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Abstract  
 
We develop a discrete control theory model of a myopic Order-Up-To (OUT) policy reacting 
to a stochastic demand pattern with Auto Regressive and Moving Average (ARMA) 
components.  We show that the bullwhip effect arises with such a policy despite the fact that it 
is optimal when the ordering cost is linear. We then derive a set of z-transform transfer 
functions of a modified OUT policy that allows us to avoid the bullwhip problem by 
incorporating a proportional controller into the inventory position feedback loop. With this 
technique, the order variation can always be reduced to the same level as the demand 
variation. However, bullwhip-effect avoidance always comes at the cost of holding extra 
inventory. When the ordering cost is piece-wise linear and increasing, we compare the total 
cost per period under the two types of control policies:  with and without bullwhip-effect 
reduction. Numerical examples reveal that the cost saving can be substantial if the order 
variance is reduced by using the proportional controller.   
 
Keywords: Bullwhip effect, Inventory, Order-Up-To policy, Control theory 
 
 

1. Introduction 
 
The purpose of an ordering policy is to control production or distribution in such a way that 
supply is matched to demand, inventory levels are maintained within acceptable levels and 
capacity requirements are kept to a minimum. In doing so however, the bullwhip effect may 
arise (Lee, Padmanabhan and Whang, 1997a,b).   The bullwhip effect is measured by the ratio 
of demand variance faced by the ordering system and the variance of replenishment orders 
that the system issues over time.  The bullwhip effect refers to the phenomenon where the 
variance of the demand signal amplifies up along the supply chain. The bullwhip phenomenon 
and its effects on production and distribution have been popularized by playing the beer game 
(Sterman, 1989) and the use of the Barilla case (Hammond, 1994) throughout business schools 
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worldwide. It has been estimated that the economic consequences of the bullwhip effect can 
be as much as 30% of factory gate profits (Metters, 1997).  Lee, Padmanabhan and Whang, 
(1997b) have further summarised the negative impacts of bullwhip as follows;  Excessive inventory investments throughout the supply chain to cope with the 

increased demand variability  Reduced customer service due to the inertia of the production/distribution system  Lost revenues due to shortages  Reduced productivity of capital investment  Increased investment in capacity  Inefficient use of transport    Production schedules missed more frequently 
 
In this paper, we consider a production-inventory system with the periodic demand following 
the Auto Regressive and Moving Average process (ARMA, Box and Jenkins, 1970).  Such a 
demand process is commonly seen in practice.  For example, Disney, Farasyn, Lambrecht, 
Towill and van de Velde (2003) observed ARMA(1,1) demand processes at a house goods 
manufacturer;  Lee, So and Tang (2000) reported that the AR(1) demand process was found to 
match the sales patterns of 150 SKU’s in a supermarket. Gilbert (2205) considers a general 
class of ARMA models.    
 
The stock levels are controlled by an Order-Up-To (OUT) policy.  Using a simple control 
engineering principle, we are able to mitigate the bullwhip effect and reduce the total costs 
produced by the ordering policy. Specifically, we have modified the classical OUT policy 
using a linear proportional controller to eliminate the bullwhip problem for the general ARMA 
demand pattern.   The OUT policy is a standard ordering algorithm in many MRP systems 
used to balance the customer service, inventory and capacity trade-off (Gilbert, 2005). This 
policy is often adopted by companies to coordinate orders for multiple items from the same 
supplier, where setup costs may be reasonably ignored.   At least 60% of the sales value of 
two of the four largest UK grocery retailers is controlled by this policy.  Furthermore, one of 
these grocery retailers has developed its own software system which one of the authors has 
modified to incorporate a proportional controller as described herein.  This was piloted in 
2001 and has since been rolled out across their entire UK business.    
 
Conceptually, the OUT policy is very easy to understand; the system’s inventory position (on-
hand inventory + outstanding orders – backorders) is reviewed every period and an “order” is 
issued to bring the inventory position “up-to” a defined level.  It has long been noted that the 
OUT policy combined with the conditional expectation forecasting mechanism minimises the 
total inventory related cost over time (Johnson and Thomson, 1975). Recently, it was also 
found that the OUT policy based on conditional expectation forecasting can avoid the 
bullwhip effect for certain instances of the ARMA demand pattern (Alwyn, 2001).  However, 
for the general ARMA demand pattern this optimal forecasting technique still cannot avoid 
bullwhip effect in all instances, while our proposed method can.   
 
To illustrate the advantage of the proposed bullwhip reduction method, we consider the case 
of a manufacturer whose the production cost is convex but piece-wise linear in the production 
quantity, and expected holding plus shortage cost is convex in inventory position. The piece-
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wise linear cost captures the typical production mode: it costs less to produce within the 
regular capacity than to use overtime or outsourcing. Though in this case the optimal stock 
replenishment rule may no longer be the simple OUT policy (Karlin, (1960)), we use it 
because of its simplicity.   
 
Our scientific contribution herein is to compare the total inventory and production costs 
between two cases: the simple OUT policy without bullwhip reduction and the modified OUT 
policy that incorporates a proportional controller to reduce the bullwhip effect. The downside 
of our proposed method is that the bullwhip reduction comes at the cost of holding extra 
inventory. However, via numerical examples, we demonstrate that our bullwhip reduction 
method results in lower total cost than the simple OUT policy without bullwhip reduction, 
where the total cost includes both inventory and production costs.  Although we can not claim 
any of methodological steps herein are truly unique, we believe this is the first paper to 
explicitly integrate and investigate ARMA(1,1) demand processes, conditional expectation 
forecasting, proportional feedback controllers and the OUT policy.   We establish closed form 
expressions for the variances and use these probability density functions to obtain exact 
solutions for the costs incurred.   
 
The paper is organized as follows. Section 2 reviews the literature.   Section 3 introduces the 
classical ARMA demand model, the OUT policy and the linear controller. Section 4 then 
derives expressions for bullwhip and the variance of the inventory levels.  Section 5 presents 
numerical examples to illustrate the advantages of bullwhip reduction method.  Section 6 
concludes the paper. For ease of exposition, technical details and proofs are provided in the 
Appendix.    
 
 

2. Literature Review 
 
The use of transform techniques in production and inventory control was initiated by the 
Nobel Laureate, Herbert Simon in 1952. He treated time as continuous and exploited the 
Laplace transform.  Vassian (1954) quickly replicated this approach in discrete time with the 
z-transform.  However, Vassian sadly died before completing his research and his colleague, 
John Magee, published the work on his behalf.  The first book that used z-transforms in a 
production and inventory control context appears to be Brown (1963). Magee (1956) 
incorporated two proportional controllers into a stationary OUT policy and, without giving 
details of its derivation, studies variance amplification.  Deziel and Eilon (1967) used a variant 
of the OUT policy z-transforms and the “sum of the squares” technique to study variance 
amplification. They used a single controller in both the WIP (work-in-progress) and net stock 
feedback loops, as we do here, but their model considered a different order of events that 
resulted in an inventory drift problem.    
 
Popplewell and Bonney (1987) developed a novel method based on the convolution of power-
series representations of z-transforms to capture the impact of stochastic demands and the 
product structure (via the bill-of-materials) in MRP and re-order point systems. Their method 
has been implemented in computer software, which is designed to aid the user in the inversion 
of the z-transforms.  This approach was further exploited in Bonney and Popplewell (1988) 
where the MRP and re-order point systems were investigated from other dynamical 
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perspectives.  A useful feature of our approach herein is that we use the powerful concept of 
the transfer functions’ “Inners”, due to Jury (1974).  This allows us to completely avoid the 
inversion of z-transforms, which can be a difficult task for the inexperienced analyst. 
Grubbström (1998) applied the z-transform to study MRP systems and the net present value of 
cash flows represented by transfer functions.   
 
The use of a proportional controller to contain bullwhip was first exploited by Magee (1956).  
Sterman (1989) showed that human players of the Beer Game could be mimicked by an OUT 
model with proportional controllers based on a set of 2000 Beer Game results.  John, Naim 
and Towill (1994) studied this scenario in continuous time with the Laplace transform. 
Disney, Farasyn, Lambrecht, Towill and van de Velde (2003) considered the customer service 
level implications of the proportional controller.  
 
The OUT policy also contains a forecasting mechanism which influences the dynamics of the 
system. This appears to have been first noticed by Adelson (1966). Common forecasting 
techniques to exploit include moving average and exponential smoothing.   Chen, Drezner, 
Ryan and Simchi-Levi (2000) studied this using a statistical technique; Dejonckheere, Disney, 
Lambrecht and Towill (2003a) used control theory. Kim and Ryan (2003) investigated the cost 
implications of using different forecasting mechanisms within the OUT policy.   
 
There are numerous studies that place the OUT policy within different supply chain structures.   
For instances, Burns and Sivazlian (1978) addressed a four-echelon supply chain model using 
signal flow diagrams and z-transforms; Disney (2001) considered a VMI (Vendor Managed 
Inventory) scenario with simulation and z-transforms. Chen, Drezner, Ryan and Simchi-Levi 
(2000) studied the case of sharing end consumer demand with suppliers in a multi-stage 
supply chain, as did Dejonckheere, Disney, Lambrecht and Towill (2003b).  Lee, So and Tang 
(2000) considered the case of AR(1) demand and different levels of information sharing.  
Interestingly, Hosoda and Disney (2005) showed that the AR(1) demand process is converted 
into the an ARMA(1,1) process as it passes through the Order-Up-To policy. 
 
 

3. The Production / Inventory Model  
 

The ARMA Demand Pattern 
 

We have chosen the ARMA demand pattern for our analysis as it is mathematically tractable 
yet sufficiently general to represent real demand patterns. We have elected to use the mean 
centred ARMA demand pattern without loss of generality.  It is commonly expressed as a 
difference equation (1) as follows: 
 





 


t1t

ARMA
1t

ARMA
t

t
ARMA

0

)D(D

D
       (1) 

 
where, tD  = the ARMA demand at time, t;   = unconditional mean of the ARMA demand 
sequence;   = the Auto Regressive constant;   = the Moving Average constant;  t  = 
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random shock. For ease of exposition, we assume t  to be a white noise process, that is, a 
normally distributed independently and identically distributed stochastic variable with zero 
mean and unit variance, 2 =1. Let tD̂  be the conditional forecast for period t based on 
information in the previous period ( 1tD  and 1t ). We assume ARMA 4  so that the 
probability of negative demand is negligible (see Johnson and Thompson (1975)).  Note that 
the forecast error t = tt DD ˆ , hence the variance of the one period ahead forecast error, 2

D , 
is obviously unity. 
 
We may express (1) as a block diagram using standard techniques from discrete linear control 
theory as shown below in Figure 1.  For a general introduction of control theory we refer 
readers to Nise (1995). 
 

 
Figure 1.  Block diagram of the ARMA demand generator 

Re-arranging the block diagram, using common techniques, relinquishes the ARMA demand 
transfer function (2),  
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where z is the z-transform operator,    
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tztfzF .   The variance of the ARMA demand 
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ARMA  (see the Appendix for more details).  

The order-up-to policy with unit lead-time 
 
The sequence of events in any period is; the inventory level is reviewed and ordering decision 
is made at the beginning of the period, then the demand is realized, the order placed earlier is 
received, and the demand is fulfilled at the end of the period. Thus, it effectively takes one 
period to receive the order placed. Unmet demand in a period is fully backordered. Two costs 
are considered at the end of the each period, inventory holding and stock-out. They are 
proportional functions with cost parameters, h and s, respectively. Piece-wise ordering costs 
will be considered later. In this section, we assume only a linear ordering cost. The objective is 
to minimize the long-run average total cost per period.   
 
For such a problem, Johnson and Thompson (1975) have shown that the simple order-up-to 
(OUT) level policy is optimal. The OUT level is updated every period according to  
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Dtt kDS  ˆ           (3) 
where tD̂  is an estimate of mean demand in period t, D  is  the standard deviation of the 
forecast error, and k is the safety factor, k=F-1(s/(s+h)), where F is the standard normal 
cumulative distribution and s and h are the inventory shortage and holding costs respectively.  
This is the so-called myopic OUT policy.  
  
Denote by Ot the order quantity in period t, by NSt the net inventory level at the beginning of 
period t.  It is easy to see: 

tDtt NSkDO  ˆ .         (4) 
Now we propose to make a modification to the classical OUT policy to provide more freedom 
in shaping its dynamic response. Our change is that we are going to use a proportional 
controller in the inventory position feedback loop. Specifically, we introduce a proportional 
controller, (1/Ti), as follows: 

 tDtt NSk
Ti

DO  1ˆ .         (5) 

The new policy will be called the modified myopic OUT policy, where (6) completes the 
definition,   

111   tttt DONSNS .         (6) 

The feedback proportional controller, (1/Ti) that we have adopted here is a common control 
engineering technique for shaping the dynamic response of a system.   There are many other 
such control techniques available, we refer readers to a good control engineering text like Nise 
(1995) for more information. However, the proportional controller is probably the most simple 
technique available.   Indeed it also has a long history in production and inventory control, for 
example it was used by Magee (1956), Deziel and Eilon (1967), Towill (1982) and 
Matsuyama (1997) to name a few.  
The conditional forecast of the demand in the current period (remember our sequence of 
events) is described by the following transfer function  

   


 


z

z

z

zD

)(
)(ˆ

.                    (7)

   
From Eqs 2, 5–7 and our description we may now develop a block diagram of the ARMA 
demand and the modified OUT policy as shown in Figure 2.   In the block diagram, Dk  is a 
constant.  
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Figure 2. Block diagram of our modified OUT policy with ARMA demand and conditional forecasting 

Rearranging Figure 2 for the transfer function that describes the relationship between orders 
and the white noise process that drives the ARMA demand we have:   
      2

2

1
1

)(
)(

TizzTiTiTi

zTiTizTiTi

z
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 .            (8) 

 
4. Bullwhip Effect and Inventory Variance in the Modified Myopic OUT Policy  
 

Appendix 1 details our derivation of the long-run variance of the ARMA demand and the 
replenishment orders.  Note that the variance ratios hold regardless of the distribution of the 
error term, however later in Section 5 we will assume the error terms are normally distributed.  
Combining these variance expressions together surrenders the bullwhip ratio.  It is given by  
         





21112
11221 2

22
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TiTiTi
Bullwhip
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O .     (9) 

 
When Ti=1 (the classical OUT policy), the bullwhip equation reduces to  
   ,

21
121 2

2

1 



TiBullwhip         (10) 

 
which is plotted in Figure 3.  From (10) it is easy to see that the classical myopic OUT policy 
produces unity bullwhip (i.e., no bullwhip) when   , and 1 . Figure 3 reveals that the 
classical myopic OUT policy is only able to reduce bullwhip when   .  This can be 
confirmed from the fraction of (10), because in the region 1,1   , 

 the denominator is always positive,  
 the last term of the numerator,  12  ,  is always negative, 
 the second term of the numerator, (   ), is negative if   . 

 
This last observation means that if   , then the fraction becomes negative and hence  
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bullwhip is avoided. Symmetrically, if   , then the fraction is positive, indicating bullwhip 
is present.  
 
Our modification to the OUT policy (1/Ti) however allows us to remove bullwhip for all 
instances of the ARMA demand pattern, as in the limit of Ti , bullwhip 0  in (9). The 
case of Ti=5 in Figure 4 clearly shows the bullwhip reduction properties.  The relevant root of 
the second term of the numerator of (9) determines the minimum Ti required to eliminate the 
bullwhip problem and is shown in (11).  
  




22
4121


TiMin         (11) 

 
Figure 3. Bullwhip generated by the OUT 
policy with ARMA demands when Ti=1  

 
Figure 4. Bullwhip generated by the OUT 
policy with ARMA demands when Ti=5  

 
Inventory Variance in the Modified Myopic OUT Policy 
 
The transfer function of the inventory level can be found from the block diagram shown in 
Figure 2.   Interestingly, the inventory variance is independent of the demand properties and 
only depends on the proportional controller, Ti, see (12). 
 

.
1)(

)(


TizTi

Tiz

z

zNS

           (12) 

 

The inventory variance is given by
12

2
2 

Ti

Ti
NS , which we have elaborated in the Appendix 

and plotted in Figure 5 below. Here, it is required that Ti >0.5 for stability. Note that the 
inventory variance when Ti=1 is unity, which is minimum for all of the class of ARMA 
demand patterns.   
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Figure 5. Inventory variance for the modified OUT policy reacting to ARMA demand 
 
 

5. Expected Cost Per Period: A Comparison Between the Two Myopic OUT Policies  
 
The cost structure that we are studying here is depicted in Figure 6.  First consider the 
inventory related costs.  We assume the cost of the warehouse is a fixed (or sunk) cost 
regardless of storage requirements. However, as it is a constant, we can ignore it in further 
analysis.   The variable inventory holding cost is a linear function of a positive net stock level, 
and the variable inventory backlog cost is a linear function of a negative net stock level.    
 
The production ordering costs consist of fixed capacity costs and linear material costs, so the 
fixed capacity costs can be ignored in further analysis.  However, we do consider the labour 
costs (or subcontracting costs) to be piece-wise linear: within the normal production capacity 
K, the unit cost is c, while it is c0>c if the production order size is greater than K. Think of this 
as incurring an overtime (or sub-contracting) premium. We assume this overtime capacity is 
practically infinite.   
 
 

 
 

Figure 6. Graphical representation of our considered cost structure   
 

We assume hereafter that the error terms are normally distributed.  Thus, with our linear 
myopic OUT policy, the order quantity in a period is also a normal random variable.  If the 



Chen, Y.F. and Disney, S.M., (2007) “The myopic order-up-to policy with a feedback controller”,  
International Journal of Production Research, Vol. 45, No. 2, pp351–368. DOI: 10.1080/00207540600579532. 

order is greater than K, then ordering cost c0 is charged instead of c.  Note that the costs c0 is 
only applied to those items produced in premium / overtime production in that period. We 
may find the expected amount of ordering costs by studying the probability density function of 
order levels over time.   Holding and backlog costs are calculated similarly. The sum of these 
costs yields the total expected cost per period.  As the probability density function of the 
normal distribution is essentially non-algebraic, analytic results are difficult to obtain.  Hence, 
we will consider the following numerical scenario. 
 
If one ignores the non-linearity of the purchasing cost, the optimal production/replenishment 
policy would be the myopic OUT policy, which can be determined from (3).  This will serve 
as the benchmark for performance comparison. Now turn to our modified OUT policy. We set 
the inventory safety factor to achieve the economic stock-out probability using  gk D  , 
where the safety factor, k, is determined by (3) and the order quantity, Ot, by (5).    
 
 
 The expected total inventory related costs per period are given by 
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Minimising (13) with respect to g yields   
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(14) will minimise the inventory holding and backlog costs for a given Ti.  The expected order 
related costs per period are given by 
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Numerical Examples 
 
Consider the following scenario. The average ARMA demand, , is 5 units per period, the 
capacity limit, K, is 6 units per period. The cost to produce a unit in normal production, c, is 
$100, and in overtime production the unit ordering (production) cost, cO, is $200. The 
inventory holding cost, h, is $10 per unit per period and the backlog cost, s, is $50 per unit per 
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period.  With this data set, for the myopic OUT policy, the optimal safety stock gain 
g=0.193484. 
 
We consider 25 ARMA demand patterns at combinations of 0.95 0.475, 0,,  . We note 
that all solutions when    result in identical curves. This symmetry comes from the fact 
the ARMA demand is a stochastic i.i.d process under this condition.     
 
Figure 7 reveals that our introduction to the myopic OUT policy, the proportional controller, 
Ti, is capable of reducing total expected costs per period, when compared to the classical 
myopic policy (when Ti=1).   We note that the relationship is complex and sometimes, we 
should use a value of Ti>1 in order to minimise total expected costs and at other times we 
should use Ti<1.  Our results are completely analytic and exact, although we have yet to fully 
understand the complete expected costs “solution space” as there are many dimensions to the 
problem.   In general, the controller is much more effective when 0  and when   is near to 
-1.  Furthermore, we can see that sometimes 0.5<Ti<1 will minimise total costs, but most of 
the time 1<Ti<  is required.  0.5<Ti<1 is required when demand is strongly negatively 
correlated.   Intuitively, this is because under such as condition the ordering policy will over-
react to deviations from the mean demand, in effect, gambling that the supply will match 
demand.  When demand is negatively correlated, this is obviously better achieved with 
0.5<Ti<1, which means that in some instances of the ARMA demand pattern, bullwhip is 
actually desirable.   
 
It is interesting to highlight the economic impact of our modification.  It is by no means 
insignificant.  For our examples, average demand is 5 units per period.  In a perfect world all 
products would be solely manufactured in normal capacity and there would be no inventory or 
backlog costs.  Therefore we expect at least $500 of unavoidable costs per period.  The 
avoidable costs (that is the over-capacity, inventory and backlog costs) for the classical 
myopic OUT policy (when Ti=1) and our modified OUT policy (where Ti>0.5) are shown in 
Table 1.  We can see that we are always able to reduce some of the avoidable costs by 
“tuning” Ti in the ordering policy to the demand pattern.   Of course, it means that inventory 
will have to be slightly increased, but clearly it allows better exploitation of the cost structure.  

 



Chen, Y.F. and Disney, S.M., (2007) “The myopic order-up-to policy with a feedback controller”,  
International Journal of Production Research, Vol. 45, No. 2, pp351–368. DOI: 10.1080/00207540600579532. 

 
 

Figure 7. Expected total costs per period by the modified myopic OUT policy in response to 
ARMA demand  

 
Table 1 highlights that our “tuned” modified OUT policy can always produce a cost saving.  
Here, in all policies, g was set to achieve the economic stockout probability.   In the modified 
OUT policy Ti was set to minimise total costs.  The savings produced by setting Ti to 
minimise costs is compared to the case of Ti=1.  On the average, for our considered settings, 
we can see that the proportional controller, Ti, is able to   reduce bullwhip by 40%,   realise a economic saving of nearly 20% of avoidable costs. 
 

6.  Conclusions 
 

Using the z-transform and the normal distribution probability density function, we have 
studied the OUT policy with conditional expectation forecasting reacting to the stochastic 
ARMA demand pattern.  We have achieved this in an environment where there are piece-wise 
linear ordering costs and linear inventory costs.   Exploiting the basic control engineering 
principles, we have made a slight modification to the ordering policy by adding a proportional 
controller in the inventory feedback loop, which allows us to better exploit the structure of our 
defined cost function.  This OUT policy modified with our bullwhip effect reduction 
technique, Ti, outperforms the myopic OUT policy when the convex ordering cost is 
considered.  In some cases, the savings can be quite substantial.  
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ARMA 
constants 

Myopic OUT 
policy Modified OUT policy % reduction in 

    BW AC Ti g BW AC g BW AC    1 23.323 1.757 0.214 0.397 18.128 -10.821 60.237 22.274 

-0.95 

-0.475 1.735 37.567 2.624 0.246 0.624 25.086 -27.325 64.021 33.223 
0 1.998 52.796 3.401 0.273 0.858 37.012 -41.2 57.043 29.896 

0.475 1.786 74.226 3.921 0.29 1.074 61.088 -49.91 39.848 17.699 
0.95 1.099 226.076 1.394 0.201 1.086 225.142 -4.262 1.23 0.4131 

-0.475 

-0.95 0.713 38.866 1.086 0.194 0.71 38.804 -0.321 0.44 0.159 
0 1.775 36.863 2.717 0.249 0.653 25.274 -29.037 63.195 31.438 

0.475 1.877 55.125 3.558 0.278 0.988 43.055 -43.883 47.367 21.895 
0.95 1.130 167.171 1.477 0.204 1.105 165.826 -5.664 2.247 0.804 

0 

-0.95 0.856 87.147 0.538 0.374 0.318 61.872 -93.433 62.802 29 
-0.475 0.264 16.03 1.152 0.195 0.218 15.738 -0.882 17.331 1.821 
0.475 1.735 37.567 2.801 0.252 0.772 27.868 -30.571 55.521 25.817 
0.95 1.185 109.769 1.612 0.209 1.126 107.611 -8.109 4.9947 1.9659 

0.475 

-0.95 0.869 143.339 0.519 0.509 0.057 50.751 -163.18 93.433 64.593 
-0.475 0.122 15.503 0.896 0.194 0.084 15.236 -0.679 30.741 1.722 

0 0.224 15.564 1.133 0.194 0.144 15.218 -0.703 35.915 2.223 
0.95 1.286 56.847 1.858 0.218 1.084 52.809 -12.755 15.738 7.103 

0.95 

-0.95 0.9 201.784 0.514 0.581 0.005 45.33 -200.48 99.353 77.535 
-0.475 0.213 20.583 0.776 0.202 0.049 15.782 -4.424 76.858 23.325 

0 0.001 14.991 1 0.193 0.001 14.991 trace 
0.475 0.264 16.03 1.170 0.195 0.127 15.245 -1.083 51.72 4.897 

Average> 1.001 68.912 1.710 0.26 0.547 551.326 -34.701 41.907 18.943 
 

Table 1.  Sample economic impact of the modification to the myopic OUT policy  
(Key:  BW =Bullwhip, AC=Avoidable Costs) 
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Appendix  
 
Deriving the Variance Ratios 
The link between a transfer function and the variance amplification ratio (VR) is described by 
(A1). The second term in (A1) refers to the statistical definition of VR in the time domain.   
Here, the VR is the long-term (that is, as t ) ratio of the variance of the output (for 
example, order rates or inventory levels) by the variance of the input (an i.i.d. white noise 
random process).  The third term is a well-known relationship to control engineers that 
Dejonckheere, Disney, Lambrecht and Towill (2003a and b) have used in a recent bullwhip 
investigation.  Here, the area under the spectral density curve (the squared frequency response) 
between frequency w=0 to   radians per period is equal to the variance ratio.   The area under 
the squared frequency response is often called the Noise Bandwidth, WN (forth term).   The 
fifth term highlights the fact that the area under the time domain squared impulse response 

)(2 nf  is also equal to the VR (Tsypkin (1964) and Deziel and Eilon (1967)).  Disney and 
Towill (2003) exploited this relationship.  Finally, taking the contour integral clockwise 
around the unit circle in the complex plane to enclose the roots of F(z)F(z-1)z-1 also yields the 
VR (Grubbström and Andersson (2002)).  Grubbström and Andersson (2002) also show how 
the z-transform multiplication theorem may be used to determine how the VR develops over 
time.   Herein we exploit this last method to determine the VR. 
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The use of the contour integral is most appropriate here as the integral can be calculated using 
a very simple technique due to Åström, Jury and Agniel (1970) that was further refined by 
Jury (1974).  Let’s follow the approach of Jury (1974) to derive our variance expressions.    
We refer readers back to Jury (1974) for any required proof of his approach.   

Let the following form  
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describe the transfer function relating input to output of the VR that we require. The 
coefficients ai and bi obviously depend in the transfer function in question.  Next construct two 
matrices, Xn+1 and Yn+1, of the co-efficients of A(z) as follows; 
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Jury (1974) shows that 
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will construct a VR expression.    

Derivation of the variance of the orders 

The transfer function of the order rate was given in (8) from which the coefficients may be 
easily read as 
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The required Xn+1 and Yn+1 matrices are thus, 
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then, 
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                     (A13) 

The determinants of these matrices are; 
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which lead to the order variance expression: 
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Derivation of the variance of the ARMA demand 

Consider the simple case of the variance of the ARMA demand.  The transfer function is given 
by 

 

which has the following constant coefficients, 
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 Arranging these coefficients into the Xn+1 and Yn+1 matrices yields, 
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Thus the  1  n1n YX  and  b1n1n YX    matrices are  
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The determinants of these two matrices are 

 212   1n1n YX ,     412 2   1n1n YX .                                                   (A7)

Assuming that the variance of the random shock is unity, we may determine the variance of 
the ARMA demand as,  
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Derivation of the variance of the inventory levels 

Now we turn our attention to the long-run variance of the inventory levels.  The transfer 
function is given in (12).  The coefficients of this transfer function are 
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The Xn+1 and Yn+1 matrices then become, 
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The corresponding  1  n1n YX  and  b1n1n YX    matrices are thus 
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and their determinants are 

 22 122   TiTi1n1n YX , 32Ti  1n1n YX . (A20)

Therefore, the variance expression is 
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