
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

The Myriad Virtues of Subword Trees The Myriad Virtues of Subword Trees

Alberto Apostolico

Report Number:
85-540

Apostolico, Alberto, "The Myriad Virtues of Subword Trees" (1985). Department of Computer Science
Technical Reports. Paper 459.
https://docs.lib.purdue.edu/cstech/459

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TIlE MYRIAD VIRTUES OF SUBWORD TREES

Alberto Apostolico

CSD-TR-540
October 1985

THE MYRIAD VIRTUES OF SUBWORD TREES

ALBERTO APOSTOLICO
Deparlmenl of CompuJer Science

Purdue University
Wesl Laj'ayt!/tt!.lndiana 47907

ABSTRACT

Several nontrivial applications of subword trees have been developed
since their first appearance. Some stich applications depart considerably from
the original motivations. A brief account of them is attempted here.

INTRODUcnON

Subword trees fit in the general subject of digitaEearch indexes [KNj. In fact
their earliest conception is somewhat implicit in Morrison"s 'PATRICIA' tries [MOl.
Several linear time and space subword tree constructions arc available today [Me,
PR, SLj (see also [AH]), following the pioneering work by Weiner [WE]. More com
pact alternate versions have been introduced recently in [BL, BE, CS2]. The data
structures developed in this endeavor are variously referred to as B-trees. position
,trees, suffix (or prefix) trees, subword trees, repetition finders, directed acyclic word
graphs,- etc. A concise account of the similarities and discrepancies among the vari
ous approaches is presented in [SEl, CSl]. On line (though not linear time) con
structions are discussed in [MR.]. In this paper. we choose to refer mostly to the ver..
slon in [Me], to which we also conform as much as possible as for basic definitions
and notations. HOWCYCI. thc plOPClties presented hCTe-are-tO a Iarge-exteDt indepe-n"--------
dent of the particular incarnation of a subword tree, and, from the conceptual stand-
point, so are indeed the associated criteria and constructions. This paper addresses
itself to a reader with scarce previous exposure to the subject, but it does assume
some familiarity with elementary facts and concepts in combinatorics on words. The
paper is also self-contained in the description of the various applications presented.
However, some proofs are only sketched; the reader is also pointed to the referenced
literature when it comes to constructions too elaborate to be given here in full
details. Finally, the list given here is not meant to be exhaustive. In particular, it
reflects some recent involvements of this author, and his personal perspective.

The paper is organized as follows. Basic properties and applications of subword
trees are outlined in the next section. In Section 2, such trees are treated as a unify..
ing framework for the description of a class of linear time sequential data compres
sion techniques that is becoming increasingly popular. In Section 3, we take steps
from one such data compression paradigm and use subword trees to decide whether
a word contains a square subword. in linear time. We show next how subword trees
can be used also to spot all such squares, as well as to establish bounds on the
number of cube subwords in a string. Augmented subword trees are suited to allo
cate the statistics without overlap of all subwords of a tcxtstring, as highlighted in
Section 4. In Section 5, we mention two applications in which subword trees are out
performed by other approaches.

-z-

1. PRELIMINARIES
We shall deal with strings (words) of symbols from a finite alphabet 1. If J: is a

word, I.t: I will denote the length (i.e., the number of symbols) of r. Sometimes we
will implicitly assume Ix I=n. The set of all distinct nonempty substrings of.:c (sub
words) is called the vocabulary of x, denoted V.I:' We say that x, .J1+1 ···zr+l.. 1-1 is an
occurrence of wEVJ: in r if XCi"I;; =w.I; (I: =O.l........ lw 1-1). Let $ " I be a special end·
marker. For each i in the set P ={l,2•.....,n.+l} of positions of x$, sul l denotes the itb

"sii//iZ-'ori S~ -Smcc"S"-" I~- if-is -3.lways··posSiblc· to write suE I = head 1 ·tail,. with tail f

nonempty and head r the longest prefix of sut I which is also a prefix of sui J for some
j < i. The subword tree Tz associated with z is defined here as the digital search tree
with n +1 leaves and at most n interior vertices such that: each edge is labeled with
an occurrence of a subword of z via a pair of pointers to a common, randomly acces
sible. copy of z; each leaf is labeled with a position in P j the labels on the path from
the root to leaf labeled i describe suf ,. This labeling poHcy cnables to maintain an
o (n) space allocation for any subword tree. Figure 1 displays a portion (i.e., all
suffixes starting with a) of Tz for z = abaababaabaababaababa.

Any vertex a. of Tz distinct from the root describes a subword w(a.) of z in a
natural way: vertex a is called the proper locus of w (a.). In general. the locus of
wEVz in Tz is the unique vertex of Tz such that w is a prefix of w(a.) and
w(FATHER(a.» is a proper prefix of w.

The obvious approach to the construction of Tz is to start with the empty tree
To and inserts suffixes in succession into an increasingly updated version of the tree,
as folloY/s.

for i:=l to n+1 do T,- insert (Tr_1,suf,)

A brute force implementation of insert would lead to an algorithm taking 0 (n;2)
time in the worst case. The time consuming subtask. of insert is that of linding the

-----110(:=-05-of head, (i 1.2•...n +1) Ln T'_1 (head f mIght not have a proper locus in T,_lr but
it certainly will in Ti). McCreight's construction [MC] exploits auxiliary "suffix links"
to retrieve the locus of head, (i = 1,2•...n +1) in overall linear time. Basically, this is
made possible by the simple fact that if head, =aw (i =1,2•...n) with aE/, then w is a
prefix of head (+1' All clever variations of subword trees are built in linear time by
resorting to similar properties.

The original motivation behind Wiener's construction of the first subword tree
[WE] was that of transmitting and/or storing a message with excerpts from a main
string in minimum time or space. It became soon apparent that the structure of such
indexes ~s ideally suited to several other, almost straightforward, applications.

By treating Tz as the state transition diagram of a finite automaton it is possible
to decide whether or not w EVu for an arbitrary w, in O(lw I) time. This is of
use in multiple searches for different patterns in a fixed set. The particular role
played by $ makes it possible to tell also whether w is a suffix of z. for the same
cost.

Assume that each vertex of Tz bears the label of the smallest leaf label in its
subtree (this is not difficult to maintain during the construction of Tz or it can
be achieved in one appropriate walk. of T ...). Then it is possible to find in
O(lw I) steps and for arbitrary w what is the first occurrence of win z (whence
also whether w is a prefix of z). Notice that to find the last occurrence of w in
O(lw I) time for any w requires a walk. through Tu after its construction: similar

·3·

asymmetries are inherent to other variations of the tree as well.

Let w EV,Z and a. the locus of winTz. By inspecting the leaves in the subtree of
Tz rooted at a we can pinpoint all the occurrences of w in % in O(lw I +output)
time.

Consider the weighted vocabulary (V••C). where the weighting functions Casso-
ciates, with each wEVz , the nU~~LQ.t_~r~~n_c::~oCw _4l._'%. l'~ __all!X=ate _

------------ (V~~E,_-it-is--suffideDi-to tr-averse TJ:--bottom up weighting-each -vertex with -tbe--
sum of the weights of its offsprings (leaves have weight 1). Then for each
w EV.... C (w) is retrieved in O(lw I) time by accessing the (not necessarily proper)
locus of w in Tzo

Let head,- be the longest prefix of sui I which has a non-leaf locus in Tz ; let
sui, =head" tail,- and assume that a is the first symbol of tailt. The string
head t"a is the shortest subword of % that occurs only at position i. This is the
subslring identifier for i [AH]: it tells how much of a pattern is necessary to
identify a position in the text z completely, which can spare time during
searches.

The head fof maximum length is the longest repeated subword of x. The tree
associated with the string z#y$ (# " I) makes it possible to find the longest
common substring of x and y in 0 (n +m) time, where m = ry I. It is remarkable
that this problem has such a straightforward solution once T~ is given. A previ.
ous algorithm [KMR] could solve it only in O«n+m)log(n+m)), and, as [s

reported in [KMP], Knuth had conjectured in 1970 that linear time performance
was impossible to achieve.

The longest subword common to .t out of m strings of total length n can be also
found in 0 (n) time, although by more elaborate" constructions [PRJ. This is not
trivial, since the straightforward extension of the case m=2 produces an algo--

----------.:titlim taking q (n .m) time.

2. A FRAMEWORK FOR LINEAR TIME SEQUENTIAL DATA COMPRESSION

Subword trees Te fer--the set of suffixes suf J where j EQ ~ {i1"i2,-1..1 and Q is an
ordered subset of P are tbe natural habitat for a class of sequential data compression
techniques based on textual substitution. As pointed out elsewhere in this book [ST],
this class embodies the few optimization problems in the realm of textual substitution
that can be solved in polynomial (actually linear) time. In fact the techniques in this
class also feature asymptotic optimality in the information theoretic sense [ZI, ZL,
ZLl, LZ, SZl, SZZ].

The idea lS in general that of interleaving the construction of a (possibly partial)
subword tree with a parse of the textstring into phrases. Compression is achieved
whenever phrases are susceptible of a more compact representation.

The set Q is retrieved from P by means of a gt!fU!rativt! proct!ss, which is
actuated by following a set of rules to identify, for each suffix of z with starting
position iJ EQ, the associated jth reproduction rep J of z and its strictly related pro
duction prod J. The exact nature of rep J depends on the particular generative process
chosen. In all cases, however, rep J will coincide with a suitable prefix of a suffix
suf i,' with if EQ and! <j;prod J is always:

·4·

Thus prod J is fully individuated by setting some suitable pointer{s) to the previous
suffix and by providing the (possibly new) terminal symbol. This information is the
identifier for prod}, denoted by idU).

For each type (A,B.C •._) of reproduction defined. tbe <rype>-parse of x,
denoted type-P(x) is the (unique) decomposition of x in terms of those productions
that are pinpointed through the greedy left to right scanning of the symbols of x.

--. Thc_"'- productiono=of ,-x.-~_that=is.c.selected,-bY,-=-aetuating,..o.thecohth step" in this-."-process
represents the h th phrase in tbe parse. Since each phrase is also a production. we
can associate with the parse of x its translation a(x), defined as the concatenation of
the identifiers for the productions that are also phrases in tbe parse.

The paradigm. of the procedure parse below encompasses" most instantiations of
the generative processes in [ZI. LZ. SZI. SZ2. AGU]. We assume that the operation
of insert is accompanied with the identification of the current (re)production via the
auxiliary function Lprefix. and by the insertion of an auxiliary endmarker node
whenever needed for possible later reference.

11.

8.
9.
10.

end
U. a(x):~a

end.

proccdarc parse (%.q)
produces a(%) from inputs % and characteristic function q

1. begin i :=1; j :=1; h :=liI1'={SU! tl; .
phrase1 := prod1 := x [lJ; a :- id (1) :=' <x [lJ> ;

2. while i < fl do ## produce next phrase #'#
3. begin i:=i+1;j:=j+l;h:=h+l;
4. ']'J := imer: (T) _I,suf I)
5. phraseh := prod. := Lpre6x(sufi);
6. a=U'id(j); J
7. tr i+lrep.l<n then

#~ generate intermediate (re)productions ##
------------bbq:in

m:=j
with Hq(I,ltcp,I) do
begin m :=m +1; T... :=ilUerl (T... -I,suf k) end

end
i:=i + lrepj I

The loop of lines (9.10) enriches the vocabulary between 'active' parsing steps by
inserting extra suffixes according to some given characteristic function q. The two
extreme cases are when q exhausts all intermediate positions (Le.• k =i +1,i +2, etc.)~

and when if neglects them all. In this latter case it results in j =h at all times during
parse. One expects the number of phrases in the parse to decrease as the number of
intermediate insertions increases. However. there is a subtle interplay between the
number of intermediate insertions and the sizes resulting for identifiers, which might
offset this benefit. For example, let:

x ~ 111111111111111111011101110111010101010001000100

- 5-

The A-parse is characterized as foUows:

L prefix(sufi) coincides with the longest prefix of sut l that matches some past
production (=phrase), extended by concatenation of the next
symbol of suf ,.

~-Example: .-~ A~~J'.(z) .._~- -~ -1·11-111·1111-11111·11110-111ll-mOI-llll-l1101ll-1ll-1OI-Q-OO.IOO-OI-OO$ ~

pllrases = 17

lidU)r -= [log;] = [logh] bits [SZI] (i.e., roughly the bits needed to identify one
among h -1 previous phrases plus the empty phrase >...)

The B-parse is as follows:

L prefix(sufi) is given by the longest prefix of suf I that matches the concate
nation of two past phrases followed by the terminal symbol as
above, or else it is as per scheme A if no such pair of phrases
exists.

Example: B-P(z)

phrases = 16

= 1-11-1111-1111111-11111-O-111ll-11101·11ll- 11101ll-1ll-10I-OI(l.IJO-OIll-OO1
00$

lidU)r -= (log(3j)] = (log(3h)] [SZ2] (roughly, tlle current parase is identified by
selecting one of the h possible simple phrases, plus the h -2 pairs followed
by an incoming I, plus as many pairs followed by a 0).

The C -parse and the D -parse arc:: closely related. For the first one we have:

L prefi.x(sufi) is chosen as the longest concatenation of past phrases, ending
perhaps in a prefix of a past phrase, followed by the new sym
bol as above.

Example: C -P (z)

phrases = 14

= l-ll-llll-llllllll-lllll-llIOI-llll-lllOlllOlll- 1ll-IOl-Q-OO.IOOOI-oo$

lidU)r -= [logh] + [log!] + 1 ([logh] bilS are needed to identify tlle first past phrase,
[logi] bits contain the length of the current phrase and the last bit is
needed for the terminal symbol).

In the D-parse, we waive the requirement that the copying process be terminated
during some past phrase, Le., we have now:

rep. =: head.
J J

Example: D -P (z) ~ 1-llllllllllllllllllll-lllll-lllOlllOlllll-lll- 10101Oll-ll-IOO-OIOO$

- 6 -

phrases = 9

lid(j) I -~ [Iogh] + [log(n-i+1)) + 1 (this has an interpretation similar to that of
scheme C , except that tbe length of the current phrase then exceed the i
bits).

The suffix in the E-parse is exactly the same as for the D-parse except that it is now
-=-r-> -,z ~=,It'-follows-that-"it~now -rep ;""=- rep."=··head. ~-'--~- .-,• J I I

Example: E -P(z) = 1-11111111111111111Hll01110111011101ll-101010ll-01000-100$

phrases = 6

lid(j) I -~ [log;] + [Iog(_-i+1)] + 1 (the copying process may now start at any past
position).

It is readily seen that the instantiations A -D of parse can be set up to run in
linear time.

Other variations and applications are discussed elsewhere in this book
[MW,LZl], along with a broader survey of data compression [ST]. and novel
compression methods [FK] for sparse bit strings. Intermediate characterizations for
the set- Q were introduced in [AGU]. Efficient ways of dealing with buffers of lim
ited sizes [ZL] are presented in (RPE].

3. SQUARES IN A WORD

------_A..-.s:qutU-e..-of-.:r-iS---a--W-Or-d-OQ-the-form-----.---w-here--w-is--a-pr-imit-ive-wor-d"'~i.oce,.,.,c'a~------
word that cannot be expressed in any way as 10'.1: with .t > 1. Square free words, Le.,
words that do not contain any square subwords have attracted attention since the
early works by A. Thue in 19U [TH). A copious literature, impossible to report
here, has been devoted to the subject ever since.

By keeping special marks to all nodes leading to sat I it is possible to spot all
square prefixes of x as a byproduct of the construction of T•• The same straightfor
ward strategy can be used for square suffixes. On the other hand, devising efficient
algorithms for the detection of (all) squares has required more efforts [ML,CR,AP].
The number of distinct occurrences of SG.uares in a word can be e(nlogn). which sets
a lower ·bound for all algorithms tbat find all squares [CR]. For instance, infinitely
many Fibonacci words, defined by:

WO=b;wl=a

W"'+l =w. W._l for m> 1

have O(nlogn) distinct occurrences of square subwords. Interestingly enough, by fol
lowing the proof in [CR] as a guideline and making use of the fact that cyclic permu
tations of a primitive word are also primitive, it is not difficult to show that, for
m~4, the number S", of different square subwords in w'" is such that s.. ~ 1/12

·7·

(Iw.llog Iw.. I). This fact is of some consequence in trying to assess the space
needed for the allocation of the statistics without overlap of all subwords of a text~

string [API]. We show now that thtfE-parse--prodiProd 2 "-proo.l: of a string x, can be
used nicely as a filter to spot the leftmost occurring nontrivial square of .r. Our
approach is similar to the onc in [CR1]. In this context, a square is trivial if it is a
suffix of prod) for some j €{1.2•....k} (which takes, trivially, overall linear time to
.~211. or. if.i~, is d.c_tected__ following the_situation_descp.b~d_belo_~._ _ .._._.. _-__ ... =- __.._=-_.

For jE{I,2.-.,l:). Ie. prodJ ~rCPJ·. with • Elu{S}. Now prod, is obviously
squarefree. Assume prod Iprod 2 -prod }-1 square free and let 1 be its length. Then if
Irep J I~l. there is a square in pcodcprodJ_trepJ. due to two occurrences of rep J that
either overlap or are contiguous. This circumstance can be easily detected on line
with carrying out the E -parse of %, hence in linear time, and we shall say that such
square is trivial too_

A few more definitions are needed in order to illustrate the full criterion. We
say that two subwords w and w- of % satisfy the left (right) property, denoted l(w,w.)
(r(w,w-», if ww- are squarefree but ww- embeds a squue vv centered to the left
(right) of W-. Let % be ~ string with no trivial square. Then:

z is not square/ree iff tMre b 1E (1,2._,1' -1) such that:
1(prod f prod,+0 or r(prod,prod r+J) or r(prod l prod 2 _.prod r_J•

prod, prod I+U'

To prove this claim, let yvv be the shortest non squarefree prefix of % and let j
be the smallest index for which yvv is a prefix of prod 1-prod J+l- Under our assump
tions, it suffices to show that the second occurrence of " must fall entirely within
prod J prod J+1. But this follows at once from the definition of repJ' Indeed, if the
second occurrence of " does not fall within prod I prod J +1 then rep I would be con-
tained in the second occurrence of v without being a suffix of ", a contradiction.

The left and right properties can be checked in overall linear time with the aid
of auxiliary 'local' subword trees, or simply by resorting to the 'failure function'
{AR]. We leave this as an exercise for the reader. An alternative procedure for test
ing squarefreeness [MLl] and a simple and elegant probabilistic algorithm for this
problem {RA] are both discussed elsewhere in this book.

We turn now to the problem of finding all squares in a word. The use of sub
word trees in thi~ task is brought up by the following fact {AP].

x corrlains a square occurrence at position i iff there is a primitive
word wEV~ and a vertex. Cl in Tz such that i and j=i+Jwl are
consecUlive leaves in t~ subtree of Tz rooted at Cl and furthermore
Iw(a)I"'(i-j).

The algorithmic criterion provided by the above condition is implemented
straightforwardly in a bottom up computation. Starting from the leaves of Tz , for
each interior vertex visited we construct the sorted list of the labels of its leaves.
The sorted list of any such vertex is obtained by merging the sorted lists of its
offspring vertices. The strategy runs in O(nlogn) time if Tz is nearly balanced or
completely unbalanced. Optimal handling of intermediate cases involves pebbling of
Tz with an ad hoc data structure suited to the efficient repeated merging of integers

- 8-

in a known range [APl.

We devote the remainder of this section to highlight that the structure of Tz
may help disclosing general properties about power sllbwords in a string [AA]. For
instance. unlike the number of squares, the number _of distinct cube subwords of any
string.r is bounded by n. To show this. we introduce the notion of cube constrained
word (ccw) as follows: we say that wwEV", is cube constrained if w3EV.;I"" It is seen

___ J~.i\L~~_.'~·!.~.~_I!-~mb~!_. Qf_9JstiIt~.~_~~~~s __in,,,-~y'~~!.iJ!g._.r __ i~~ ~~n!;l~(tbY--on. In_9rdex. _to
prove this fact, one first uses the definition of TI; to show that if wH1(k 2:.1) is a sub
word of x, then wJ: and w.t+l have distinct loci in TA'o Next one uses this in conjunc
tion with the ~riodicity lemma [LS] to show that if w 2 and v2 are distinct CCW's of
%, then they must have distinct loci in T~. -The assertion follows then from the fact
that the number of interior vertices of T~ is bounded by II. '

4. STATISTICS WITHOUT OVERLAPS

The (primitive rooted) squares in v~ have consequences on the amount of
storage needed to allocate the statistics without overlap of all substrings of %

[AA,AP1]. which leads us to another application of T~. Consider the weighted voca
bulary (V.r.C') where c' associates. with each wEVz , the maximum number l' of dis
tinct occurrences of w such that it is possible to write k =WIWW2WW] •• - WW.l:+l with W4

possibly empry (d ~ 1,2._... +1).

The construction of (V.r.C') requires in general augmenting T.r [API] by inserting
auxiliary nodes of degree 1. The role of such nodes in the augmented tree is to func
tion as proper loci _for subwords whose loci in the original tree T.r would not report
the actual number of their nonoverlapping occurrences. To be more precise. assume
that all nodes in the tree of Fig. 1 are weighted with their associated C· values. Now
ab occurs 8 times in W7. the word of Fig. 1; but the locus C1 of ab has W (a.) = aha with
a C I s. In olderfor-t:lre-tree-to-reptJrr-theappropriate C' va:!u-e-1o-rao-wen-ave [0,---------
split an edge and create the proper 10000s for this subword. Let f.r be the minimal
(Le.• with the least auxiliary nodes) augmented subword tree. The following fact
gives a handle in establishing where the auxiliary nodes should be inserted in Tz in
order to produce t. [APll.

If a is an auxiliary node of t~. tMn lMre are subwords ". v in %

and an in/eger 1:~1 such thm w(a)=u =,,'= and there is an wEVz
such that w =v"'v- with y. aprqb: of y and m~2k.

An" o(n/ogn) upper bound on the number of auxiliary nodes needed in Tz can be
readily set. based on the above fact and on the upper bound on the -number of posi.
tioned squares in a word. However. it seems to be an interesting open question
whether there are words whose minimal augmented suffix trees do in fact attain that
bound. The insertion of candidate auxiliary nodes can be carried out during the
brute force construction of T.r. after which redundant nodes can be removed through
one visit of the structure. Hence T~ can be obtained in O(II~ time, almost straightfor
wardly. A more efficient construction is also more elaborate [AP2], and we shall not
attempt at reponing it here.

- 9-

S. CONCLUDING REMARKS

Since subword trees embody remarkably structured information about the
word(s) they are built out of, it is not surprising that they can be used in a variety of
tasks that either aim at retrieving some such information or make crucial use of it in
answering disparate queries. Sometimes there are better methods than those based on
such trees, however. no digital index seems to outperform subword trees in versatil-

----itY"'"and=eleg3h-ce~·---~""'-=--="'-'-'---- -- - - -- ---'=-=--- - ---~--'-------

For instance, the subword tree associated with y=.r#x r $ can be used to detect
all palindrome subwords of x, in 0 (nlop), by repeated bottom up merging of leaves
(as with the detection of squares) and by mating use of the fact that any palindrome
in V.z must have a proper locus in T7 • as the reader may cbeck for himself. As is well
known, there are linear time solutions for this problem (sec for instance [MAD.

Similarly, the subword tree associated with a set of m words of total length I
can be adapted to test tbe JUJiqlU! d~ciphuabmry of the code consisting of those words
in O(m ·/) time [RO]. However, the same performance can be achieved by a simpler
construction, based on pattern matcbing machines [AC], as shown in [AG]. The sub
ject of unique decipherability testing is also addressed elsewhere in this boot [CH].
The relation between subword trees and pattern matching machines is investigated in
[CR2].

Acknowledgements

Joel Seiferas kindly supplied some of the reference material. Zvi GaIil and Sam
Wagstaff made many very helpful comments on a preliminary version of this paper.

-----'lRleefereaces.------------------------------

AC Aho, A., and Corasick, MJ., Efficient String Matchi.D.g: An Aid to Biblio
graphie Search, CACM 18,335-340 (1975).

AH Aho, A., Hopcroft, I.E., Ullman, J.D., TM Design and Analysis of Computer
Algorithms, Addison Wesley, Reading (1974).

AA Apostolico, A., On Context Constrained Squares and Repetitions in a String,
RAJR.O. Journal Theoretical InforltUJtics 18,2,147-159 (1984).

AG Apostolico, A., Giancarlo, R., Pattern Matching Machine Implementation of a
Fast Test for Unique Decipherability, Inf. Proc. Letters 18, 155-158 (1984).

AGU Apostolico, A., Guerrieri, E., Linear Time Universal Compression Techniques
for Dithered Images Based on Pattern Matching (extended abstract), Proa~d.
ings of the 21st Allerron Corrfer~nce on Communication. Control and CompUJing,
7G-79 (1983).

AP Apostolico, A., Preparata, F.P., Optimal Off-line Detection of Repetltions in a
String, TMoretical Computer Scieru::e, 22, 297-315 (1983).

AP1 Apostolico. A., Preparata, F.P., The String Statistics Problem, Tech. Report,
Purdue Univ. CS Dept. (1984). A preliminary version: A Structure for the
Statistics of all Substrings of a Textstring With and Without Overlap,

- lU -

Proceedings of the 2nd World Conference on Math. at the Service of Man, 104-109
(1982).

BL Blumer, A., Blumer, I., Ehrenfeucht,- A., Haussler,- D., McConnell, R., Build
ing a Complete Inverted File for a Set of Text Files in Linear Time, Proceed~
i.gs of tlz. 16th ACM STOC, 349-358 (1984). .

BE Blumer, A., Blumer, I., Ehrenfeucht, A., Haussler, D., McConnel, R., Build-
ing-e!~~Mi.!!!J:!1_"!LD~A fo~_thc_ Se!. _oLN1_Su:l>~oJ:~s of a Word On.:.ijp.~ in

-- _. Linear Time,· Springer-Verlag Lecture Notes in Computer Science 172, 109-118
(1984).

CH Capocelli, RM., Hoffmann, Cli., Algorithms For Factorizing and Testing
Subsemigroups, Combinatorial Algorithms on Words (A. Aposrolico and Z.
Galil, eds.) Springer-Verlag (1985).

CR Crochcmorc, M., An Optimal Algorithm for Computing the Repetitions in a
Word, brf. Pro•. Letters 12, 5, 244-250 (1981).

CRI Crochemore, M., Recherche Lineaire d'un Carre dans un Mot, CR. Acad. Sc.
Poris, 1296, Serie I, 781-784 (1983).

CR2 Crochemore, M.; Optimal Factor Transducers, Combinatorial Algorithms on
Words (A. Apostolico and Z. Galil, eds.) Springer-Vetlag (1985).

CSI Chen, M.T., Seiferas, I., Additional Notes on Subword Trees, unpublished lec
lure noles (1982).

CS2 Chen, M.T., Sciferas, I., Efficient and Elegant Subword Tree Construction,
Cpmbinatorial Algorithms on Words (A. Apostolico and Zvi GaliI, eds.),
Sptinget-Verlag (1985).

FK Fraenkel, A. S., Klein, S. T., Novel Compression of Sparse Bit Strings, Com~
binatorial Algorithms on Words (A. Apostolico and Z. GaliI, eds.) Springer~

Verlag (1985)

KMP Knuth, DE., Morris, IE., Pratt, YR., Fast Pattern Matching in Strings, SIAM ,.
Journal on Computing 6, 2, 323-350 (1977).

KMR Karp, RM., Miller, RE., Rosenberg, AL., Rapid Identification of Repeated
Patterns in Strings, Trees, and Arrays, Proceedings of the 4th ACM STOC, 125
136 (1972).

KN Knuth, DE., Tlu! Art of Computer Programnu·ng, Vol. 3: Sorting and Searching,
Addison-Wesley, MA (1973).

LS Lyndon, R.C., Schutzenberger, M.P., The Equation aM =bN c P in a Free
Group, Michigan Math. Journal 9,289-298 (1962).

LZ Lempel, A., Ziv, J., On lhe Complexity of Fini'e Sequences, IEEE TIT 22, 1,
75-81 (1976).

LZl Lempel, A., Ziv, r., Compression of Two-dimensional Images, Combinatorial
Algorithms on Words (A. Apostolico and Z. Galil, eds.) Springer~Ver1ag (1985).

MA Manacher, G., A New Linear-time On-line Algorithm for Finding the Smallest
Initial Palindrome of a String, JACM 22, 346-351 (1975).

MR. Majster, ME., Reisner, A., Efficient On-line Construction and Correction of
Position Trees, SlAM Journal on Computing 9, 4, 785-807 (1980).

MC McCreight, EM., A Space Economical Suffix Tree Construction Algorithm,
JACM 23, 2, 262-272 (1976).

- 11-

ML Main, M.G., Lorentz, RJ., An O(nlogn) Algorithm for Finding all Repetitions
in a String, Journal of Algorithms. 422-432 (1984).

MLI Main, M.G., Lorentz, RJ., Linear Time Recognition of Square-Free Strings.
Combinatorial Algorithms on Words, (A. Apostolico and Z. Galil. eds.)
Springer-Verlag (1984).

MO Morrison, D.R., PATRICIA - Practical Algorithm to Retrieve Information
--------~---eoaed·ill~A1phanumenc;'"JACM·15;_4;"514=534-(1%8);--------

MW Miller. V05., Wegman, M.N., Variations on a Theme by Ziv aud Lempel. Com
binatorial Algorithms on Words (A. Apostolico and Z. Galil. eds.) Springer
Verlag (1985).

PR Pratt, V.R., Improvements and Applications for the Weiner Repetition Fmder,
ullpublished manuscript (1975).

RA Rabin. M.D., Discovering Repetitions in Strings, Combinalorial Algorithms on
Words (A. Apostolico and Z. GaliI, eds.), Springer-Verlag (1985).

RO Rodeh, M., A Fast Test for Unique Decipher'lbility Based on Suffix Trees,
IEEE TIT 28, 648-651 (1982).

RPE Rodeh, M., Pratt, Y.R., and Even, S., Linear Algorithms for Data Compres-
sion via String Matching, JACM 28, 1, 16-24 (1981).

SEl Seiferas, 1., Subword Trees, unpublished lecture notes (1m).

SL Slisenko, A.D.• Detection of Periodicities and String Matching in Real Time,
JOlUTUlI of Soviet MatMmatics 22, 3,1316-1387 (1983).

ST Storer, IA., Textual Substitution Techniques for Data Compression. Combina.
toria! Algorithms on Words (A. Apostolico and Z. Galil, eds.) Springer.Yerlag
(1985).

SZl Seery, J.E., Ziv, I., A Universal Data ComJtr~ssionAlgorithm: DescriptiOIl.--anad _
Preliminary Results, Bell Labs TMn-1212-6/n·1217-6 (1977).

SZ2 Seery, lB., Ziv, I., Further Results on Universal Data Compression, Bell Labs,
TM78-1212·8178-1217·11 (1978).

TH Thue, A., Uber Die Gegenseitige Lage Gleicher TeiIe Gewisser Zeichen
reichen. Skr. Vid. Kristiana I. Math. Naturv. Klasse 1, 7.fJ7 (1912).

WE Weiner, P., Linear Pattern Matching Algorithms, Proceedings of the 14th
Annual Symposium on Switching tmd Automata Theory, 1-11 (1973).

ZI Ziv, I., Coding Theorems for Individual Sequences, IEEE TIT 24, 4, 405413
(1978).

ZL Ziv, J., Lempel, A., A Universal Algorithm for Sequential Data Compression,
IEEE TIT 23, 3, 337-343 (1977).

ZLl Ziv, J., Lempel, A" Compression of Individual Sequences On Variable Length
Eocoding,lEEE TIT 24, 5, 5JO.536 (1978).

$

1

a
b b

FIi:;ure 1

a
b
a

A partial view (all suffixes starting with a) ot the &ubword tree of the string abadJabtuJb!!Gb/J_
baabaoo.

	The Myriad Virtues of Subword Trees
	Report Number:
	

	tmp.1307986960.pdf.aROWb

