylated trehaloses (PAT/DAT),

sulphoglycolipids (SGL) and phthiocerol dimycocerosates (PDIM), the latter two associated

with virulence in murine models38–42. During hypoxia, the expression of biosynthetic genes

for SGL, PAT/DAT, PDIMs and methylmalonyl are generally downregulated

(Supplementary Fig. 18). Correspondingly, during hypoxia mass spectral signals

corresponding to diacylated sulphoglycolipid (AC2SGL) (a precursor to SL-1, the major

SGL in MTB) and DATs seemed unaltered, whereas ions corresponding to PDIMs showed a

modest decline (Fig. 4, DATs not shown). Conversely, during re-aeration, we observed

induction of genes encoding enzymes in the methylmalonyl pathway. The activation of the

methylcitrate cycle and accumulation of methylcitrate suggests the availability of precursors

for methylmalonate. Consistent with this hypothesis, we see statistically significant

increases in AC2SGL (Fig. 4).

The regulation of the methylmalonyl pathway is partially explained by the regulatory

network. All three subunits of the propionyl-CoA carboxylase (PCC) complex (AccA3,

AccD5 and AccE5) are regulated by hypoxia regulators (Fig. 3). Both MutA and MutB also

display regulation by KstR and Lsr2. Regulation associated with methyl-branched lipid

biosynthesis, in contrast, is complex. Whib3 is regulated by PhoP in the model, and both are

known to modulate the production of PAT/DAT (via pks3) and SL (via pks2)29,33. Our

network predicts a PhoP/WhiB3 FFL underlying this phenomenon, with PhoP regulating

whiB3 and both regulating pks2/pks3 (Supplementary Fig. 25). Similar regulatory

complexity is seen for DIM, although regulation of key steps in DIM synthesis by Rv0081,

PhoP, DosR and KstR is predicted.
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Mycolyl glycolipids are important immunomodulatory components of the mycobacterial cell

wall. As seen in other systems43–45, we observe increases in free mycolic acids during

hypoxia that are reversed during re-aeration (Fig. 4). Conversely, we observe the opposite

effects on trehalose monomycolates (TMMs) (Fig. 4) and trehalose dimycolates (TDMs)

(not shown). Similar effects have recently been reported for TDMs in Mycobacterium

smegmatis during biofilm formation45 and TMMs in MTB during the transition into a

dormant “non-culturable” state induced by a potassium-free medium43.The rapid, reversible

and nearly complete mobilization of glycosylated to free mycolates during hypoxic

dormancy is also compatible with decreased need to deliver mycolic acids to non-dividing

cells.

Concluding remarks

This report presents an initial step in the reconstruction of the MTB regulatory network,

based on 50 TFs, and its integration with system-wide profiling of MTB during a time-

course of hypoxia and re-aeration. Although necessarily incomplete, the regulatory network

confirms previously known physical interactions, provides possible mechanisms for known

regulatory interactions, provides a framework for reinterpreting existing data, and identifies

network motifs thought to underlie dynamic behaviour. The predictive models take a first

step towards systems modelling, and integration of the network model with profiling data

provides new insight about the physiological consequences of regulatory programs induced

by changes in oxygen availability—a perturbation relevant to host adaptation. The results

provide a foundation for ongoing efforts to map the complete transcriptional regulatory

network, and to extend it to include signalling and non-coding RNAs46. The results

presented here identify compelling questions for further investigation (Supplementary Text).

Studies now focus on determining how the in vitro network connections and physiological

changes identified here relate to adaptations of the microbe in the intracellular environment

of the macrophage.

METHODS SUMMARY

MTB H37Rv was used for all experiments with the single exception of one experiment

performed in M. smegmatis (Supplementary Fig. 21). This MTB strain was fully sequenced

by the Broad Institute (GI:397671778). For Chip-Seq, cells were cultured in Middle brook

7H9 with ADC (Difco), 0.05% Tween 80, and 50 µg ml−1 hygromycin B at 37 °C with

constant agitation and induced with 100 ng ml−1 anhydrotetracycline (ATc) during mid-log-

phase growth, and ChIP was performed using a protocol optimized for mycobacteria and

related Actinomycetes. For the hypoxia and re-aeration time-course, bacilli were cultured in

bacteriostatic oxygen-limited conditions (1% aerobic O2 tension) for seven days, followed

by re-aeration. Bacteria were cultured in Sauton’s medium without detergent or exogenous

lipid source. Profiling samples were collected as described in the Supplementary Text. All

data available at http://TBDB.org. Expression data also available at GEO (accession number

GSE43466).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ChIP-Seq binding shows high sensitivity, reproducibility and sequence specificity
a, We identify all known binding sites (red bars) for KstR and DosR (Supplementary Fig. 3).

Binding site heights plotted as bars and ordered by peak height. b, Binding site identification

is highly reproducible. Bar plot shows the distance between corresponding sites in two KstR

replicates. The majority of replicates fall within the motif (cyan line). Inset shows

correlation of heights of corresponding peaks in two replicates (R2 > 0.83 for all TFs). c,

Increasing TF expression increases peak height. Shown are plots of peaks identified at

different levels of KstR induction. Corresponding peaks are plotted at the same position on

the horizontal axis. d, KstR binding peak height correlated with motif structure. The

canonical palindromic motif is identified in all strong binding sites. At weaker sites,

however, we detect degraded motifs. e, Fraction of peaks assigned regulation as a function

of relative peak height. f, Stacked histogram of the number of peaks assigned regulation as a

function of the distance to the start codon of the predicted target gene and coloured by

genomic location relative to the target gene and genic or intergenic context.
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Figure 2. TF regulatory interaction subnet work linking hypoxia, lipid metabolism and protein
degradation
The figure shows a subset of the regulatory network model for selected transcription factors.

Edges are coloured by z-score (see text) with red edges indicating positive z-scores and

activation, and blue indicating negative z-scores and repression. Grey edges indicate links

without significant z-scores, TFs without induction expression data, or autobinding. The

width of edges indicates the height of the corresponding binding site relative to the

maximum binding site for the corresponding TF. Selected TFs are colour-coded by
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functional association and heat maps show expression data during hypoxia and re-aeration

as shown in legend.
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Figure 3. Predicting gene expression during hypoxia and re-aeration
Using the models described in text, we predict the expression pattern of 66% of genes (533)

whose expression changes during hypoxia and re-aeration. Selected examples shown. Green

lines, actual scaled expression with error bars from replicates; dashed black lines, model-

predicted expression.
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Figure 4. Lipid changes during hypoxia and re-aeration
HPLC-MS of total lipids from M. tuberculosis analysed in the positive-ion mode as

ammoniated adducts unless otherwise indicated. Among more than 5,000 ions detected at

each time point, m/z values for unnamed lipids were converted to named lipids when they

matched the masses (< 10 p.p.m.) retention time (< 1 min) and collisional mass spectrometry

patterns in MycoMass and MycoMap databases. Within each lipid class individual

molecular species are reported by intensity and tracked by mass, converted to deduced

empiric formulas and reported separately corresponding to the R group variants of mycolic

acids (alpha, keto, methoxy) and as CX:Y, where X is the alkane chain length and Y is the
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unsaturation in the combined fatty acyl, mycolyl, phthioceranyl, pthiocerol, mycocerosyl

units of one molecule. Error bars are standard deviations from four replicates.
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