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Human genetics has been haunted by the mystery of “missing heri-
tability” of common traits. Although studies have discovered>1,200
variants associated with common diseases and traits, these variants
typically appear to explain only a minority of the heritability. The
proportion of heritability explained by a set of variants is the ratio
of (i) the heritability due to these variants (numerator), estimated
directly from their observed effects, to (ii) the total heritability (de-
nominator), inferred indirectly from population data. The prevailing
view has been that the explanation formissing heritability lies in the
numerator—that is, in as-yet undiscovered variants.Whilemany var-
iants surely remain to be found, we show here that a substantial
portion of missing heritability could arise from overestimation of
the denominator, creating “phantom heritability.” Specifically, (i)
estimates of total heritability implicitly assume the trait involves no
genetic interactions (epistasis) among loci; (ii) this assumption is not
justified, because models with interactions are also consistent with
observable data; and (iii) under such models, the total heritability
may be much smaller and thus the proportion of heritability ex-
plained much larger. For example, 80% of the currently missing her-
itability for Crohn’s disease could be due to genetic interactions, if
the disease involves interaction among three pathways. In short,
missing heritability need not directly correspond to missing variants,
because current estimates of total heritability may be significantly
inflated by genetic interactions. Finally, we describe a method for
estimating heritability from isolated populations that is not inflated
by genetic interactions.

genome-wide association studies | statistical genetics

A continuing mystery in human genetics is the so-called missing
heritability of common traits. Genome-wide association

studies (GWAS) have led to the identification of >1,200 loci har-
boring genetic variants associated with >165 common human dis-
eases and traits, revealing previously unknown roles for scores of
biological pathways (1–3). However, early GWAS were puzzling
because they appeared to explain only a small proportion of the
“heritability” of the traits. With larger GWAS, the proportion of
heritability apparently explained has grown (to 20–30% in some
well-studied cases and >50% in a few), but, for most traits, the
majority of the heritability remains unexplained (1).
This is our first in a series of papers exploring the explanations for

missing heritability. Geneticists define the proportion of (narrow-
sense) heritability of a trait explained by a set of known genetic
variants to be the ratio πexplained = h2known/h

2
all, where (i) the nu-

merator h2known is the proportion of the phenotypic variance
explained by the additive effects of known variants and (ii) the
denominator h2all is the proportion of the phenotypic variance at-
tributable to the additive effects of all variants, including those not
yet discovered. The numerator can be calculated directly from the
measured effects of the variants, but the denominator must be
inferred indirectly from population data.
The prevailing view among human geneticists has been that the

explanation for missing heritability lies in the numerator, that is, in
additional variants remaining to be discovered. Much debate has
focused on whether these additional variants are common alleles
(frequency ≥1%) with moderate-to-small effects or rare alleles

(frequency <1%) with large effects (3–9). We will discuss the fre-
quency spectrum of disease-related variants in our second paper in
this series.
Here we explore the possibility that a significant portion of the

missing heritability might not reflect missing variants at all. The
basic idea is easy to state: Current studies use estimators of h2all
that are not consistent (that is, converge to the wrong answer);
they may seriously overestimate the denominator h2all and thus
underestimate πexplained. As a result, even when all variants af-
fecting the trait are discovered, πexplained may fall far short of
100%. We refer to this gap as “phantom heritability.”
Quantitative geneticists have long known that genetic inter-

actions can affect heritability calculations (10). However, human
genetic studies of missing heritability have paid little attention to
the potential impact of genetic interactions. A few authors have
constructed mathematical examples (11, 12), but these abstract
models have not been related to biologically plausible mechanisms,
and the studies have not considered whether the presence of ge-
netic interactions would be readily detected, thereby preventing
geneticists from being fooled by phantom heritability. The pre-
vailing view among human geneticists appears to be that inter-
actions play at most a minor part in explaining missing heritability.
Here we show that simple and plausible models can give rise to

substantial phantom heritability. Biological processes often de-
pend on the rate-limiting value among multiple inputs, such as
the levels of components of a molecular complex required in
stoichiometric ratios, reactants required in a biochemical path-
way, or proteins required for transcription of a gene. We thus
introduce the limiting pathway (LP) model, in which a trait
depends on the rate-limiting value of k inputs, each of which is
a strictly additive trait that depends on a set of variants (that may
be common or rare). When k = 1, the LP model is simply
a standard additive trait. For k > 1, we show that LP(k) traits can
have substantial phantom heritability.
The potential magnitude of phantom heritability can be il-

lustrated by considering Crohn’s disease, for which GWAS have
so far identified 71 risk associated loci (13). Under the usual
assumption that the disease arises from a strictly additive ge-
netic architecture, these loci explain only 21.5% of the esti-
mated heritability. However, if Crohn’s disease instead follows
an LP(3) model, the phantom heritability is 62.8%, thus genetic
interactions could account for 80% of the currently missing
heritability.
To avoid being fooled by phantom heritability, one might hope

to be able to recognize when traits involve genetic interactions, for
example, based on population data (such as phenotypic correla-
tions among close relatives) or genetic data (such as pairwise tests
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of epistasis).We show, however, that this taskmay be difficult. For
the case of Crohn’s disease above, detecting the genetic inter-
actions may require sample sizes in the range of 500,000.
In short, genetic interactions may greatly inflate the apparent

heritability without being readily detectable by standard meth-
ods. Thus, current estimates of missing heritability are not
meaningful, because they ignore genetic interactions.
Finally, we present a method to estimate h2all that is consistent

not only for additive traits but for any genetic architecture. The
method involves the study of isolated populations. It may provide
a path forward for accurately measuring explained and missing
heritability.
Extensive mathematical details and extensions are provided in

SI Appendix. AMatlab software package used for the mathematical
calculations is available at http://www.broadinstitute.org/mpg/hc.

Results
Quantitative and Disease Traits. Quantitative traits are assumed to
depend on genotype G and environment E, according to
a function P = Ψ(G,E). Here, G = (g1, g2, . . ., gn) is the diploid
genotype at n biallelic variant sites across the genome, gi is the
number of copies (0, 1, or 2) of a designated allele at the ith site,
and fi is the frequency of the designated allele. The variant sites
are assumed to be in linkage equilibrium. The environment E
may involve both a “shared” environment that is shared among
pairs of relatives and a “unique” environment that is specific to
each individual, which includes stochastic noise.
Disease traits are given by a binary function Δ(G,E) that is as-

sumed to arise from a liability threshold model. Specifically, there is
an underlying (and unobserved) quantitative trait P = Ψ(G,E),
called a “liability.” For a specified threshold τ, individuals are af-
fected (Δ = 1) if Ψ(G,E) ≤ τ and unaffected (Δ = 0) otherwise.
(This condition is often equivalently defined asΔ=1 ifΨ(G,E)≥ τ.)
For convenience, we assume throughout that P has been

normalized to have mean 0 and variance 1. With Var(P) = 1, the
amount of variance explained by a factor is equal to the pro-
portion of variance explained.

Broad-Sense vs. Narrow-Sense Heritability.Heritability is measured
in two ways: broad-sense heritability H2 and narrow-sense
heritability h2.
Broad-sense heritability H2 measures the full contribution of

genes. It is defined as H2 = VG/Var(P), where VG is the total
variance due to genes. [Specifically, VG = Var(P) – Var(P|G),
where Var(P|G) is the phenotypic variance between genetically
identical individuals.] H2 is the relevant quantity for clinical risk
assessment, because it measures our ultimate ability to predict
phenotype from genotype.
By contrast, narrow-sense (or additive) heritability h2 is meant

to capture the “additive” contribution of genes to the trait: It is the
maximum variance that can be explained by a linear combination
of the allele counts, gi. Although h2 is a less intuitive concept, it is
routinely used to measure progress toward explaining the genetic
basis of a trait because one can readily calculate the contribution
of individual loci to h2, as described below.

Explained, Missing, and Phantom Heritability. We next define
“explained” and “missing” heritability, focusing on narrow-sense
heritability h2. Let h2S (or h2known) denote the proportion of the
phenotypic variance explained by a set S of known variants, and h2all
(=h2) denote the proportion of the phenotypic variance explained
by all variants that affect the trait. For the variants in S, the pro-
portion of “explained heritability” is πexplained = h2known/h

2
all and

“missing heritability” is πmissing = 1 – πexplained. When all trait-as-
sociated variants have been found, πmissing = 0.
Human geneticists typically use a “bottom-up” approach to

estimate the numerator and a “top-down” approach to estimate
the denominator.

Bottom-up. The numerator h2known is straightforward to estimate,
based on the effects of the individual variants. The variance
explained by the ith variant is Vi = 2fi(1 − fi)βi2, where fi is the
frequency and βi is the additive effect of the locus (defined as the
regression coefficient of the phenotype P on the single-locus ge-
notype gi). Under linkage equilibrium, the variance explained by
a set S of variants is the sum over the individual loci: Vknown= VS=
∑i∈S Vi. Because Var(P) = 1, we have h2known = Vknown and h2all =
Vall. We can thus estimate h2known = Σi 2fi(1 − fi)βi2 from the allele
frequencies and effect sizes estimated in a genome-wide associa-
tion study.
Top-down. The problem comes in estimating the denominator
h2all. Because not all variants are known, human geneticists must
infer their total contributions indirectly, typically via a top-down
quantity based on phenotypic correlations in a population. We
refer to such quantities as “apparent heritability” and denote
them by such symbols as h2pop.
Missing heritability is then estimated by assuming that h2all =

h2pop and obtaining an estimate of h2pop. The problem is that h2all
and h2pop are not guaranteed to be equal unless the trait is strictly
additive, that is, involves neither gene–gene (G–G) nor gene–en-
vironment (G–E) interactions. For traits with genetic interactions,
h2popmay significantly exceed h2all. If so, evenwhen all variants have
been discovered, the estimate of πmissing will not converge to zero
with increasing sample size. Instead, it converges to 1− (h2all/h

2
pop),

which we call the phantom heritability, πphantom.
The term heritability and the symbol h2 are often used in the

literature to refer to the true heritability h2all and to several
definitions of apparent heritability h2pop, despite the fact that
these various quantities need not be equal (SI Appendix, section
1.5). We have introduced distinct terminology and notation to
avoid confusion about these important differences.
Analogous definitions can be made for broad-sense heritability

H2. In this case, it is easy to estimate the top-down quantity, but
there is currently no practical way to estimate the bottom-up
quantity (SI Appendix, section 12). As a result, human geneticists
rarely attempt to estimate the proportion of the broad-sense
heritability explained by a set of loci.

Assuming Additivity. We next describe the typical framework for
analyzing human traits, noting why the equality h2all = h2pop
depends on the assumption of additivity. We focus on one
measure of apparent heritability, h2pop(ACE), which considers
additive genetic, common environmental and unique environ-
mental variance components, but discuss alternative measures in
SI Appendix, section 1.3.
Quantitative traits. A commonly used definition for apparent her-
itability is h2pop(ACE) = 2(rMZ – rDZ), where rMZ and rDZ are the
phenotypic correlations between monozygotic twins and di-
zygotic twins, respectively (14). (The measure is based on the
ACE model of twin studies.) One can show that

h2popðACEÞ ¼ h2all þW ; with

W ¼
hX

ði;jÞ≠ð1;0Þ2
�
1− 2− ðiþ2jÞ

�
VAiDj

i
≥ 0;

[1]

whereVAiDj denotes the (nonnegative) variances due to all possible
ith-order additive interactions and jth-order dominance inter-
actions among loci (SI Appendix, section 1). The key point is that, if
there are any genetic interactions, then W > 0, and h2pop(ACE)
overestimates h2all. Unfortunately, there has been no way to esti-
mate W from population data. In most human genetic studies, the
“solution” has been simply to make the (usually unstated) as-
sumption that there is no genetic interaction, that is, that W = 0.
Typically, the studies assume a strictly additive model. (Some
studies allow dominance terms at each locus, but they invariably
assume additivity across loci, that is, no genetic interactions.)
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Assuming a strictly additive model, the genetic architecture
takes the form

ΨðG;EÞ¼
h
αþ

X
i
βigi

i
þ ε; [2]

with the two terms each being roughly normally distributed with
mean 0 and with Ψ being normalized to have variance 1. Under
this model, the variance of the first term is the narrow-sense
heritability h2all. The environmental noise ε consists of shared
and nonshared environments, with a vector cR denoting the
proportion of the environmental variance Var(ε) = 1 − h2all that
is shared between relatives of type R. (For example, csib is the
proportion of environment shared among sibs.) We will refer to
this additive model as A(h2, cR).
The additive model has many elegant properties. If ρ(R) denotes

the phenotypic correlation between relatives of type R, then

ρ
�
R
� ¼ h2γR þ �

1− h2
�
cR: [3]

Here, γR is the genetic relatedness between relatives of type R
(γR = 1, 1/2, 1/4, and 1/8 for MZ twins, sibs, grandparent–
grandchild, and first cousins). The phenotypic correlation is
proportional to genetic relatedness under the additive model
with no shared environmental variance.
Disease traits. Disease traits are traditionally assumed to follow
a liability threshold model, where the unseen liabilityΨ follows the
additive model above and disease occurs if Ψ ≤ τ. We will refer to
this additive disease model asAΔ(h

2, cR, μ), where μ= Prob(Ψ ≤ τ)
denotes the disease prevalence. The model parameters (h2, cR, μ)
completely determine the epidemiologically observable quantities
(μ, λMZ, λsib, ···), where μ is the disease prevalence and λR is the
increased risk to relatives of type R (15).
To apply the model to a disease, one fits the model parameters

based on observable quantities. (Geneticists often assume that cR=
0, in which case the remaining two parameters can be fit based on μ
and λMZ.) For genetic variants associated with the disease, one then
uses the model to convert an observed increase in disease risk to an
inferred additive effect on the liability scale. Heritability calcu-
lations are performed not on the observed disease status but on the
unseen liability scale. One advantage of using the liability scale is
that heritability calculations tend to be robust to uncertainty about
disease prevalence. (See SI Appendix, section 2 for details, including
the use of both λMZ and λsib to deal with shared environment.)

Genetic Interactions Create Phantom Heritability. What will happen
if a geneticist analyzes a trait that involves genetic interactions
under the erroneous assumption that it is additive? To explore
this question, we introduce a simple and biologically plausible
class of models.
Quantitative traits. Biological processes often depend on the rate-
limiting value among multiple inputs, such as the levels of compo-
nents of a molecular complex required in stoichiometric ratios,
reactants required in a biochemical pathway, or proteins required
for transcription of a gene. We thus define a limiting pathway
model, inwhich a traitP depends on the rate-limiting input from k≥
1 biological processes. For simplicity, we will assume that the inputs,
Ψ1,Ψ2, . . .,Ψk, all follow the standard additivemodel in Eq. 2 above,
each with exactly the same parameters, h2pathway, and cR. Apart from
the fact that the Ψi are roughly normal, we place no restrictions on
the number or allele frequencies of the causal variants.
We define the trait LP(k, h2pathway, cR) to be the minimum

value of the Ψi. For a single pathway (k = 1), the definition
reduces to the simple additive model. What happens for k > 1?
Let us consider a specific example: P* = LP(4, 50%, cR), with

csib = 50% (yielding shared environmental variance Vc = 27%)
and cR = 0 for other relatives. Suppose that a geneticist analyzes
P* under the standard (but erroneous) assumption that it is

additive. Because we know the true genetic architecture (al-
though the geneticist does not), we can calculate the exact value
of all relevant parameters (SI Appendix, section 3). Because we
are interested in asymptotic bias, we ignore sampling variation.
The geneticist would start by estimating the apparent herita-

bility to be explained. The observed phenotypic correlation
among twins is (rMZ, rDZ) = (62.4%, 35.4%), yielding h2pop =
2(rMZ − rDZ) = 54.0%. The geneticist would then conduct a ge-
netic study, identify variants associated with the trait, estimate
their effect sizes, estimate the heritability h2known explained by
the variants, and compare it to the estimated value of h2pop.
Assuming the sample is so large that all variants are identified
(although the geneticist does not know this), h2known will be the
true heritability, h2all = 25.4%.
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Fig. 1. Phantom heritability under the limiting pathway model. (A) Quan-
titative trait model LP(k, h2

pathway, cR). For various parameters, curves show
apparent heritability h2

pop(ACE) and phantom heritability πphantom. Curves
connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10, with tip of arrow
at k = 10), and for specific values of h2

pathway (10, 30, 50, 70, and 90%, in-
dicated by color of the curve) and cR (0% filled circles and arrows, 50% open
boxes and arrows). The red asterisk indicates example P* referred to in the
text. (The quantity h2

pop can exceed 100%, as seen for some models with
high heritability and for some real traits. In such cases, we set h2

pop = 100%.)
Raw data are in SI Appendix, Table 6. (B) Disease model LPΔ(k, h

2
pathway, 0%,

μ). For various parameters, curves show value of λMZ and phantom herita-
bility πphantom. Values of k and h2

pathway are as in A. Values of prevalence μ
are 0.1% (solid), 1% (dotted), and 10% (dashed). The red asterisk indicates
example Δ* referred to in the text. In both A and B, as k increases, the trait
becomes more nonlinear; phantom heritability increases to 50% and be-
yond. Raw data are in SI Appendix, Table 7.

Zuk et al. PNAS | January 24, 2012 | vol. 109 | no. 4 | 1195

G
EN

ET
IC
S

ST
A
TI
ST

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119675109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119675109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119675109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119675109/-/DCSupplemental/sapp.pdf


Even though all variants have been discovered, they will ap-
pear to explain only 47% (=25.4/54.0) of the apparent herita-
bility, h2pop. The remaining 53% is phantom heritability, which
will never be explained by additional variants. It is the result of
analyzing the data under an erroneous model.
Similar results are obtained for a wide range of parameters.

Fig. 1A shows results for k= 1–10, h2pathway = 10–90%, and cR =
0 or 50%. The phantom heritability grows steadily with k. A
mathematical theorem (16) implies that πphantom→100% as k
grows (SI Appendix, section 3.4).
Disease traits. We can similarly define a limiting pathway model
for disease traits by applying a threshold to the LP model for
quantitative traits. Specifically, we define the disease trait LPΔ(k,
h2pathway, cR, μ) as occurring if and only if LP(k, h2pathway, cR) ≤ τ,
with μ denoting the disease prevalence. The case k = 1 again
reduces to the additive model. What happens for k > 1?
Again, let us consider a specific case: Δ* = LPΔ(3, 50%, cR,

1%), with cR = 0% for all relatives. Based on the observed rel-
ative risks to MZ and DZ twins, a geneticist would calculate that
h2pop = 49.0%. However, an infinitely large genetic mapping
study would yield h2known (=h2all) = 21.2%. Even though all
variants had been identified, they would appear to explain only
43.2% = (21.2/49.0) of the apparent heritability h2pop. The
remaining 56.8% is phantom heritability. Similar results are
obtained for a wide range of parameters. Fig. 1B shows results
for k = 1–10, h2pathway = 10–90%, and c = 0.1, 1, and 10%.

Epistasis Is Common.The results show thatmistakenly assuming that
a trait is additive can seriously distort inferences about missing
heritability. From a biological standpoint, there is no a priori reason
to expect that traits should be additive. Biology is filled with non-
linearity: The saturation of enzymes with substrate concentration
and receptors with ligand concentration yields sigmoid response
curves; cooperative binding of proteins gives rise to sharp tran-
sitions; the outputs of pathways are constrained by rate-limiting
inputs; and genetic networks exhibit bistable states.
Genetic studies in model organisms have long identified specific

instances of interacting genes (17). Important examples include
synthetic traits (e.g., 18), which occur only when multiple loci or
pathways are all disrupted. With the advent of genome-wide
mapping in controlled genetic backgrounds in model organisms,
studies have begun to reveal that epistasis is pervasive. In the yeast
Saccharomyces cerevisiae, Brem et al. (19) analyzed as quantitative
traits the levels of gene transcripts in segregants of a cross between
two strains. For each transcript, they found the strongest quanti-
tative trait locus (QTL) in the cross and then, conditional on the
genotype at this locus, identified the strongest remaining QTL. In
67% of cases, these two QTLs demonstrated epistatic interactions.
In bacteria, Khan et al. (20) and Chou et al. (21) have recently
demonstrated clear epistasis among collections of five mutations
that increase growth rate. In mouse and rat, Shao et al. (22) ana-
lyzed a panel of chromosome substitution strains, with each strain
carrying a different chromosome from a donor strain on a common
recipient genetic background. For dozens of quantitative traits, the
sum of the effect attributable to the individual donor chromosomes
far exceeds (median eightfold) the total effect of the donor ge-
nome, indicating strong epistasis. Although genetic interactions are
hard to detect in humans (see below), several cases involving var-
iants with large marginal effects have been recently reported in
Hirschsprung’s disease, ankylosing spondylitis, psoriasis, and type I
diabetes (SI Appendix, section 7.1).
Several arguments are sometimes offered in support of the

assumption of additivity (e.g., linearity of responses to selection).
We discuss the flaws in such reasoning (SI Appendix, section 11).

Can We Detect Genetic Interactions by Comparisons Across Relatives?
Can a geneticist avoid being fooled by phantom heritability by
detecting a priori that a trait involves genetic interactions, based

on the phenotypic correlations between close relatives? The task
turns out to be difficult even if we restrict attention only to
LP models.
Phenotypic distribution. The phenotypic distribution of a quantitative
trait would not reveal the presence of genetic interactions. The
distribution for LP(k) traits with modest values of k (say, k ≤ 10) is
reasonably similar to the normal distribution in the additive model
(SI Appendix, Fig. 1). Moreover, deviations from perfect normality
are common in real traits and are typically resolved by applying
a transformation to the distribution.
Sib correlations. Phenotypic correlations among sibs would not
reveal that a trait involves genetic interactions. For quantitative
traits, the correlations (rMZ, rDZ) for the LP models above are
similar to those seen for real traits: They fit comfortably within
the range of values recently reported by Hill et al. (23) for 86
traits (SI Appendix, section 5.1). For disease traits, the relative
risks (λMZ, λsib) for various LP models similarly resemble those
seen for real traits, for example, those reported for 15 actual
diseases by Wray et al. (24) (SI Appendix, section 5.2).
Correlations among extended relatives. That sib correlations alone do
not distinguish between additive and nonadditive LP models is not
surprising: For either model, one can select parameters that largely
fit the observed correlations. One might expand the analysis by
considering additional relatives. For a trait with no shared envi-
ronment, the phenotypic correlation between relatives should de-
crease linearly with genetic relatedness (γR) if the trait is additive
(by Eq. 3), but should be concave up if the trait involves genetic
interactions. In theory, one could test for genetic interactions by
fitting different genetic models to the curve of phenotypic corre-
lations among relatives. In practice, it is difficult to draw strong
conclusions from such analysis. First, such tests essentially depend
on fitting a handful of values (e.g., correlations for individuals with
γR= 1, 1/2, 1/4, and 1/8) with limited precision. Second, differences
in the degree of shared environmental variance between relative
types can substantially alter the shape of the curve (SI Appendix,
section 6).
Examples: Crohn’s disease and schizophrenia. The problem of dis-
cerning genetic architecture from a few parameters can be il-
lustrated by considering alternative models for real diseases.
For Crohn’s disease, current GWAS have identified 71 risk loci.

Assuming the disease follows an additive model, these known loci
explain h2known = 10.8% of the total phenotypic variance, or
πexplained = 21.5%of the heritability (assuming h2all = h2pop=50%).
Alternatively, one can define an LP(3) model that is consistent with
the prevalence and sib risks. Under this model, the phantom heri-
tability is πphantom = 62.8%. Genetic interactions would account for
80% [=62.8/(1 − 0.215)] of the currently missing heritability. The
known variants would account for πexplained = 57.5% [=21.5/(1 −
0.628)] of the true heritability h2all = 18.6% (SIAppendix, section 6).
For schizophrenia, Risch (15) presented recurrence risks for

various relative types (γR = 1, 1/2, 1/4, and 1/8). We fit an ad-
ditive model and an LP(2) model to the data (SI Appendix,
section 6). Both models fit well, yet the former has no phantom
heritability, whereas the latter has phantom heritability of 46%.

Can We Detect Genetic Interactions from Pairwise Epistasis? Even
though it is difficult to detect genetic interactions a priori based
on population data such as sib correlations, one might still hope
to detect epistasis among variants a posteriori once they have
been mapped. Indeed, geneticists have tested for pairwise epis-
tasis between loci, but have found few significant signals. Should
failure to detect pairwise epistasis allay our concerns about
phantom heritability? Unfortunately, the answer is no.
The reason is that individual interaction effects are expected

to be much smaller than linear effects, and the sample size re-
quired to detect an effect scales inversely with the square of the
effect size. If n loci had equivalent effects, the sample size to
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detect the n loci would thus scale with n2, whereas the sample
size to detect their ∼n2 interactions scales with n4.
Consider the LP(3) disease model Δ* discussed above, with

phantom heritability of 56.8%. Suppose that we consider two var-
iants with frequency 20% that contribute to different pathways and
increase risk by 1.3-fold (which is a large effect relative to those
typically seen in GWAS). The sample size required to detect the
variants is ∼4,900 (with 50% power and genome-wide significance
level of α = 5 × 10−8 in a genome-wide association study with an
equal number of cases and controls), whereas the sample size re-
quired to detect their pairwise interaction is roughly 450,000 (at
50% power and an appropriate significance level to account for
multiple hypothesis testing). A researcher who studied 100,000
samples would likely discover all of the loci but would find little
evidence of epistatic interactions. The researcher might conclude
that the genetic architecture is additive, although the phantom
heritability is actually >50%. In short, the failure to detect epistasis
does not rule out the presence of genetic interactions sufficient to
cause substantial phantom heritability. (We discuss other ways to
potentially detect epistasis in SI Appendix, section 7.5.)

Consistent Top-Down Estimator of h2all. What we need is a top-down
estimator h2all that is consistent not simply for additive traits but for
any genetic architecture. Traditional approaches fail because they
focus on phenotypic correlations between close relatives; this cre-
ates two problems: (i) Extensive allele sharing between close rel-
atives makes it difficult to disentangle the effects of genetic
interactions; and (ii) differences of shared environment between
different relative types make it difficult to disentangle the effects
of environment.
We can eliminate these problems by studying nearly unrelated

individuals in a population. Specifically, one can (i) identify pairs
of individuals whose probability of allele sharing at the causal loci
differs slightly from the population average, and (ii) measure how
their phenotypic similarity depends on their genotypic similarity.
This goal can be accomplished by studying recent genetically

isolated populations (such as Iceland, Finland, theHutterites, or the
Amish), in which one can use dense genotyping to reliably detect
large segments shared identical-by-descent (IBD) between indi-
viduals (SI Appendix, section 8). We have the following theorem.

Theorem 1. Consider a population in which one can detect large
segments shared IBD between individuals. Given two individuals
Ii and Ij, let κi,j = κ(Ii,Ij) denote the proportion of their genomes
shared in large IBD segments. Let κ0 denote the average value of
κ across the pairs in the population.
Given a trait, let ρ(κ) denote the average phenotypic corre-

lation between pairs of individuals who share proportion κ of
their genomes in large IBD blocks. Regardless of the genetic
architecture of the trait, the true heritability h2all equals
h2slopeðκ0Þ ¼ ð1− κ0Þρ′ðκ0Þ, where ρ′(κ0) is the rate of change of
phenotypic correlation around the average sharing level of large

IBD segments. Accordingly, dh2slopeðκ0Þ provides a consistent top-
down estimator for h2all.

The theorem applies to both quantitative traits and disease
traits [with heritability measured on the disease (0,1) scale] with
individuals sampled from the general population. The proof
appears in SI Appendix, section 8, along with a version for indi-
viduals ascertained in a case–control study.
To apply this result in practice, one would (i) take a collection

of individuals from the population; (ii) for each pair of individ-
uals, calculate the product Q of the phenotype and the degree κ
of IBD sharing; and (iii) estimate ρ′(κo) as the regression co-
efficient of Q on κ, for pairs with κ in a neighborhood around κo.
Fig. 2 illustrates the approach on simulated data for the

quantitative trait P* above, where h2all = 25.4% and h2pop =

54%. With simulated data for 1,000 individuals with IBD sharing

similar to that seen in Qatar (25), we estimate dh2slopeðκ0Þ = 25.8 ±
8.2%, which is very close to the correct value of h2all = 25.4%.
It is instructive to compare our approach with two elegant

methods recently introduced by Visscher and colleagues, which
inspired our own work. Both methods involve regressing pheno-
typic correlation on genotypic similarity. The first (26) measures
genotypic similarity in terms of IBD within sib pairs—essentially
measuring ρ′(1/2), in our terminology. It eliminates the effects of
shared environment by studying a single type of relative, but is
confounded by genetic interactions because it studies close relatives
(SI Appendix, section 10). The second (27) measures genotypic
similarity in terms of identity by state across an SNP catalog for
pairs of individuals in a population. As the authors note, the ap-
proach is not confounded by genetic interactions, but does not yield
a consistent estimator because its sensitivity to causal variants falls
with allele frequency. Nonetheless, this method yields a valuable
lower bound on h2all.

Discussion
The main points of this paper are that (i) current estimates of the
proportion of heritability explained by known variants (πexplained)
implicitly assume that traits involve no genetic interactions; (ii)
this assumption is not justified, because many models with
interactions are equally consistent with available data; and (iii)
under some of these models, the true value of πexplained may be
much larger than current estimates. Accordingly, the widely held
belief that missing heritability directly reflects the variance due
to as-yet undiscovered variants is unjustified. Rather, missing
heritability may be due in significant part to genetic interactions.
We focus here on a simple and biologically natural model, the

limiting pathway model; it cannot readily be distinguished from
an additive model based on population data or tests of pairwise
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Fig. 2. Estimating additive heritability from the slope of phenotypic corre-
lation around mean IBD sharing. We performed simulations of the estimator
in theorem 1. Genotype and phenotype data were generated for samples of
1,000 individuals chosen from an isolated population (mean IBD sharing κ0 =
3.5%, SD 5.7%) and the limiting pathway trait P* (described in text) with
1,000 causal loci (see SI Appendix, section 9 for details); results were averaged
over 100 simulations. For each pair of individuals, we computed the product
Z1Z2 and the IBD sharing (SI Appendix). Blue error bars show mean and SD of
expectation of Z1Z2 for pairs in each 1% bin of IBD sharing, estimated from all
such pairs across all 100 simulations. The black curve shows an analytic ap-
proximation for the mean phenotypic similarity rR (SI Appendix, section 3.3,
Eq. 3.12). The red line shows a least-squares linear regression line fitted using
all pairs with IBD sharing in the interval [0, 2κ0]. The average estimated slope
(multiplied by 1 − κ0) was 0.258 ± 0.082; as expected from theorem 1, this is
very close to the true heritability h2

all = 0.254 (and different from the ap-
parent heritability, h2

pop = 0.54).
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epistasis, yet entails substantial phantom heritability. Our focus
on the LP model is not meant to imply that real traits necessarily
follow this particular model; it simply provides an existence proof
that erroneous assumptions may give rise to substantial missing
heritability. We discuss more general multiple pathway models
(SI Appendix, section 4.4), which also show substantial phantom
heritability. (Beyond G–G interactions, we note that G–E
interactions can produce additional phantom heritability.)
Importantly, we do not mean to propose that missing herita-

bility is entirely, or even primarily, due to genetic interactions.
On the contrary, many more causal variants are likely to exist,
and to account for a significant part of the missing heritability.
Discovery efforts should continue vigorously.
The case of Crohn’s disease illustrates these points. The cur-

rently known loci can explain ∼22%, ∼58%, or more of the true
heritability, depending on whether the disease follows an LP(1),
LP(3), or other model. The available data cannot distinguish
among the models. This spectacular degree of uncertainty under-
mines “inference by default,” for example, the frequent conclusion
that rare variants must largely cause a disease, because common
variants explain “too little” of the heritability. [Notably, a recent
study of Crohn’s disease (28) reported that the rare variants
explained 10- to 20-fold less of the heritability than the common
variants at 56 disease-associated loci.]
Given the dependence of results on genetic architecture,

authors reporting proportions of heritability explained or missing
should state clearly that the calculations are made under the
arbitrary assumption that the trait is additive.
In LP models, phantom heritability increases with the number

of pathways. More generally, traits with greater biological com-
plexity may have greater phantom heritability. Current studies are
broadly consistent with such a notion: The apparent heritability
explained for “simpler” traits such as levels of fetal hemoglobin is
greater than for “more complex” traits such as body–mass index or
age at menarche (SI Appendix, section 6.3). Such differences may
reflect both the number of loci and the genetic interactions un-
derlying the traits.
The fraction of the apparent heritability of human traits due

to genetic interactions cannot be inferred from available data,

although the pervasiveness of epistasis in experimental organ-
isms suggests that the true heritability h2 of traits may be much
lower than current estimates. (Lower values of h2 do not mean
that traits are “less genetic” in the popular use of the term, which
refers to the total contribution of genes, H2. It simply means that
additive effects comprise a smaller fraction of H2.)
We describe a potential solution to overcome the problem of

genetic interactions: Theorem 1 provides a top-down method to
measure additive heritability that is consistent regardless of the
underlying genetic architecture. In principle, the approach can
provide an accurate assessment of heritability, as well as allow
detection of the presence of genetic interactions by comparing
top-down estimates obtained from different methods. To assess
its practical utility, it will be necessary to apply it to appropriate
data from isolated populations.
Finally, notwithstanding our focus here, we believe that concerns

about missing heritability should not distract from the fundamental
goals of medical genetics. Human genetic studies to discover var-
iants associatedwith common traits should primarily be regarded as
the analog to mutant hunts in model organisms, with the primary
purpose being to identify the underlying pathways and processes.
The key focus should be to study the biological role of the variants
discovered so far. The proportion of phenotypic variance explained
by a variant in the human population is a notoriously poor predictor
of the importance of the gene for biology or medicine. [A classic
example is the gene encoding HMGCoA reductase, which explains
only a tiny fraction of the variance in cholesterol levels but is
a powerful target for cholesterol-lowering drugs (1).] Ultimately,
the most important goal for biomedical research is not explaining
heritability—that is, predicting personalized patient risk—but un-
derstanding pathways underlying disease and using that knowledge
to develop strategies for therapy and prevention.
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