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The membrane-anchored myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was 

discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and 

high expression levels in the central nervous system. Despite decades of research, the actual physiological 

relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is 

also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in 

mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase 

activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. 

This review is focused on past research on CNPase, especially in the fields of structural biology and 

enzymology, and outlines the current understanding regarding the biochemical and physiological signifi cance 

of CNPase, providing ideas and directions for future research.

Keywords: 2′,3′-cyclic nucleotide 3′-phosphodiesterase; calmodulin; central nervous system; cytoskeleton; 
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·Review·

Introduction

Myelin is a specialized multilamellar structure, which is 

wrapped around neuronal axons by oligodendrocytes in the 

central nervous system (CNS) and by Schwann cells in the 

peripheral nervous system (PNS). The membrane sheets 

of myelin are densely packed, resulting in the extrusion 

of cytosolic elements and in the formation of a lipid-rich, 

insulating sheath that enables the acceleration of nerve 

impulses. A mature myelin sheath can be morphologically 

divided into compact and non-compact myelin, of which the 

latter has a higher cytosolic content and further contains 

several subcompartments, such as the abaxonal and 

adaxonal layers, as well as the paranodal loops
[1,2]

.

Myelin contains a set of unique proteins that generally 

display strict localization to either compact or non-compact 

myelin, which is thought to be at least partially driven by 

size exclusion
[3,4]

. The myelin environment being low in 

aqueous content and harboring negatively charged, tightly 

packed membrane interfaces, myelin proteins typically 

exhibit attributes such as strong hydrophobicity, peripheral 

membrane association, transmembrane domains, and a 

high positive net charge, as well as intrinsic disorder
[5]

.

Several myelin proteins have delicately regulated 

expression levels and functions. Past research using cell 

culture and animal models have outlined the importance 

of various proteins in demyelination – a situation where 

myelin undergoes morphological changes and loss
[6]

. 

Demyelination causes neurological disorders, including 

multiple sclerosis (MS), Charcot-Marie-Tooth disease, 

and leukodystrophies, such as Pelizaeus-Merzbacher 

disease
[7-10]

.

2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) 

is one of the most abundant proteins in CNS myelin and a 

possible auto-antigen in MS
[4,11]

. The high expression levels 

of CNPase, together with its rather unusual enzymatic 
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activity, have troubled scientists for years. Still, decades 

after the initial discovery of CNPase
[12]

, its physiological role 

remains unclear. This review attempts to outline the current 

knowledge regarding the structure and activity of CNPase, 

as well as its putative functions and signifi cance.

The Discovery and Signifi cance of CNPase

Half a Century of Research Defi nes an Enzyme

In the early 1960s, the observation of nucleoside 2′,3′-cyclic 

monophosphate (2′,3′-cNMP) hydrolysis to nucleoside 

2′-monophosphate (2′-NMP, Fig. 1) in rabbit brain extracts 

led to the discovery and initial characterization of CNPase, 

a membrane-anchored enzyme present on the cytosolic 

side of non-compact myelin
[12-14]

. In humans, CNPase 

accounts for 4% of total CNS myelin protein, making it the 

most abundant protein in non-compact myelin and ranking 

it as the third-most abundant protein overall in CNS myelin. 

CNPase is also expressed in the PNS in Schwann cells 

and olfactory ensheathing cells, although the amount is 

much less – merely 0.5% of total PNS myelin protein
[4,14,15]

. 

Two isoforms of CNPase have been identified, which 

originate from two alternative promoters and 3′,5′-cAMP-

regulated splicing of one of the mRNA variants produced 

from the CNP1 gene, in humans encoded in chromosome 

17
[16-21]

. The difference between the variants is the presence 

of a 20-amino-acid N-terminal mitochondrial targeting 

sequence (MTS) in the 48-kDa isoform II, which is removed 

after mitochondrial import to produce a truncated 46-kDa 

variant that corresponds to the cytosolic isoform I of 400 

amino-acids
[20,22,23]

. In addition to its high expression levels, 

CNPase has been characterized as a protein of extreme 

longevity, along with several other myelin proteins
[24]

.

CNPase is composed of two folded domains and a 

C-terminal extension, which has been characterized to 

be disordered in solution as a peptide (Fig. 2)
[25-28]

. The 

C-terminal domain harbors the catalytic phosphodiesterase 

activity and is, both reaction- and structure-wise, a member 

of the 2H phosphoesterase superfamily, harboring a double 

His-X-Thr-X (X denotes a hydrophobic residue) motif 

typical for the family
[28,29]

. With the exception of platypus, 

CNPase is ubiquitously expressed in vertebrates, as well 

as in some invertebrates. However, there is some domain 

variation between species; the conservation of CNPase 

has recently been outlined via bioinformatics
[30]

. Compared 

to the catalytic phosphodiesterase domain, the N-terminal 

domain remains poorly characterized to date. Although its 

in vivo function remains to be determined, it shares some 

homology with T4 bacteriophage polynucleotide kinase 

(PNK). This PNK-like domain contains a conserved P-loop 

structure, which suggests ATP/GTP binding 
[25]

.

Fig. 1. Hydrolysis of 2′,3′-cNMPs to 2′-NMPs. The hydrolytic 

cleavage of the 3′-phosphodiester bond of 2′,3′-cNMP is 

catalyzed by CNPase, as well as by some other cyclic 

nucleotide phosphodiesterases.

Fig. 2. Domain structure of CNPase. CNPase consists of two folded domains and a C-terminal extension. In addition, isoform II contains 

an N-terminal mitochondrial targeting sequence (MTS), which is removed after mitochondrial import. The locations of the P-loop 

and His-X-Thr-X (HxTx) motifs are shown. Known or predicted functions of each domain are also indicated. PNK, polynucleotide 

kinase.
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The function of CNPase has been a mystery ever 

since its discovery. After decades of research, its putative 

functions at the molecular level have only recently begun 

to be unveiled. Advances in structural biology, as well as 

the discovery of endogenous 2′,3′-cNMPs, have shed some 

light on its possible functions
[31,32]

. These matters, as well 

as the signifi cance of the molecular motifs in CNPase, are 

addressed in more detail below.

CNPase in Health & Disease

The importance of CNPase at the translational level has 

been investigated through knockout studies in mice. The 

absence of CNPase causes premature death through 

axonal swelling, while maintaining a myelin morphology 

very similar to wild-type animals. The behavioral phenotype 

manifests as a loss of motor abilities through muscle 

weakness and finally death, typically at the age of 6 to 

12 months
[33]

. The overexpression of CNPase results 

in an altered oligodendrocyte process morphology and 

diminished myelin compaction at the early stages of 

myelination, while CNPase is localized throughout myelin, 

including the compact regions. Despite the cellular 

phenotype, interestingly, a clear behavioral phenotype is 

absent
[34,35]

. An interesting trait is also the accumulation 

of (poly)ubiquitinated and partially degraded CNPase in 

myelin lipid rafts, which might contribute to the changes in 

axonal and myelin morphology upon aging
[36]

.

Cell culture studies have demonstrated the importance 

of CNPase at the early stages of myelination. CNPase is 

essential for oligodendrocyte process outgrowth via its 

membrane association, as well as its ability to interact 

with the cytoskeleton (see below). CNPase is essential 

in oligodendrocyte process formation and branching, and 

a C-terminally truncated variant of CNPase, as well as 

a mutant unable to membrane-associate, affects these 

processes
[37]

. The true physiological relevance of this, 

however, is unclear, since myelination in CNPase-defi cient 

mice seems to proceed normally, and the neuronal 

aberrations appear months later along with the behavioral 

phenotype
[33]

. This suggests that in the absence of CNPase, 

its possible physiological function in process outgrowth 

may be complemented by currently unknown factors, and 

the role of CNPase after active myelination could be related 

to axonal maintenance
[33]

.

In MS, demyelination occurs in the brain and spinal 

cord, resulting in a wide array of neurological symptoms. 

Together with several other CNS myelin proteins, CNPase 

is an auto-antigen in MS – a chronic autoimmune 

disease
[11,38-40]

. Changes in the expression levels of 

CNPase have been linked to Alzheimer’s disease, Down’s 

syndrome, and catatonia-depression syndrome
[41,42]

. 

CNP1 has also been identifi ed as a susceptibility gene in 

schizophrenia, although the described findings appear to 

have a somewhat specific geographical localization and 

have been challenged by other studies. A single-nucleotide 

polymorphism that does not alter the amino-acid sequence 

of CNPase, but rather decreases its expression levels, has 

been suggested to play a role in schizophrenia
[43-54]

.

Structure and Function of CNPase

The Phosphodiesterase Domain Harbors Catalytic 

Activity

The catalytic phosphodiesterase domain makes up the 

C-terminal half of the CNPase polypeptide. Truncation 

experiments demonstrated that truncations after amino 

acid 164 in recombinant rat CNPase result in a loss of 

phosphodiesterase activity
[28]

. The catalytic domain is 

composed of ~240 amino acids, is highly conserved 

in mammals, and is present in all identified CNPases 

throughout different organisms
[30]

.

The catalytic domain of CNPase catalyzes the 

hydrolysis of 2′,3′-cNMPs to 2′-NMPs – an activity that 

was for long considered to be peculiar. Apart from some 

intermediate states formed in tRNA splicing, endogenous 

2′,3′-cNMPs were not observed until recently. Verrier et 

al. discovered a metabolic pathway present in astrocytes, 

microglia, and most notably, in oligodendrocytes
[31,32,55]

. 

The discovery of this pathway linked CNPase to the 

local production of the neuroprotectant adenosine, 

where CNPase rapidly depletes adenosine 2′,3′-cyclic 

monophosphate (2′,3′-cAMP), a compound indentifi ed as a 

mitochondrial toxin that presumably forms as a by-product 

of mRNA transphosphorylation
[56-59]

. The accumulation of 

2′,3′-cAMP was found in very young CNPase-deficient 

mice used to study traumatic brain injury, which developed 

post-traumatic axonal degeneration similar to that of older 

CNPase-deficient mice that did not experience brain 

trauma
[31-33]

. This further supports the hypothesis of CNPase 
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playing a role in axonal maintenance after myelination, 

possibly through neuroprotection arising from a major 

contribution to the hydrolysis of 2′,3′-cAMP produced within 

myelinated axons
[32,33,56]

.

In addition, CNPase was earlier thought to be involved 

in RNA metabolism in a manner similar to several other 2H 

phosphoesterases
[60]

. This was supported by CNPase being 

able to bind RNA molecules and having phosphodiesterase 

activity towards oligonucleotides with terminal 2′,3′-cyclic 

monophosphates, which, prior to the discovery of the 

2′,3′-cAMP pathway, were the only known endogenous 

molecules containing such a cyclic phosphodiester 

linkage
[61-63]

. Indicating enzymatic functionality in vivo, 

CNPase is capable of rescuing yeast with the cyclic 

phosphodiesterase (CPDase) domain inactivated from the 

multifunctional tRNA ligase Trl1p, an essential protein for 

tRNA maturation
[64]

.

The enzymatic phosphodiesterase activity of CNPase 

is one of the best characterized features of the protein. The 

reaction itself was discovered together with the enzyme 

in the early 1960s, but the catalytically essential residues 

were identified 40 years later via mutagenesis
[12,28]

. 

Prior to that, CNPase had already been shown to have 

substrate stereoselectivity, using nucleoside 2′,3′-cyclic 

monophosphorothioate analogs
[65]

.

Although the domain structure of CNPase had already 

been known for some time, the C-terminal catalytic 

domain could be described as a member of the 2H 

phosphoesterase superfamily only after its initial structure 

determination in 2003 by NMR spectroscopy
[29]

. Sakamoto 

et al. postulated a putative binding mode and active site 

for the enzyme, when they solved the fi rst CNPase crystal 

structure
[66]

. A simple mechanistic reaction scheme for 

CNPase could be then described. Both the NMR and the 

crystal structure showed the catalytic domain to share high 

structural homology with 2H phosphoesterases, with a 

pseudo 2-fold symmetric double His-X-Thr-X motif in the 

active site (Fig. 3A, B)
[28,29,66]

.

Since its initial structural characterization, CNPase 

has been extensively studied, and a detailed mechanistic 

reaction scheme has recently been described, based on 

protein-ligand complex structures (Fig. 3C, D)
[30,67]

. In brief, 

the reaction in mouse CNPase begins with a His309-

mediated activation of an adjacent water molecule, which 

performs a nucleophilic attack on the cyclic phosphate 

group. A pentavalent phosphane intermediate is formed, 

which is stabilized by the active-site His and Thr residues, 

the carbonyl group of the Pro320-Val321 peptide bond in a 

mobile loop, as well as a panel of ordered water molecules 

located underneath the phosphate. Then, His230 donates 

a proton to the leaving group, the 3′-hydroxyl group of 

the ribose moiety, and the free 2′-phosphate flips under 

the mobile loop, where the carbonyl group involved in the 

intermediate state stabilization turns away and the Val321 

amide and the N terminus of helix α7 hydrogen bond to the 

2′-phosphate
[30]

.

The 2H phosphoesterases form a family of highly 

sequence-divergent,  yet structural ly homologous 

proteins that often function as enzymes. The variety 

and classification of 2H phosphoesterases have been 

reviewed
[68]

. CNPase and its closest homologs, including 

goldfish RICH and plant CPDases, do not belong to 

any particular clade of 2H phosphoesterases, although 

they are related to the YjcG-like group, named after the 

putative 2′,5′-ligase from Bacillus subtilis. Indeed, many 

2H phosphoesterases are involved in RNA metabolism as 

either CPDases or ligases
[68]

. The active CPDases often 

target the 2′,3′-cyclic phosphate termini of intermediate 

oligonucleotides formed during tRNA maturation or ADP-

ribose 1″,2″-cyclic phosphate, a by-product formed from 

oxidized nicotinamide adenine dinucleotide (NAD
+
) during 

the last steps of tRNA maturation
[69-71]

.

One of the most notable differences between CNPase 

and other 2H phosphoesterases is the presence of an 

additional α-helix in the proximity of the active site cleft (helix 

α7, Fig. 3), which apparently is a key factor in determining 

the substrate stereoselectivity of CNPase. The loop 

structure before helix α7 is dynamic, and its conformation 

is linked to the catalytic cycle of the enzyme
[30,67]

. The 

only known protein to share this helix with CNPase is 

the regeneration-induced CNPase homolog, RICH. Both 

sequence- and structure-wise, the C-terminal domain of 

RICH is the closest homolog to the catalytic domain of 

CNPase, and it might also harbor functional similarity, as 

it has been shown in NMR titration experiments to bind 3′-
AMP, an inhibitor of CNPase

[72]
.

The PNK-like Domain May Have Several Functions

Our recent bioinformatics study
[30] 

demonstrated that the 
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PNK-like domain is present in all CNPases throughout 

vertebrates, except goldfi sh, zebrafi sh, and Japanese rice 

fi sh. In these three species, the domain has been replaced 

by a glutamate-rich N-terminal acidic domain. In addition 

to the PNK-like domain, the acidic domain is also present 

in salmon and Nile tilapia. On the other hand, the PNK-like 

domain is present in the six so-far discovered invertebrate 

CNPase homologs
[30]

.

Compared to the phosphodiesterase domain, the 

PNK-like domain remains structurally poorly characterized, 

although models using solution small-angle X-ray scattering 

and homology modeling based on T4 PNK have been 

recently described
[30,62]

. Despite the low overall sequence 

homology to T4 PNK, a highly conserved P-loop structure, 

which is usually found in PNKs, is also present in the 

CNPase PNK-like domain
[25,73]

. P-loops (phosphate binding 

loops), or Walker A motifs, are usually ATP-binding sites 

present in many nucleotide-binding proteins
[74,75]

. CNPase 

has been found to bind ATP and GTP as well as to have 

hydrolytic activity towards them, suggesting putative PNK 

Fig. 3. Structure of the CNPase phosphodiesterase domain and its catalytic mechanism. A: The solution NMR structure of the CNPase 

phosphodiesterase domain (PDB ID: 2ILX, an ensemble of nine lowest-energy structures are shown in thin bonds and one 

as ribbons)
[29]

. B: The first CNPase crystal structure (PDB ID: 1WOJ)
[66]

. The structure is slightly more compact than the NMR 

structure, with helix α7 (red arrow) at a more tilted angle towards the active site. Of all 2H phosphoesterases, this helix is only 

present in CNPase and its nearest homolog, RICH. The catalytic His-X-Thr-X motifs and the bound phosphate ion in the active 

site are shown as sticks. C: The CNPase active site with bound 2′-AMP (PDB ID: 2YDD)
[67]

. The catalytic His-X-Thr-X motifs and 

the conserved active-site water molecules are shown. D: The detailed mechanism of the reaction catalyzed by the CNPase 

phosphodiesterase domain. The peptide bond between Pro320 and Val321 is part of a mobile loop, which resides at the N terminus 

of helix α7. The atoms of the catalytic water molecule are in magenta. 
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activity in vivo and a further role in nucleic acid metabolism. 

CNPase prefers GTP hydrolysis over ATP, and performs 

faster in the presence of Ca
2+

 than Mg
2+ [25]

.

The PNK-like domain interacts with RNA, calmodulin 

(CaM), and cytoskeletal elements
[37,61,62,67,76-78]

. Interaction 

with RNA is a property of many 2H phosphoesterases, 

and CNPase, indeed, binds RNA and also appears to 

have some selectivity towards certain RNA sequences
[61]

. 

The presence of the catalytic domain alone is enough to 

mediate RNA binding, but the PNK-like domain was later 

shown to enhance the interaction
[61,67]

. Independently 

of the phosphodiesterase activity, CNPase also inhibits 

translation in vitro as a full-length protein. This was 

elegantly demonstrated in recent studies, in which CNPase 

was found to inhibit the replication of hepatitis B virus 

and HIV-1
[61,79,80]

. The interaction with RNA also provides 

a tempting idea to link CNPase to RNA metabolism. 

RNA processing is a rather typical role amongst other 

2H phosphoesterases and, combined with the possible 

PNK and phosphodiesterase activities outlined above, 

it has been discussed for years whether CNPase might 

play a role in RNA metabolism
[60]

. In addition, the fi ndings 

that CNPase also interacts with filamentous actin and 

tubulin, as well as its ability to promote microtubule 

formation, make CNPase a possible candidate in RNA 

trafficking
[37,61,62,78,81]

. In oligodendrocytes, it is known that 

the mRNAs of several proteins are translocated to various 

subcellular compartments prior to translation, and CNPase 

might function in this context
[61,82]

. It can be speculated that 

the translocation of compact myelin protein mRNAs for 

localized translation could be one of the driving forces that 

result in oligodendrocytic process formation during early 

myelination. The fact that CNPase binds to microtubules, 

however, also gives it a possible structural role, taking 

into account its membrane association. It also prefers to 

bind heterodimers of α- and β-tubulin and, thus, induces 

microtubule formation
[37,77,78]

.

CaM has recently been shown to bind directly to the 

PNK-like domain with a dissociation constant of 100 

nmol/L
[62,76,83]

. The interaction is dependent on Ca
2+

, and 

the proposed interaction site is located in the vicinity of the 

P-loop
[62]

. While the phosphodiesterase domain does not 

bind CaM, and its activity is unaffected by the presence of 

CaM, it remains to be determined whether the binding of 

CaM has an impact on ATP/GTP binding and/or possible 

PNK activity. Interestingly, recombinant full-length CNPase 

only binds CaM in vitro, if the very C-terminal extension (the 

membrane anchor) has been deleted
[62]

.

The C-terminal Extension Mediates Peripheral 

Membrane Association

The C-terminal tail extension of 13 residues has been 

characterized via circular dichroism spectroscopy to be 

unfolded as a peptide in membrane-mimicking conditions, 

although a challenging report was published earlier, and 

post-translational modifications might contribute to its 

conformation in the context of the full-length protein
[27,84]

. 

While the tail has been shown to be required for tubulin 

interactions and polymerization, as well as to abolish 

the binding of CaM to the PNK-like domain in vitro, the 

tail harbors a reactive Cys residue that undergoes fatty 

acylation in vivo
[37,62,85,86]

. This modification anchors 

CNPase to the membrane of non-compact myelin and, 

hence, makes CNPase a peripheral membrane protein. 

As mentioned above, removal of the tail alters the process 

formation of cultured oligodendrocytes. Furthermore, 

mutating the modified Cys residue to Ala produces 

the same result, indicating the importance of CNPase 

membrane association in process formation
[37,81,87,88]

.

The C-terminal tail itself is likely to extend from 

between the two folded domains, and it resides close 

to the phosphodiesterase domain active site
[67]

. Hence, 

when CNPase is membrane-anchored, the active site 

of the phosphodiesterase domain lies close to the 

membrane surface and possibly faces the membrane. 

The tail itself does not influence the catalytic activity 

of the phosphodiesterase domain, as activity assays 

have demonstrated that the presence or absence of the 

C-terminal extension does not signifi cantly affect the kinetic 

constants
[89]

. However, especially for possible bulkier 

substrates, such as RNA, the effect of the tail and the 

proximity of the membrane remains to be determined.

Isoform II Is the Mitochondrial Variant of CNPase 

in Non-myelinating Glia

Only a few studies have been published on CNPase 

isoform II, which, as opposed to isoform I, is expressed 

only in minor amounts in myelinating glia. The abundance 

of isoform II is higher in the adult liver and embryonic 

brain, where isoform I is practically absent. The MTS in 
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CNPase isoform II is responsible for mitochondrial import, 

which is regulated via phosphorylation by protein kinase 

C
[22]

. The mitochondrial, fully-processed isoform II does 

not drive morphological differentiation in cell cultures 

as isoform I does in oligodendrocytes
[22,37]

. Instead, 

CNPase is localized to the intermembrane space, where 

it resides as a peripheral membrane protein at the inner 

mitochondrial membrane
[22]

. The function of CNPase in 

mitochondria is not thoroughly understood, but CNPase, 

together with 2′,3′-cAMP, has been suggested to modulate 

the mitochondrial permeability transition, a proapoptotic 

event, in which Ca
2+

 is released from the mitochondrial 

matrix to the intermembrane space and cytoplasm
[59]

. 

This again raises questions regarding the significance of 

the CNPase-CaM interaction, as it is rather enticing to 

speculate an interconnection between membrane-bound 

CNPase, free 2′,3′-cAMP, and Ca
2+

, as well as the Ca
2+

-

sensor CaM and mitochondrial membrane permeability. 

Perhaps mitochondrial CNPase functions as a protective 

enzyme that is involved in toxic 2′,3′-cAMP hydrolysis in a 

CaM-regulated manner, which then impacts pro-apoptotic 

membrane permeability.

Summary and Open Questions

The myelin enzyme CNPase was discovered over 50 

years ago, and its strong expression profile and peculiar 

catalytic activity have been known for decades. However, 

its importance in vivo has only recently begun to be 

unveiled. Its membrane and cytoskeletal association have 

been shown to be crucial to ensure correct myelination, 

suggesting a structural role, and the discovery of a 2′,3′-
cAMP pathway has linked CNPase enzymatic activity into a 

clear biological context regarding CNS damage. However, 

many open questions remain to be answered. 

What is the significance of the CNPase catalytic 

activity outside the context of brain injury? The prominent 

expression and activity of CNPase make it effi cient in 2′,3′-
cAMP depletion, and the absence of CNPase in mice 

becomes evident only after several months of age. In the 

case that the accumulation of endogenous 2′,3′-cAMP is 

also related to aging, is CNPase involved in this process? 

CNPase is possibly one player of many in the axonal 

support systems provided by myelinating glia
[90]

.

Another important consideration is the function of 

CNPase in RNA metabolism, and alongside this are 

its cytoskeletal interactions. As the mRNAs of several 

oligodendrocytic proteins are known to undergo traffi cking, 

CNPase could be a factor in mRNA translocation from the 

soma towards the process peripheries during and after 

myelination. CNPase might also function in a metabolic 

role when large amounts of myelin protein mRNAs are 

being degraded. CNPase apparently inhibits viral protein 

synthesis – is this a general property, and is it related to 

the possible neuroprotective function of CNPase? The 

significance of the CNPase-dependent regulatory system 

for mitochondrial membrane permeabilization in some cell 

types is also presently unclear. This function could also be 

related to mitochondrial RNA metabolism, and CNPase 

might be regulated by CaM and Ca
2+

. 

The biological relevance and molecular properties 

of CNPase should be studied further, as it appears to 

be a multifunctional protein. Elucidation of the functional 

relationships between the diverse binding partners 

of CNPase in its large interaction network, including 

cytoskeletal proteins, CaM, oligomerization, RNA, 

nucleotides, and membrane surfaces, will eventually 

provide a coherent model, linking all the pieces of the 

CNPase puzzle together.
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