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THE N = 1 TRIPLET VERTEX OPERATOR SUPERALGEBRAS

DRAŽEN ADAMOVIĆ AND ANTUN MILAS

ABSTRACT. We introduce a new family of C2-cofinite N = 1 vertex operator superalgebras

SW(m), m ≥ 1, which are natural super analogs of the triplet vertex algebra family W(p),

p ≥ 2, important in logarithmic conformal field theory. We classify irreducible SW(m)-modules

and discuss logarithmic modules. We also compute bosonic and fermionic formulas of irre-

ducible SW(m) characters. Finally, we contemplate possible connections between the category

of SW(m)-modules and the category of modules for the quantum group Usmall
q (sl2), q = e

2πi
2m+1 ,

by focusing primarily on properties of characters and the Zhu’s algebra A(SW(m)). This paper

is a continuation of our paper Adv. Math. 217 (2008), no.6, 2664-2699.
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1. INTRODUCTION

Compared to rational vertex algebras, significantly less is known about the structure of mod-

ules for general vertex algebras. Recently, geared up with clues from the physics literature,

some breakthrough has been achieved in understanding at least quasi-rational vertex algebras

(i.e., C2-cofinite irrational vertex algebras), and in particular the triplet vertex algebras W(p),

p ≥ 2 [AM2], [FHST], [CF] (cf. also [Ab] for p = 2). But apart from the symplectic fermions

W(2), the description of categories of weak (logarithmic) modules for other triplets W(p), p ≥ 3

remains open, even though there is strong evidence for Kazhdan-Lusztig correspondence be-

tween the category of logarithmic W(p)-modules and certain categories of modules for quan-

tum groups (for these and related developments we refer the reader to [FHST], and especially

[FGST1], [FGST2], [Se], and references therein).

In [AM2] we obtained several useful results about the structure of the category of W(p)-

modules by using primarily Zhu’s algebra and Miyamoto’s pseudocharacters [Miy]. Eventu-

ally, we will require more-or-less explicit knowledge of ”higher” Zhu’s algebras for the triplet.

But several obstacles (e.g., explicit realization of certain logarithmic modules) prevents us for

taking this theory to the next level. We hope that this approach, in particular, will give an

additional evidence for Kazhdan-Lusztig correspondence, because believe that proper under-

standing of the relationship between quantum groups and triplets.

As with other familiar rational vertex operator algebras (e.g. Virasoro minimal models), one

may also wonder if the triplet has (interesting!) N = k super extensions, and whether those

exhibit similar properties (e.g., C2-cofiniteness). In this paper we solve this problem for k = 1,
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by constructing a family of N = 1 vertex operator superalgebras SW(m), m ≥ 1, which share

many similarities with the triplet family.

In what follows we briefly recall the construction of SW(m) and present our main results.

Let us recall that the triplet vertex algebra W(p) [FHST], [AM2] is defined as the kernel of

a screening operator acting from VL to VL−α
p

where VL is the vertex algebra associated to rank

one even lattice Zα, 〈α,α〉 = 2p, and VL−α
p

is a certain VL-module. To construct an N = 1 super

triplet we replace the even lattice with an odd lattice such that 〈α,α〉 = 2m+ 1, so that VL has

a natural vertex operator superalgebra structure. Then we tensor VL with F , the free fermion

vertex operator superalgebra (cf. [KWn]), and again, there is a screening operator

Q̃ : VL ⊗ F −→ VL− α
2m+1

⊗ F.

The kernel of this operator, denoted by SW(m), is what we call N = 1 triplet vertex operator

superalgebra (or simply, N = 1 super triplet). If we restrict the kernel of Q̃ on the charge zero

subspace we obtain another vertex operator superalgebra

SM(1) ⊂ SW(m),

called N = 1 singlet vertex operator superalgebra. Both vertex operator superalgebras con-

tain Neveu-Schwarz vector τ , giving a representation of ns Lie superalgebra of central charge

3
2 − 12m2

2m+1 . This is precisely the central charge of (1, 2m + 1) Neveu-Schwarz (degenerate) min-

imal modules. A different N = 1 extension of the symplectic fermion W-algebra W(2) was

considered in [MS]

By using the notation used by physicists, our super triplet would be an example of a super

W-algebra of type W(32 , 2m + 1
2 , 2m + 1

2 , 2m + 1
2). Similarly, the N = 1 singlet algebra SM(1)

is an example of a super W-algebra of type W(32 , 2m + 1
2). We should say that for low m (e.g.,

m = 1) some general properties of W superalgebras with two generators were also discussed

in the physics literature, but mostly by using Jacobi identity and methods of Lie algebras (cf.

[BS] and references therein). We should also mention that several general results about W-

superalgebras associated to affine superalgebras were recently obtained in [Ar], [KWak] (see

also [HK]). However, super singlet and super triplet vertex superalgebras do not appear in

these works.

Because of the similarity between W(p) and SW(m) many results we obtain here are in-

timately related to those for the triplet [AM2] (cf. [FGST1], [CF]), but there are some subtle
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differences which we address at various stages. However, to keep the paper self-contained at

many places we gave proofs that are almost identical to those in [AM2].

Let us first consider the super singlet SM(1). This vertex superalgebra is too small to be

C2-cofinite (let alone rational!), which is evident from the following result.

Theorem 1.1. Assume that m ≥ 1.

(i) The singlet vertex superalgebra SM(1) is a simple N = 1 vertex operator superalgebra gener-

ated by τ and a primary vector H of conformal weight 2m+ 1
2 .

(ii) The associative Zhu’s algebra A(SM(1)) is isomorphic to the commutative algebra C[x, y]/〈P (x, y)〉
where 〈P (x, y)〉 is the ideal in C[x, y] generated by the polynomial

P (x, y) = y2 − Cm

2m∏

i=0

(x− h2i+1,1), ,

where Cm is a non-trivial constant and h2i+1,1 = i(i−2m)
2(2m+1) .

So the structure and representation theory of SM(1) is quite similar to that of M(1) in-

vestigated in [A3] and [AM1]. In particular we can construct interesting logarithmic SM(1)–

modules and logarithmic intertwining operators as defined in [HLZ].

Next we study the vertex operator superalgebra SW(m). The main result on the structure

on this vertex superalgebra is

Theorem 1.2. Assume that m ≥ 1.

(i) SW(m) is a simple N = 1 vertex operator superalgebra generated by τ and three primary

vectors E,F,H of conformal weight 2m+ 1
2 .

(ii) The vertex operator superalgebra SW(m) is irrational and C2-cofinite.

(iii) SW(m) has precisely 2m+ 1 inequivalent irreducible modules.

Our proof of (iii) imitates the proof of C2-cofiniteness for the triplet W(p) [AM2] (for a dif-

ferent proof see [CF]). The rest is done by combining methods of Zhu’s associative algebra and

our knowledge of irreducible VL ⊗ F -modules. In parallel with the triplet vertex algebra, we

do not have an explicit description of A(SW(m)), but we believe that the following conjecture

should hold true.

Conjecture 1.1. The Zhu’s algebra decomposes as a sum of ideals

A(SW(m)) =

3m⊕

i=2m+1

Mh2i+1,1 ⊕
m−1⊕

i=0

Ih2i+1,1 ⊕ Ch2m+1,1 ,
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where Mh2i+1,1
∼= M2(C), dim(Ih2i+1,1) = 2 and Ch2m+1,1 is one-dimensional. In particular A(SW(m))

is 6m+ 1-dimensional.

In view of the classification result (cf. Theorem 1.1), it is important to compute irreducible

characters and study their modular transformation properties. As with the triplet vertex alge-

bra [F1], irreducible SW(m)-characters are often expressible as sums of modular forms of un-

equal weight. Also, because we are working within vertex operator superalgebras the SL(2,Z)

group should be replaced with the θ-group Γθ. Then we have

Theorem 1.3. The Γθ-closure of the space spanned by irreducible SW(m)-characters is 3m + 1-

dimensional.

For a more precise statement see Theorem 12.1. Our result should be compared with [F1],

where it was observed that the SL(2,Z) closure of the vector space of W(p) characters is 3p− 1

dimensional. Finally, in parallel with [FGK] and [FFT], we also obtain (see Section 13) fermionic

formulas for characters of irreducible SW(m)-modules. Our main results indicate that there is

an interesting relationship between characters of irreducible SW(m)-modules and irreducible

characters of W(2m + 1)-modules. It is not clear if there is a deeper connection between these

two W-algebras.

Notice that if Conjecture 1.1 is true, then the center of A(SW(m)) is 3m + 1-dimensional,

which is precisely the dimension of the center of the small quantum group U small
q (sl2), q =

e
2πi

2m+1 [Ker]. It is no accident that this dimension matches the dimension in Theorem 1.3 (similar

phenomena occurs for the triplet vertex algebra [FGST1]). Furthermore, both U small
q (sl2) and

SW(m) have the same number of irreducible modules [Ker] (see also [La]). Thus, motivated

by conjectures in [FGST1], we expect the following (rather bold) conjecture to be true.

Conjecture 1.2. The category of weak SW(m)-modules is equivalent to the category of modules for the

quantum group U small
q (sl2), where q = e

2πi
2m+1 .

Acknowledgement: We thank the anonymous referee for his/her valuable comments.

2. PRELIMINARIES

In this section we briefly discuss the definition of vertex operator superalgebras, their mod-

ules and intertwining operators as developed in [FFR], [K], [KWn], [Li], [HLZ], [HM], etc. We

assume the reader is familiar with basics of vertex algebra theory (cf. [FHL], [FLM], [FB], [K],

[LL], etc.).
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Let V = V0̄ ⊕ V1̄ be any Z2–graded vector space. Then any element u ∈ V0̄ (resp. u ∈ V1̄) is

said to be even (resp. odd). We define |u| = 0̄ if u is even and |u| = 1̄ if u is odd. Elements in V0̄

or V1̄ are called homogeneous. Whenever |u| is written, it is understood that u is homogeneous.

The notion of vertex operator superalgebra is a natural (and straightforward) generalization

of the notion of vertex algebra where the vector space V in the definition is assumed to be

Z2-graded, where the vertex operator map

Y (·, z) : V −→ Hom(V, V ((z)), Y (u, z) =
∑

n∈Z

unz
−n−1

is compatible with the Z2-grading, and where Jacobi identity for a pair of homogeneous ele-

ments is adjusted with an appropriate sign.

A vertex superalgebra V is called a vertex operator superalgebra if there is a special element

ω ∈ V0̄ (called conformal vector) whose vertex operator we write in the form

Y (ω, z) =
∑

n∈Z

ωnz
−n−1 =

∑

n∈Z

L(n)z−n−2,

such that L(n) close the Virasoro algebra representation on V , and where V is 1
2Z-graded (by

weight), truncated from below, with finite-dimensional vector spaces. Also, the grading is de-

termined with the action of the Virasoro operator L(0). In this paper, we shall assume that

V0̄ =
∐

n∈Z≥0

V (n), V1̄ =
∐

n∈
1
2+Z≥0

V (n), where V (n) = {a ∈ V | L(0)a = na}.

For a ∈ V (n), we shall write wt(a) = n or deg(a) = n. We shall sometimes refer to vertex

operator superalgebra V as a quadruple (V, Y,1, ω), where 1 is the vacuum vector (as for vertex

operator algebras).

We say that the vertex operator superalgebra V is generated by the set S ⊂ V if

V = span
C
{u1n1

· · · urnr
1 | u1, . . . , ur ∈ S, n1, . . . , nr ∈ Z, r ∈ Z>0}.

The vertex operator algebra V is said to be strongly generated (cf. [K]) by the set R if

V = span
C
{u1n1

· · · urnr
1 | u1, . . . , ur ∈ R, ni < 0, r ∈ Z>0}.

In parallel with vertex algebras we can define the notion of weak module for vertex operator

superalgebras. Again, the only new requirement is that the vector space M in the definition

is Z2-graded, with grading compatible with respect to the action of V , and where the Jacobi

identity is adjusted as in the case of vertex superalgebras. The vertex operator acting on M is

usually denoted by YM .
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A weak V –module (M,YM ) is called an (ordinary) V -module if M carries an action of the Vi-

rasoro algebra via the expansion of YM (ω, x), and in addition M is equipped with a R-grading

(or even C-grading) determined by the Virasoro operator L(0). In addition, the grading is

truncated from below, with finite dimensional graded subspaces.

As usual, we say that a V -module M is irreducible (or simple) if M has no proper submod-

ules. We say that a vertex operator superalgebra is rational if every V -module M is semisimple

(i.e., M decomposes as a direct sum of irreducible modules) and if V has only finitely many

(inequivalent) irreducible modules.

Definition 2.1. Let V be a vertex operator superalgebra. We say that a weak V -module M is

logarithmic, if it carries an action of the Virasoro algebra and if it admits decomposition

M =
∐

r∈C

Mr,

where

Mr = {v : (L(0) − r)kv = 0, for some k ∈ N}.

2.1. Zhu’s algebra A(V ). We define two bilinear maps ∗ : V × V → V , ◦ : V × V → V as

follows. For homogeneous a, b ∈ V let

a ∗ b =

{
ResxY (a, x) (1+x)deg(a)

x b if a, b ∈ V0̄

0 if a or b ∈ V1̄

(2.1)

a ◦ b =





ResxY (a, x) (1+x)deg(a)

x2 b if a ∈ V0̄

ResxY (a, x) (1+x)
deg(a)−

1
2

x b if a ∈ V1̄

(2.2)

Next, we extend ∗ and ◦ on V ⊗ V linearly, and denote by O(V ) ⊂ V the linear span of

elements of the form a ◦ b, and by A(V ) the quotient space V/O(V ). The image of v ∈ V , under

the natural map V 7→ A(V ) will be denoted by [v]. The space A(V ) has a unital associative

algebra structure, with the product ∗ and [1] as the unit element. The associative algebra A(V )

is called the Zhu’s algebra of V .

Assume that M = ⊕
n∈

1
2Z≥0

M(n) is a 1
2Z≥0–graded V –module. Then the top component

M(0) of M is a A(V )–module under the action [a] 7→ o(a) = awt(a)−1 for homogeneous a in V0̄.

We shall sometimes write a(0) for o(a). (Note that if a ∈ V1̄, then [a] = 0 in A(V ). We formally

set o(a) = a(0) = 0 in this case.)

Moreover, there is one-to-one correspondence between irreducible A(V )–modules and irre-

ducible 1
2Z≥0–graded V –modules (cf. [KWn]).
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As usual, for a vertex operator superalgebra V we let

C2(V ) = {a−2b : a, b ∈ V }.

Then it is not hard to see that

P(V ) = V/C2(V )

has a super Poisson algebra structure with the multiplication

ā · b̄ = a−1b,

and the Lie bracket

[ā, b̄] = a0b,

where − denotes the natural projection from V to P(V ) (see for instance [Z]). Therefore we

have a decomposition P(V ) = P(V )0 ⊕ P(V )1 into even and odd subspace, respectively. If

V/C2(V ) is finite-dimensional we say that V is C2-cofinite. Let a, b ∈ V , be Z2 homogeneous.

Then by using super-commutator formulae in vertex operator superalgebras one can easily see

that

ā · b̄− (−1)|a||b|b̄ · ā = 0 in V/C2(V ).(2.3)

The following result was proved in [DK], and it is a generalization of Proposition 2.2 in [Ab].

Proposition 2.1. Let V be strongly generated by the set S. Then we have:

(1) P(V ) is generated by the set {a, a ∈ S}.

(2) A(V ) is generated by the set {[a], a ∈ S}.

(3) If V is C2-cofinite

dim(P(V )0) ≥ dim(A(V )).

2.2. Intertwining operators among vertex operator superalgebra modules. Intertwining op-

erators for superconformal vertex operator algebras were introduced in [KWn]. Their theory

is further developed in [HM] by using both even and odd formal variables. We briefly outline

the definition here.

Definition 2.2. Let V be a vertex operator superalgebra and M1, M2 and M3 a triple of V –module. An

intertwining operator Y(·, z) of type
( M3

M1 M2

)
is a linear map

Y : M1 → End(M2,M3){z},

w1 7→ Y(w1, z) =
∑

n∈C

(w1)nz
−n−1,
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satisfying the following conditions for wi ∈ Mi, i = 1, 2 and a ∈ V :

(I1) Y(L(−1)w1, z) =
d
dzY(w1, z).

(I2) (w1)n(w2) = 0 for Re(n) sufficiently large.

(I3) The following Jacobi identity holds

z−1
0 δ

(
z1 − z2

z0

)
YM3(a, z1)Y(w1, z2)w2 − (−1)|a||w1|z−1

0 δ

(
z2 − z1
−z0

)
Y(w1, z2)YM2(a, z1)w2

= z−1
2 δ

(
z1 − z0

z2

)
Y(YM1(a, z0)w1, z2)w2,

for Z2-homogeneous a and w1.

We shall denote by

I

(
M3

M1 M2

)

the vector space of intertwining operators of type
(

M3
M1 M2

)
. Their dimensions are known as the

”fusion rules”.

3. N = 1 NEVEU-SCHWARZ VERTEX OPERATOR SUPERALGEBRAS

The N = 1 Neveu-Schwarz (or simply NS) algebra is the Lie superalgebra

ns =
⊕

n∈Z

CL(n)
⊕ ⊕

m∈
1
2+Z

CG(m)
⊕

CC

with commutation relations (m,n ∈ Z):

[L(m), L(n)] = (m− n)L(m+ n) + δm+n,0
m3 −m

12
C,

[G(m+
1

2
), L(n)] = (m+

1

2
− n

2
)G(m+ n+

1

2
),(3.1)

{G(m+
1

2
), G(n − 1

2
)} = 2L(m+ n) +

1

3
m(m+ 1)δm+n,0C,(3.2)

[L(m), C] = 0, [G(m+
1

2
), C] = 0.

It is important to consider vertex algebras which admit an action of the N = 1 Neveu-

Schwarz algebras (cf. [HM]). These vertex operator superalgebras are called N = 1 Neveu-

Schwarz vertex operator superalgebras and are subject to an additional axiom:

There exists τ ∈ V3/2 (superconformal vector) such that

Y (τ, z) =
∑

n∈Z+1/2

G(n)z−n−3/2, G(n) ∈ End(V )
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where G(n) satisfy bracket relations as in (3.1) and (3.2).

The simplest examples of N = 1 vertex operator superalgebras are ns-modules Lns(c, 0),

c 6= 0 where we use the standard notation and for any (c, h) ∈ C2 we denote by Lns(c, h) the

corresponding irreducible highest weight ns–module with central charge c and highest weight

h (cf. [KWn], [Li], [A1], [HM]). It is well-known that the vertex operator superalgebra Lns(c, 0),

c 6= 0 is simple.

Set

cp,q =
3

2
(1− 2(p − q)2

pq
),

hr,sp,q =
(sp− rq)2 − (p− q)2

8pq
.

In the rest of the paper we shall focus on certain ns modules of central charge c2m+1,1, m ≥ 1.

4. FUSION RULES FOR N = 1 SUPERCONFORMAL (2m+ 1, 1)-MODELS

From now on we will mostly focus on (non-minimal) (2m+1, 1)-models, so that p = 2m+1,

q = 1. Relevant lowest weights are hr,s := hr,s2m+1,1, r, s ∈ Z.

It will be of great use to determine the fusion rules

(4.1) I

(
L(c2m+1,1, h

r′′,s′′)

L(c2m+1,1, hr,s) L(c2m+1,1, hr
′,s′)

)

for certain triples (r, s), (r′, s′) and (r′′, s′′) ∈ Z2. For m = 0 (i.e., the c = 3/2 case) these numbers

were computed in (see [M1]). In particular, for every s > 0 we have:

(4.2) L(
3

2
, h1,3)× L(

3

2
, h1,2s+1) = L(

3

2
, h1,2s−1)⊕ L(

3

2
, h1,2s+1)⊕ L(

3

2
, h1,2s+3),

where × is just a formal product indicating which triples of irreducible modules admit non-

trivial fusion rules (all with multiplicity one). As shown in [M1], the fusion rules for m = 0 can

be computed by using certain projection formulas for singular vectors combined with Frenkel-

Zhu’s formula. It is not hard to see that the same approach extends to m ≥ 1 as well. We only

have to apply appropriate projection formulas as in Lemma 3.1 of [IK1]. Actually, for purposes

of this paper we do not need any of results from [IK1], because we are interested only in special

properties of ”fusion rules” (4.1) (nevertheless, see Remark 4.1).

Proposition 4.1. For every i = 0, ...,m − 1 and n ≥ 1 we have: the space

I

(
L(c2m+1,1, h)

L(c2m+1,1, h1,3) L(c2m+1,1, h2i+1,2n+1)

)
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is nontrivial only if h ∈ {h2i+1,2n−1, h2i+1,2n+1, h2i+1,2n+3}, and

I

(
L(c2m+1,1, h)

L(c2m+1,1, h1,3) L(c2m+1,1, h2i+1,1)

)

is nontrivial only if h = h2i+1,3.

Similarly, for every i = 0, ...,m − 1 and n ≥ 2 we have: the space

I

(
L(c2m+1,1, h)

L(c2m+1,1, h1,3) L(c2m+1,1, h2i+1,−2n+1)

)

is nontrivial only if h ∈ {h2i+1,−2n−1, h2i+1,−2n+1, h2i+1,−2n+3}, and

I

(
L(c2m+1,1, h)

L(c2m+1,1, h1,3) L(c2m+1,1, h2i+1,−1)

)

is nontrivial only if h ∈ {h2i+1,−3, h2i+1,−1}.

For a stronger statement see Remark 4.1.

Proof. We assume that n ≥ 1 (for other cases essentially the same argument works). Let

A(L(c2m+1,0, 0)) be the Zhu’s algebra of L(c2m+1,0, 0) (polynomial algebra in one variable) and

A(L(c2m+1, h)) the A(L(c2m+1,0, 0))-bimodule of L(c2m+1, h) [FZ].

As in [M1], it is sufficient to analyze the structure of the A(L(c2m+1,0, 0))-module

(4.3) A(L(c2m+1, h
1,3))⊗A(L(c2m+1,0,0) L(c2m+1,1, h

2i+1,2n+1)(0),

where L(c2m+1,1, h)(0) denotes the top weight component of L(c2m+1,1, h) (cf. [FZ]). From [IK1]

(or elsewhere) it follows that the Verma module M(c2m+1,0, h
1,3) combines in the following

short exact sequence

0 −→ M(c2m+1,0, h
1,3 +

3

2
) −→ M(c2m+1,0, h

1,3) −→ L(c2m+1,0, h
1,3) −→ 0.

Thus the maximal submodule of M(c2m+1,0, h
1,3) is generated by a singular vector of weight

h1,3 + 3
2 (explicitly, (−L(−1)G(−1/2) + (2m + 1)G(−3/2))v1,3 where v1,3 is the highest weight

vector in M(c2m+1,0, h
1,3)). Now, as in [M1], it is not hard to see that the space (4.3) is three-

dimensional and that all fusion rules covered by the statements are at most 1 (actually, they are

all one; see Remark 4.1).

�

Remark 4.1. We can actually prove ”if and only if” statement in Proposition 4.1 by using at

least two different methods. On one hand we would have to combine methods from [M1]

and projection formula in Lemma 3.1 [IK1] (we do not have explicit singular vectors to work
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with!). Alternatively, with Proposition 4.1, it is sufficient to construct non-trivial intertwining

operators for all types covered in Proposition 4.1. This was actually done in later sections.

We should say that our fusion rules formulas coincide with Iohara-Koga’s fusion rule for-

mula in the generic case, which are computed by using coinvariants and projection formu-

las rather than Frenkel-Zhu’s formula [IK1]. But as we know the coinvariant approach and

Frenkel-Zhu’s formulas yield the same answer in practically all known examples (for further

examples see [W], [M1], [M4]).

5. LATTICE AND FERMIONIC VERTEX SUPERALGEBRAS

We shall first recall some basic facts about lattice and fermionic vertex superalgebras.

Let m ∈ Z≥0. Let L̃ = Zβ be a rational lattice of rank one with nondegenerate bilinear form

〈·, ·〉 given by

〈β, β〉 = 1

2m+ 1
.

Let h = C ⊗Z L̃. Extend the form 〈·, ·〉 on L̃ to h. Let ĥ = C[t, t−1] ⊗ h ⊕ Cc be the affinization

of h. Set ĥ+ = tC[t] ⊗ h; ĥ− = t−1C[t−1] ⊗ h. Then ĥ+ and ĥ− are abelian subalgebras of ĥ. Let

U(ĥ−) = S(ĥ−) be the universal enveloping algebra of ĥ−. Let λ ∈ h. Consider the induced

ĥ-module

M(1, λ) = U(ĥ)⊗U(C[t]⊗h⊕Cc) Cλ ≃ S(ĥ−) (linearly),

where tC[t] ⊗ h acts trivially on Cλ
∼= C, h acting as 〈h, λ〉 for h ∈ h and c acts on Cλ as multi-

plication by 1. We shall write M(1) for M(1, 0). For h ∈ h and n ∈ Z write h(n) = tn ⊗ h. Set

h(z) =
∑

n∈Z
h(n)z−n−1. Then M(1) is a vertex algebra which is generated by the fields h(z),

h ∈ h, and M(1, λ), for λ ∈ h, are irreducible modules for M(1).

As in [DL] (see also [D], [FLM], [GL], [K]), we have the generalized vertex algebra

V
eL = M(1) ⊗ C[L̃],

where C[L̃] is a group algebra of L̃ with a generator eβ . For v ∈ V
eL

, let Y (v, z) =
∑

s∈ 1
2m+1

Z
vsz

−s−1

be the corresponding vertex operator (for precise formulae see [DL]).

Define α = (2m + 1)β. Then 〈α,α〉 = 2m + 1, implying L = Zα ⊂ L̃ is an integer lattice.

Therefore the subalgebra VL ⊂ V
eL

has the structure of a vertex superalgebra.
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Define the Schur polynomials Sr(x1, x2, · · · ) in variables x1, x2, · · · by the following equa-

tion:

exp

(
∞∑

n=1

xn
n
yn

)
=

∞∑

r=0

Sr(x1, x2, · · · )yr.(5.1)

For any monomial xn1
1 xn2

2 · · · xnr
r we have an element

h(−1)n1h(−2)n2 · · · h(−r)nr
1

in M(1) for h ∈ h. Then for any polynomial f(x1, x2, · · · ), f(h(−1), h(−2), · · · )1 is a well-

defined element in M(1) . In particular, Sr(h(−1), h(−2), · · · )1 ∈ M(1) for r ∈ Z≥0. Set Sr(h)

for Sr(h(−1), h(−2), · · · )1.

The following relations in the generalized vertex operator algebra V
eL

are of great importance:

eγi e
δ = 0 for i ≥ −〈γ, δ〉.(5.2)

Especially, if 〈γ, δ〉 ≥ 0, we have eγi e
δ = 0 for i ∈ Z≥0, and if 〈γ, δ〉 = −n < 0, we get

eγi−1e
δ = Sn−i(γ)e

γ+δ for i ∈ {0, . . . , n}.(5.3)

5.1. Fermionic vertex operator superalgebra F. In what follows we consider the Clifford alge-

bra CL, generated by {φ(n), n ∈ 1
2 + Z} ∪ {1} and relations

{φ(n), φ(m)} = δn,−m, n,m ∈ 1
2 + Z.

Let F be the CL–module generated by the vector 1 such that

φ(n)1 = 0, n > 0.

Then the field

Y (φ(−1
2 )1, z) = φ(z) =

∑

n∈
1
2+Z

φ(n)z−n−
1
2 ,

generate a unique vertex operator superalgebra structure on F . We choose

ω(s) =
1

2
φ(−3

2)φ(−1
2 )1

for the Virasoro element giving central charge 1
2 . Moreover, F is a rational vertex operator

superalgebra, and F is up to equivalence the unique irreducible F–module (see [FRW], [KWn],

[Li]).
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5.2. Vertex superalgebra SM(1). In this subsection we study the vertex superalgebraSM(1) :=

M(1) ⊗ F . We shall first define a family of N = 1 superconformal vectors in SM(1). For every

m ∈ Z≥0, we define (see also [MR], [K],[IK2])

τ =
1√

2m+ 1

(
α(−1)1 ⊗ φ(−1

2)1+ 2m1⊗ φ(−3
2 )1.

)

ω =
1

2(2m + 1)
(α(−1)2 + 2mα(−2))1 ⊗ 1+ 1⊗ ω(s).

Set

Y (τ, z) = G(z) =
∑

n∈Z

G(n + 1
2)z

−n−2, Y (ω, z) = L(z) =
∑

n∈Z

L(n)z−n−2.

Then τ is an N = 1 superconformal vector, and the vertex subalgebra of SM(1) strongly gen-

erated by the fields G(z) and L(z) is isomorphic to the Neveu-Schwarz vertex operator super-

algebra Lns(c2m+1,1, 0), where c2m+1,1 = 3
2(1 − 8m2

2m+1 ). In other words, SM(1) becomes a Fock

module for the Neveu-Schwarz algebra with central charge c2m+1,1. Moreover, for every λ ∈ h,

the SM(1)–modules SM(1, λ) := M(1, λ)⊗F is also a Fock module with central charge c2m+1,1

and conformal weight

(5.4)
1

2(2m + 1)
(〈λ, α〉2 − 2m〈λ, α〉).

Now we want to describe the structure of these Fock modules viewed as ns-modules. For

this purpose we need the concept of screening operators. As in [A3], we shall construct these

operators using generalized vertex algebras.

The N = 1 superconformal vector τ ∈ M(1) ⊗ F also defines an N = 1 superconformal

structure on V
eL⊗F and VL⊗F . In particular, VL⊗F is an N = 1 vertex operator superalgebra.

The operator L(0) defines a 1
2Z≥0–gradation on VL ⊗ F . Recall that wt(v) = n if L(0)v = nv.

Define

s(1) = eα ⊗ φ(−1
2)1 ∈ VL ⊗ F,

s(2) = e−β ⊗ φ(−1
2 )1 ∈ V

eL
⊗ F.

By using the Jacobi identity in the (generalized) vertex algebras VL ⊗ F and V
eL ⊗ F we get

the following formulas

[G(n +
1

2
), s

(1)
i ] = − i√

2m+ 1
eαi+n, [L(n), s

(1)
i ] = −i s

(1)
i+n (i ∈ Z)(5.5)

[G(n +
1

2
), s(2)r ] = r

√
2m+ 1e−β

i+n, [L(n), s(2)r ] = −r s
(2)
r+n (r ∈ 1

2m+ 1
Z).(5.6)
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Let

Q = s
(1)
0 = Resz Y (s(1), z),

Q̃ = s
(2)
0 = ReszY (s(2), z) .

From relations (5.5) and (5.6) we see that the operators Q and Q̃ commute with the action of

the Neveu-Schwarz algebra (see also [IK2]).

We are interested in the action of these operators on SM(1). In fact, Q and Q̃ are the screening

operators, and therefore KerSM(1)Q and KerSM(1)Q̃ are vertex subalgebras of SM(1) (for details

see Section 14 in [FB] and reference therein).

The following lemma gives the basic properties of the operatorsQ and Q̃. The proof is similar

to that of Lemma 2.1 in [A3].

Lemma 5.1.

(i) If m 6= 0, [Q, Q̃] = 0.

(ii) Q̃enα 6= 0, n ∈ Z>0.

(iii) Q̃e−nα = 0, n ∈ Z≥0.

We now define the following three (non-zero) elements in the vertex operator superalgebras

VL ⊗ F :

F = e−α, H = QF, E = Q2F.

By using expression for conformal weights (5.4) and Lemma 5.1, we conclude that these vectors

are singular vectors for the action of the Neveu-Schwarz algebra, and

wt(F ) = wt(H) = wt(E) = h1,3 = 2m+ 1
2 .

It is also important to notice that H ∈ SM(1).

The proof of the following result is similar to that of Lemma 3.1 in [A3].

Lemma 5.2. In the vertex operator superalgebra VL ⊗ F the following relations hold:

(i) Q3F = 0.

(ii) EiE = FiF = 0, for every i ≥ −2m− 1.

(iii) Q(HiH) = 0, for every i ≥ −2m− 1.

We define

F̂ = e−α ⊗ φ(−1
2), Ĥ = QF̂ , Ê = Q2F̂ .(5.7)

These vectors are even and have conformal weight 2m+1. We will need the following result.
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Lemma 5.3. We have

F̂iF̂ = 0, ÊiÊ = 0, i ≥ −2m.

Also,

Q(ĤiĤ) = 0, i ≥ −2m.

Proof. Since Q acts as a derivation if F̂iF̂ = 0, for i ≥ −2m then Q4(F̂iF̂ ) = 6ÊiÊ = 0, for

i ≥ −2m. We only have to notice relations

F̂kF̂ = Resxx
kY (e−α, x)e−α ⊗ Y (φ(−1/2), x)φ(−1/2)1,

Resxx
iY (e−α, x)e−α = 0, i ≥ −2m− 1,

proven in Lemma 5.2, and

Resxx
jY (φ(−1/2), x)φ(−1/2)1 = 0, j ≥ 1.

The last formula follows from Q3(F̂iF̂ ) = 0 for i ≥ −2m. �

6. THE N = 1 NEVEU-SCHWARZ MODULE STRUCTURE OF VL ⊗ F -MODULES

For i ∈ Z, we set

γi =
i

2m+ 1
α.(6.1)

We shall first present results on the structure of VL ⊗ F–modules as modules for the N = 1

Neveu-Schwarz algebra. It is a known fact that irreducible VL ⊗ F -modules are given by

VL+γi ⊗ F, i = 0, ..., 2m.

Each VL+γi is a direct sum of super Feigin-Fuchs modules via

VL+γi ⊗ F =
⊕

n∈Z

(M(1) ⊗ eγi+nα)⊗ F.

We shall now investigate the action of the operator Q. Since operators Qj , j ∈ Z>0, commute

with the action of the Neveu-Schwarz algebra, they are actually intertwiners between super

Feigin-Fuchs modules inside VL+γi ⊗ F . Assume that 0 ≤ i ≤ m. If Qjeγi−nα is nontrivial, it is

a singular vector in the Fock module SM(1, γi + (j − n)α) of weight

wt(Qjeγi−nα) = wt(eγi−nα) = h2i+1,2n+1,

where h2i+1,2n+1 := h2i+1,2n+1
1,2m+1 . Since wt(eγi+(j−n)α) > wt(eγi−nα) if j > 2n, we conclude that

Qjeγi−nα = 0 for j > 2n.(6.2)
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One can similarly see that for m+ 1 ≤ i ≤ 2m :

Qjeγi−nα = 0 for j > 2n+ 1.(6.3)

The following lemma is useful for constructing singular vectors in VL+γi ⊗ F :

Lemma 6.1.

(1) Q2neγi−nα 6= 0 for 0 ≤ i ≤ m.

(2) Q2n+1eγi−nα 6= 0 for m+ 1 ≤ i ≤ 2m.

Proof. We shall prove the assertion (1) by induction on n ∈ Z>0.

For n = 1 we can see directly that Q2eγi−α 6= 0 (or see below).

Assume now that (1) holds for certain n ∈ Z>0. Since VL+γi ⊗ F is a simple module for the

simple vertex operator superalgebra VL ⊗ F we have that

Y (E, z)Q2neγi−nα 6= 0,

(for the proof see [DL]). So there is j0 ∈ Z such that

Ej0Q
2neγi−nα 6= 0 and EjQ

2neγi−nα = 0 for j > j0.

Since

Ej0Q
2neγi−nα =

1

(n+ 1)(2n + 1)
Q2n+2(e−α

j0
eγi−nα),

we have that j0 ≤ i−1−(2m+1)n. By using the fusion rules from Proposition 4.1, we conclude

that

e−α
j0

eγi−nα ∈ U(ns).eγi−(n+1)α

and therefore Q2n+2eγi−(n+1)α 6= 0, which proves (1). Notice that the idea used in the induction

step, and fusion rules from Proposition 4.1 can be alternatively used to show that Q2eγi−α 6= 0.

The proof of (2) is similar so we omit it here.

�

Remark 6.1. It would be desirable - in parallel with the Virasoro algebra case - to have a direct

proof of Lemma 6.1 with no reference to fusion rules. However, the Virasoro algebra approach

based on matrix coefficients does not apply verbatim to superconformal (1, 2m + 1)-models,

so we decided to give a proof which uses the theory of vertex algebras and fusion rules. We

found this approach to be quite elegant. We also remark that Iohara and Koga proved certain

properties of screening operators among super Feigin-Fuchs modules in Theorem 3.1, [IK2]

(see also [MR]), but it is not clear whether these results can be used to prove Lemma 6.1.
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As in the Virasoro algebra case the N = 1 Feigin-Fuchs modules are classified according

to their embedding structure. For our purposes we shall focus only on modules of certain

type (Type 4 and 5 in [IK2]). These modules are either semisimple (Type 5) or they become

semisimple after quotienting with the maximal semisimple submodule (Type 4). As usual the

singular vectors will be denoted by • and cosingular vectors with ◦.

The following result follows directly from Lemma 6.1 and the structure theory of super

Feigin-Fuchs modules [IK2] after some minor adjustments of parameters (cf. Type 4 embed-

ding structure).

Theorem 6.1. Assume that i ∈ {0, . . . ,m− 1}.

(i) As a module for the Neveu-Schwarz algebra, VL+γi ⊗ F is generated by the family of singular and

cosingular vectors S̃ingi
⋃

C̃Singi, where

S̃ingi = {u(j,n)i | j, n ∈ Z≥0, 0 ≤ j ≤ 2n}; C̃Singi = {w(j,n)
i | n ∈ Z>0, 0 ≤ j ≤ 2n− 1}.

These vectors satisfy the following relations:

u
(j,n)
i = Qjeγi−nα, Qjw

(j,n)
i = eγi+nα.

The submodule generated by singular vectors S̃ingi, denoted by SΛ(i+ 1), is isomorphic to 1

∞⊕

n=0

(2n+ 1)Lns(c2m+1,1, h
2i+1,2n+1).

(ii) For the quotient module we have

SΠ(m− i) := (VL+γi ⊗ F )/SΛ(i + 1) ∼=
∞⊕

n=1

(2n)Lns(c2m+1,1, h
2i+1,−2n+1).

The situation described in Theorem 6.1 can be depicted by the following diagram:

1In this section notation k Lns(c, h) means Lns(c, h)⊕k, k ∈ Z≥0.



19

(6.4) j = −2 j = −1 j = 0 j = 1 j = 2

•

◦

OO

��

◦

��
• • •

◦

OO

��

◦

OO

��

◦

OO

��

◦

��
• • • • •

Let M ′ be the contragradient V -module, where V is a vertex operator superalgebra. Then

we have an isomorphism of M(1)⊗ F -modules.

(M(1) ⊗ e
j

2m+1
α+iα ⊗ F )′ ∼= (M(1) ⊗ e

2m−j

2m+1
α−iα ⊗ F ).

By taking direct sums we obtain the following isomorphism of ns-modules

(6.5) (VL+γi ⊗ F )′ ∼= VL+γ2m−i
⊗ F.

Since the dual functor interchanges cosingular and singular vectors, Theorem 6.1 implies the

next result (alternatively, use Type 4 embedding structure in [IK2]):

Theorem 6.2. Assume that i ∈ {0, . . . ,m− 1}.

(i) As a module for the Neveu-Schwarz algebra, VL+γ2m−i
⊗F is generated by the family of singular and

cosingular vectors S̃ing
′

i

⋃
C̃Sing

′

i, where

S̃ing
′

i = {u
′(j,n)
i | n ∈ Z>0, 0 ≤ j ≤ 2n− 1}; C̃Sing

′

i = {w
′(j,n)
i | j, n ∈ Z≥0, 0 ≤ j ≤ 2n}.

These vectors satisfy the following relations:

u
′(j,n)
i = Qjeγ2m−i−nα, Qjw

′(j,n)
i = eγ2m−i+nα.

The submodule generated by singular vectors S̃ingi is is isomorphic to
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SΠ(m− i) ∼=
∞⊕

n=1

(2n)Lns(c2m+1,1, h
2i+1,−2n+1).

(ii) For the quotient module we have

SΛ(i+ 1) ∼= (VL+γi ⊗ F )/SΠ(m − i) ∼=
∞⊕

n=0

(2n+ 1)Lns(c2m+1,1, h
2i+1,2n+1).

The embedding diagram for VL+γ2m−i
⊗ F , i = 0, ...,m − 1 is now

(6.6) j = −1 j = 0 j = 1 j = 2

◦

��
• •

◦

OO

��

◦

OO

��

◦

��
• • • •

Finally, (6.5) imply that VL+γm ⊗ F is a self-dual VL ⊗ F -module. In view of that, it is not

surprising that VL+γm ⊗ F is a semisimple ns-module. More precisely, we have the following

result (for the proof see embedding structure in Type 5 case in [IK2])

Theorem 6.3. As a module for the Neveu-Schwarz algebra VL+γm ⊗ F is completely reducible and

generated by the family of singular vectors

S̃ingm = {u(j,n)m := Qjeγm−nα | j, n ∈ Z≥0, 0 ≤ j ≤ 2n};

and it is isomorphic to

SΛ(m+ 1) := VL+γm ⊗ F ∼=
∞⊕

n=0

(2n+ 1)Lns(c2m+1,1, h
2m+1,2n+1).

The embedding structure in the last case is a totally disconnected diagram
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(6.7) j = −2 j = −1 j = 0 j = 1 j = 2

•

• • •

• • • • •

: : : : :

7. THE VERTEX OPERATOR SUPERALGEBRA SM(1)

Let us fix a positive integer m. We shall first present the structure of the vertex operator su-

peralgebra SM(1) as a module for the Neveu-Schwarz algebra. The next result follows directly

from Theorem 6.1.

Theorem 7.1. For every n ∈ Z≥0, set

un := u
(n,n)
0 = Qne−nα, wn+1 := w

(n+1,n+1)
0 .

(i) The vertex operator superalgebra SM(1), as a module for the vertex operator superalgebra Lns(c2m+1,1, 0),

is generated by the family of singular and cosingular vectors S̃ing
⋃

C̃Sing, where

S̃ing = {un | n ∈ Z≥0}; C̃Sing = {wn | n ∈ Z>0}.

Moreover, U(ns)un ∼= Lns(c2m+1,1, h
1,2n+1) .

(ii) The submodule generated by vectors un, n ∈ Z≥0 is isomorphic to

[Sing] ∼=
∞⊕

n=0

Lns(c2m+1,1, h
1,2n+1).

(iii) The quotient module is isomorphic to

M(1)/[Sing] ∼=
∞⊕

n=1

Lns(c2m+1,1, h
1,−2n+1).

(iv) Qu0 = Q1 = 0, and Qun 6= 0, Qwn 6= 0 for every n ≥ 1.

Our Theorem 7.1 immediately gives the following result.
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Proposition 7.1. We have

Lns(c2m+1,1, 0) ∼= W0 = KerSM(1)Q .

Define the following vertex algebra

SM(1) = KerSM(1)Q̃.

Since Q̃ commutes with the action of the Neveu-Schwarz algebra, we have

Lns(c2m+1,1, 0) ∼= W0 ⊂ SM(1).

This implies that SM(1) is a vertex operator subalgebra of SM(1) in the sense of [FHL] (i.e.,

SM(1) has the same Virasoro element as SM(1)).

The following theorem will describe the structure of the vertex operator superalgebra SM(1)

as a Lns(c2m+1,1, 0)–module.

Theorem 7.2. The vertex operator superalgebra SM(1) is isomorphic to [Sing] as a Lns(c2m+1,1, 0)–

module, i.e.,

SM(1) ∼=
∞⊕

n=0

Lns(c2m+1,1, h
1,2n+1).

Proof. By Theorem 7.1 we know that the Lns(c2m+1,1, 0)–submodule generated by the set

S̃ing is completely reducible. So to prove the assertion, it suffices to show that the operator Q̃

annihilates vector v ∈ S̃ing ∪ C̃Sing if and only if v ∈ S̃ing. Let v ∈ S̃ing, then v = Qne−nα for

certain n ∈ Z≥0. Since by Lemma 5.1 Q̃e−nα = 0, we have

Q̃v = Q̃Qne−nα = QnQ̃e−nα = 0.

Let now v ∈ C̃Sing. Then there is n ∈ Z>0 such that Qnv = enα. Assume that Q̃v = 0. Then

we have that

0 = QnQ̃v = Q̃Qnv = Q̃enα,

contradicting Lemma 5.1 (iii). This proves the theorem. �

Next we shall prove that the vertex operator algebra SM(1) is generated by only two gener-

ators.

Theorem 7.3.

(1) The vertex operator superalgebra SM(1) is generated by τ and H .

(2) The vertex operator superalgebra SM(1) is strongly generated by the set

{τ, ω,H,G(−1
2 )H}.
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Proof. Let U be the vertex subalgebra of SM(1) generated by τ and H . We need to prove that

U = SM(1). Let Wn by the (irreducible) ns–submodule of SM(1) generated by vector un. Then

Wn
∼= Lns(c2m+1,1, h

1,2n+1). Using Lemma 6.1 we see that

KerSM(1) Q
n ∼=

n−1⊕

i=0

Wi.

To prove (1) suffices to show that un ∈ U for every n ∈ Z≥0. We shall prove this claim by

induction. By definition we have that u0, u1(= H) ∈ U . Assume that we have k ∈ Z≥0 such

that un ∈ U for n ≤ k. In other words, the inductive assumption is ⊕k
i=0Wi ⊂ U.

We shall now prove that uk+1 ∈ U . Set j = −(2m+ 1)k − 1. By Lemma 6.1 we have

Q2k+2e−(k+1)α = Q2k+2
(
e−α
j e−kα

)
6= 0.

Next we notice that

Qk+1(Hjuk) = Qk+1
(
Qe−α

)
j

(
Qke−kα

)
=

1

2k + 1
Q2k+2

(
e−α
j e−kα

)
,

which implies that

Qk+1(Hjuk) 6= 0.

So we have found vector Hjuk ∈ U such that

wt(Hjuk) = wt(uk+1).

This implies

Hjuk ∈
k+1⊕

i=0

Wi and Hjuk /∈
k⊕

i=0

Wi .

Since Qk+1
(
⊕k

i=0Wi

)
= 0 and wt(Hjuk) = wt(uk+1) we conclude that there is a constant C ,

C 6= 0, such that

Hjuk = Cuk+1 + u′, u′ ∈
k⊕

i=0

Wi ⊂ U.

Since Hjuk ∈ U , we conclude that uk+1 ∈ U .

Therefore, the claim is verified, and the proof of (1) is complete.

The proof of (1) shows that SM(1) is spanned by the vectors

u1n1
· · · urnr

1, ui ∈ {τ,H},(7.1)

such that for 1 ≤ i ≤ r:

ni ≤ −1 if ui = H and ni ≤ 0 if ui = τ.(7.2)
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This implies that SM(1) is strongly generated by the set {τ, ω,H,G(−1
2 )H}, and (2) holds. �

The following lemma imply that for i ≥ −(2m + 1) vectors HiH and Ĥi+1Ĥ can be con-

structed using only the action of the Neveu-Schwarz operators L(n) and G(n + 1
2) on the vac-

uum vector 1.

Lemma 7.1. We have:

HiH ∈ W0
∼= Lns(c2m+1,1, 0) for every i ≥ −(2m+ 1),

ĤiĤ ∈ W0
∼= Lns(c2m+1,1, 0) for every i ≥ −2m.

Remark 7.1. If we adopt notation used by physicists, then Theorem 7.3 implies that SM(1) is

a W(32 , 2m + 1
2) superalgebra, meaning that it is generated by primary fields of weight 3

2 and

2m + 1
2 . In some physics papers W(32 , 2m + 1

2 ) super algebras are studied by using general

principles (e.g., Jacobi identities) but only for low m. Because SM(1) shares many similarities

with the singlet algebra M(1) [AM1] we call SM(1) super singlet vertex algebra.

8. ZHU’S ALGEBRA A(SM(1)) AND CLASSIFICATION OF IRREDUCIBLE SM(1)–MODULES

In this section we completely determine Zhu’s algebra A(SM(1)) and classify all irreducible

SM(1)–modules. It turns out that the structure of Zhu’s algebra A(SM(1)) is similar to the

structure of Zhu’s algebra for A(M(1)) studied in [A3] and the proofs of the main results are

completely analogous.

Recall that Ĥ = Q(e−α ⊗ φ(−1
2 )). Clearly, Ĥ is proportional to G(−1

2)H and therefore Ĥ ∈
SM(1).

Next result shows that Zhu’s algebra A(SM(1)) is commutative.

Theorem 8.1. Zhu’s algebra A(SM(1)) is spanned by the set

{[ω]∗s[Ĥ]∗t | s, t ≥ 0}.

In particular, Zhu’s algebra A(SM(1)) is isomorphic to a certain quotient of the polynomial algebra

C[x, y], where x and y correspond to [ω] and [Ĥ].

Proof. The proof follows from Proposition 2.1, Theorem 7.3 and because τ and H are odd

vectors. �

Let hr,s = hr,s2m+1,1, so that h2i+1,1 = i(i−2m)
2(2m+1) .
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As in [A3], for X = F , E or H we let X̂(n) := X̂2m+n (here as usual Y (X̂, z) =
∑

n∈Z X̂nz
−n−1).

In particular, Ĥ(0) is a degree zero operator acting on SM(1). Since SM(1) ⊂ M(1) every

M(1, λ) ⊗ F is naturally an SM(1)-module.

Let T be the subspace of M(1) ⊗ F linearly spanned by the vectors

a⊗ b, where a ∈ M(1), b ∈ F, deg(b) > 0.

(So we only assume that b is homogeneous in F and that it is not proportional to 1).

The proof of the following lemma is a consequence of the definition of vertex superalegbra

structure on M(1)⊗ F .

Lemma 8.1. Let λ ∈ h∗ and vλ be the highest weight vector in M(1, λ) ⊗ F . Assume that w ∈ T .

Then o(w)vλ = 0.

We have the following proposition about the action of ”Cartan subalgebra” of SM(1) on the

top component.

Proposition 8.1. Let λ ∈ h∗, t = 〈α, λ〉 and vλ the highest weight vector in M(1, λ) ⊗ F . Then we

have

L(0) · vλ =
t(t− 2m)

2(2m+ 1)
vλ,

Ĥ(0) · vλ =

(
t

2m+ 1

)
vλ.

Proof. From the very definition of Q and H we see that

Ĥ = φ(1/2)S2m+1(α)φ(−1/2) + w = S2m+1(α) + w,

where

w = S2m−1(α)⊗ φ(−3
2 )φ(−1

2) + · · ·+ 1⊗ φ(−2m− 1
2)φ(−1

2 ) ∈ T .

On the other hand it is known (cf. Proposition 3.1 in [A2]) that

Sr(α)(0)vλ =

(
t

r

)
vλ, r ≥ 1.

The proof follows. ✷

It is not hard to see that x(t) = t(t−2m)
2(2m+1) and y(t) =

(
t

2m+1

)
parametrize the genus zero curve

P (x, y) = 0 where

(8.1) P (x, y) = y2 − Cm

(
x+

m2

2(2m+ 1)

)m−1∏

i=0

(
x− i(i − 2m)

2(2m + 1)

)2

,
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where Cm = 22m+1(2m+1)2m+1

(2m+1)! . Alternatively, notice that we can write

(8.2) P (x, y) = y2 − Cm

2m∏

i=0

(
x− h2i+1,1

)
,

By using arguments analogous to those in the proof of Lemma 6.1 from [A3], we obtain the

following result:

Lemma 8.2. In Zhu’s algebra A(SM(1)) we have the following relation

[Ĥ] ∗ [Ĥ ] = Cm

2m∏

i=0

([ω]− h2i+1,1),

where Cm is as above.

By using Theorem 8.1, Lemma 8.2 and the same proof as that of Theorem 6.1. from [A3] we

get:

Theorem 8.2. Zhu’s algebra A(SM(1)) is isomorphic to the commutative, associative algebra C[x, y]/〈P (x, y)〉
where 〈P (x, y)〉 is the ideal in C[x, y] generated by the polynomial

P (x, y) = y2 − Cm

2m∏

i=0

(x− h2i+1,1).

The fact that Zhu’s algebra A(SM(1)) is commutative, enable us to study irreducible lowest

weight representations of the vertex operator superalgebra SM(1). For given (r, s) ∈ C2 such

that P (r, s) = 0 let L(r, s) be the irreducible lowest weight SM(1)–module generated by the

vector vr,s such that

L(m)v = rδm,0vr,s, Ĥ(m)v = sδm,0rvr,s (m ≥ 0).

Our Theorem 8.2 and standard Zhu’s theory imply the following classification result.

Theorem 8.3. The set

{L(r, s) | P (r, s) = 0}

provides all non-isomorphic irreducible 1
2Z≥0-gradable SM(1)-modules.

By using classification of irreducible SM(1)–modules and the same proof to that of Theorem

4.3 of [AM1] we get:

Corrolary 8.1. The vertex operator superalgebra SM(1) is simple.
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8.1. Logarithmic SM(1)-modules. In [AM1] we studied logarithmic modules for the singlet

vertex algebra M(1)p. Here we have a similar result.

As in [AM1], let M(1, λ)⊗Ω be an ĥ-module, where Ω is a two-dimensional vector space and

where α(0)|Ω is given by formula

(8.3)

[
〈α, λ〉 1

0 〈α, λ〉

]

in some basis {w1, w2} of Ω (see also [M3]). Then M(1, λ)⊗F⊗Ω carries an ns-module structure.

Proposition 8.2. The vector space M(1, λ) ⊗ F ⊗ Ω, λ 6= m
2m+1α is a genuine logarithmic SM(1)-

module 2, while for λ = m
2m+1α, M(1, λ)⊗ F ⊗ Ω is an ordinary SM(1)-module.

Notice that the previous result is in agreement with Theorem 8.2. More precisely, because of

the linear term (x + m2

2(2m+1) ) in P (x, y), as in the proof of Proposition 7.1 [AM1], Theorem 8.2

can be now used to show that there are no logarithmic self-extension of M(1, m
2m+1α)⊗ F .

8.2. Further properties of A(SM(1)). In the next sections we shall make use of the following

important technical results.

Proposition 8.3. In Zhu’s algebra A(SM(1)) we have

[Q2e−2α] = Bmfm([ω])

where

fm([ω]) =
3m∏

i=0

([ω]− h2i+1,1)

and

Bm = (−1)m
(
2m
m

)
(2(2m + 1))3m+1

(4m+1
m

)
(3m+ 1)!2

.

Proof. First we notice that

Q2e−2α = νH−2m−2H + v

where ν 6= 0 and v ∈ U(ns).1 (see also [AM2], Lemma 3.3). The above results on the structure

of A(SM(1)) implies that

[Q2e−2α] = Φm([ω])

2In other words, the module involves nontrivial Jordan blocks with respect to the action of L(0).



28 DRAŽEN ADAMOVIĆ AND ANTUN MILAS

for certain Φm ∈ C[x], degΦm ≤ 3m + 1. We shall evaluate the action of Q2e−2α on top levels

of SM(1)–modules M(1, λ) ⊗ F . Let vλ be the highest weight vector in M(1, λ) ⊗ F . First we

notice that

Q2e−2α =
4m+1∑

i=0

eα−i−1e
α
i e

−2α + w, where w ∈ T .

By using a direct calculation similar to that of [AM2] we see that

o(Q2e−2α)vλ =

∞∑

i=0

o(eα−i−1e
α
i e

−2α)vλ

= Resz1Resz2

∞∑

i=0

z−i−1
1 zi2(z1 − z2)

2m+1(z1z2)
−4m−2(1 + z1)

t(1 + z2)
tvλ

= Resz1Resz2(z1 − z2)
2m(z1z2)

−4m−2(1 + z1)
t(1 + z2)

tvλ

= Φm( 1
2(2m+1) (t

2 − 2tm))vλ = Φ̃m(t)vλ,

where Φ̃m(t) =

2m∑

k=0

(−1)k
(
2m

k

)(
t

4m+ 1− k

)(
t

2m+ 1 + k

)
,

t = 〈λ, α〉.

As in the proof of Lemma 3.4 in [AM2] one can prove the following identity

Φ̃m(t) = Ām

(
t

3m+ 1

)(
t+m

3m+ 1

)
, where Ām =

(−1)m
(
2m
m

)
(4m+1

m

) .(8.4)

This implies

Φm( 1
2(2m+1) (t

2 − 2mt)) = Φ̃m(t) = Bmfm( 1
2(2m+1) (t

2 − 2mt)).

Consequently, Φm is a non-trivial polynomial of degree 3m+ 1 and in A(SM(1)) we have

[Q2e−2α] = Φm([ω]) = Bmfm([ω]), Bm 6= 0 �(8.5)

Define the following non-trivial vector

UF,E := ReszY (F, z)E
(z + 1)2m

z
∈ SM(1).

Set UF,E(0) := o(UF,E) =
∑

i≥0

(2m
i

)
o(Fi−1E).

Proposition 8.4. In Zhu’s algebra A(SM(1)) we have:

[UF,E] = g([ω])[Ĥ ]

where g(x) ∈ C[x] is of degree at most m.
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Proof. First we notice that

UF,E = aH −H ◦H

for certain a ∈ U(ns). This implies that in Zhu’s algebra A(SM(1)), we have

[UF,E ] = g([ω])[Ĥ ](8.6)

where g ∈ C[x] is a polynomial of degree at most m. (Here we used the relation [H ◦ H] = 0,

which holds in A(SM(1)).)

�

It is not at all clear that g(x) is a nonzero polynomial.

9. THE N = 1 TRIPLET VERTEX ALGEBRA SW(m)

Define the following vertex superalgebra

SW(m) = KerVL⊗F Q̃.

Recall definition (5.7). For any X ∈ {E,F,H}, X̂ is proportional to G(−1
2 )X, and therefore

X̂ ∈ SW(m).

Theorem 9.1.

(1) For every m ≥ 1, SW(m) is an N = 1 vertex operator superalgebra and SW(m) ∼= SΛ(1).

(2) The vertex operator superalgebra SW(m) is generated by E, F , H and τ .

(3) The vertex operator superalgebra SW(m) is strongly generated by the set

{τ, ω,E, F,H, Ê, F̂ , Ĥ}.

Proof. Recall the structure of VL⊗F as a module for the Neveu-Schwarz algebra from Theorem

6.1. By using Lemma 5.1 , similarly to the proof of Theorem 7.2, we conclude that SW(m)

is a completely reducible module for the Neveu-Schwarz algebra, generated by the family of

singular vectors:

Qje−nα, n ∈ Z≥0, j ∈ {0, · · · , 2n}.(9.1)

This proves (1).

Let Zn be the Neveu-Schwarz module generated by singular vectors

Qje−ℓα, ℓ ≤ n, j ∈ Z≥0.

Therefore SW(m) =
⋃

n∈Z≥0
Zn. Let now U be the vertex subalgebra of SW(m) generated by

τ,E, F,H . Clearly, U ⊆ SW(m). We shall prove that in fact U = SW(m). In order to do so it is
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sufficient to show that Zn ⊆ U for every n ∈ Z>0. We shall prove this claim by induction on n.

By the definition, the claim holds for n = 1. Assume now that Zn ⊆ U . Set j0 = (2m+ 1)n + 1.

As in the proof of Theorem 7.3 we have

F−j0e
−nα = e−(n+1)α,

E−j0Q
2ne−nα = B2n+1Q

2n+2e−(n+1)α,

where B2n+1 6= 0 and

H−j0Q
je−nα = BjQ

j+1e−(n+1)α + v′j ,

where v′j ∈ Zn, Bj 6= 0, 0 ≤ j ≤ 2n. These relations imply that Zn+1 ⊆ U . By induction we

conclude that Zn ⊆ U for every n ∈ Z>0 and therefore U = SW(m). This proves (2). The proof

of (2) actually gives that SW(m) is spanned by the vectors

u1n1
· · · urnr

1, ui ∈ {τ,E, F,H}(9.2)

such that for 1 ≤ i ≤ r:

ni ≤ −1 if ui ∈ {E,F,H} and ni ≤ 0 if ui = τ.(9.3)

The assertion (3) follows. �

Theorem 9.2. Assume that m ≥ 1. Then we have

(1) The vertex operator superalgebra SW(m) is C2–cofinite.

(2) The vertex operator superalgebra SW(m) is irrational.

Proof. By using Proposition 2.1, relation (2.3) and Theorem 7.2 we conclude thatSW(m)/C2(SW(m))

is generated by

τ , ω,E, Ê, F , F̂ ,H, Ĥ,(9.4)

and that every two generators either commute or anti-commute. In order to prove C2–cofiniteness

it suffices to prove that every generator (9.4) is nilpotent in SW(m)/C2(SW(m)). Let X be ei-

ther E or F . From Lemma 5.2 we see that X−1X = 0, and thus X
2
= 0. By using

G(−i− 1/2)2 = L(−2i− 1) ∈ U(ns)

we get τ2 = 0. Similarly, from

H−1H ∈ U(ns) · 1,

H−1H =
∑

k/2+i1+···+ik+j1+···+js=4m+1

ai1,...,ikG(−i1 − 1/2) · · ·G(−ik − 1/2)L(−j1) · · ·L(−js)1,
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where

i1 > i2 > · · · > ik ≥ 1, j1, . . . , js ≥ 2, ai1,...,ik ∈ C,

it follows that H−1H ∈ C2(SW(m)), and thus

H
2
= H−1H = 0.

We also have X−1X = 0, X ∈ {F̂ , Ê} in SW(m) (cf. Lemma 5.3), so that

X
2
= 0 in SW(m)/C2(SW(m)).

Thus, it remains to prove that ω and Ĥ are nilpotent. We prove this as in [AM2]. Since

Ê−1F̂ + F̂−1Ê + 2Ĥ−1Ĥ = 0

we get

Ĥ
4
= 0.

Moreover, the description of Zhu’s algebra from Theorem 8.2 implies that

Ĥ
2
= Cmω2m+1, (Cm 6= 0),

which implies that ω4m+2 = 0. Therefore, every generator of SW(m)/C2(SW(m)) is nilpotent

and SW(m) is C2–cofinite. This proves (1).

Assertion (2) follows from the fact that VL⊗F is not completely reducible, viewed as SW(m)–

module. �

10. CLASSIFICATION OF IRREDUCIBLE SW(m)–MODULES

From the definition of Zhu’s algebra and the structure of the vertex operator superalgebra

SW(m) follows:

Proposition 10.1. The associative algebra A(SW(m)) is generated by [Ê], [Ĥ], [F̂ ] and [ω].

Proof. The proof follows from Proposition 2.1, Theorem 9.1 and the fact that τ , E, F and H

are all odd. �

Theorem 10.1. In Zhu’s algebra A(SW(m)) we have the following relation

fm([ω]) = 0

where

fm(x) =

3m∏

i=0

(x− h2i+1,1).
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Proof. Since O(SM(1)) ⊂ O(SW(m)), the embedding SM(1) ⊂ SW(m) induces an algebra

homomorphism A(SM(1)) → A(SW(m)). Applying this homomorphism to Proposition 8.3

and using the fact that Q2e−2α ∈ O(SW(m)) we get that fm([ω]) = 0 in A(SW(m)). �

Alternatively, we can write the polynomial fm(x) as

(10.1) fm(x) = (x− h2m+1,1)
m−1∏

i=0

(x− h2i+1,1)2
3m∏

i=2m+1

(x− h2i+1,1),

indicating possibility of existence of logarithmic modules of generalized lowest conformal

weight h2i+1,1, i = 0, ...,m − 1.

Theorem 10.2.

(1) For every 0 ≤ i ≤ m, SΛ(i+1) is an irreducible 1
2Z≥0–gradable SW(m)–module, with the top com-

ponent SΛ(i+ 1)(0) of lowest weight h2i+1,1. Moreover, SΛ(i+ 1)(0) is an 1–dimensional irreducible

A(SW(m))–module.

(2) For every 0 ≤ j ≤ m − 1 , SΠ(m − j) is an irreducible 1
2Z≥0–gradable SW(m)–module, with the

top component SΠ(m− j)(0) of lowest weight h2i+1,1 where i = 2m+1+ j. Moreover, SΠ(m− j)(0)

is an 2–dimensional irreducible A(SW(m))–module.

Proof. Proof is similar to that of Theorem 3.7 in [AM2] so we omit it here. �

Applying the previous theorem in the case of SW(m) = SΛ(1) we get:

Corrolary 10.1. The vertex operator superalgebra SW(m) is simple.

As in [AM2] we have the following result

Proposition 10.2. In Zhu’s associative algebra we have

[Ĥ] ∗ [F̂ ]− [F̂ ] ∗ [Ĥ] = −2q([ω])[F̂ ],(10.2)

[Ĥ] ∗ [Ê]− [Ê] ∗ [Ĥ] = 2q([ω])[Ê](10.3)

[Ê] ∗ [F̂ ]− [F̂ ] ∗ [Ê] = −2q([ω])[Ĥ ].(10.4)

where q is a certain polynomial.

Theorem 10.3. The set

{SΠ(i)(0) : 1 ≤ i ≤ m} ∪ SΛ(i)(0) : 1 ≤ i ≤ m+ 1}

provides, up to isomorphism, all irreducible modules for Zhu’s algebra A(SW(m)).
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Proof. The proof is similar to that of Theorem 3.11 in [AM2]. Assume that U is an irreducible

A(SW(m))–module. Relation fm([ω]) = 0 in A(SW(m)) implies that

L(0)|U = h2i+1,1 Id, for i ∈ {0, . . . ,m} ∪ {2m+ 1, . . . , 3m}.

Assume first that i = 2m + 1 + j for 0 ≤ j ≤ m − 1. By combining Propositions 10.2 and

Theorem 10.2 we have that q(h2i+1,1) 6= 0. Define

e =
1√

2q(h2i+1,1)
[Ê], f = − 1√

2q(h2i+1,1)
[F̂ ], h =

1

q(h2i+1,1)
[Ĥ].

Therefore U carries the structure of an irreducible, sl2–module with the property that e2 =

f2 = 0 and h 6= 0 on U . This easily implies that U is a 2–dimensional irreducible sl2–module.

Moreover, as an A(SW(m))–module U is isomorphic to SΠ(m− j)(0).

Assume next that 0 ≤ i ≤ m. If q(h2i+1,1) 6= 0, as above we conclude that U is an irreducible

1–dimensional sl2–module. Therefore U ∼= SΛ(i+ 1)(0).

If q(h2i+1,1) = 0, from Proposition 10.2 we have that the action of generators of A(SW(m))

commute on U . Irreducibility of U implies that U is 1-dimensional. Since [Ĥ], [Ê]2, [F̂ ]2 must

act trivially on U , we conclude that [Ĥ], [Ê], [F̂ ] also act trivially on U . Therefore U ∼= SΛ(i +

1)(0). �

As a consequence of the previous theorem we have.

Theorem 10.4. The set

{SΠ(i) : 1 ≤ i ≤ m} ∪ {SΛ(i) : 1 ≤ i ≤ m+ 1}

provides, up to isomorphism, all irreducible modules for the vertex operator superalgebra SW(m).

11. ON THE STRUCTURE OF ZHU’S ALGEBRA A(SW(m))

As in [AM2], the main difficulty in description of Zhu’s algebra A(SW(m)) is that of not

having a good understanding of logarithmic SW(m)-modules. For the triplet W(p) this prob-

lem can be resolved, at least if p is prime, by using modular invariance. We believe the same

approach can be applied for SW(m), which would require a super version of Miyamoto’s re-

sult [Miy]. This is the main reason why in this part we focus mostly on the case 2m+1 is prime,

but we expect all results to be true in general.

In many ways this section is analogous to Section 5 (and Appendix) in [AM2], but as we

shall see there are some important differences.

First a few generalities regarding the Lagrange interpolation polynomial.
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Proposition 11.1. Let S = {(x1, y1), ..., (xn, yn)}, xi 6= xj be a set of points in C2 such that their

Lagrange interpolation polynomial Ln(x) is of degree exactly n−1. Then every interpolation polynomial

of degree exactly n is given by

Qλ(x) = Ln(x) + λ
n∏

i=1

(x− xi), λ 6= 0.

Proof. Let P (x) be an arbitrary interpolation polynomial of degree n. Then for some λ, the

polynomial P (x) − λ
∏n

i=1(x − xi) is of degree less or equal n − 1, but not zero. But then

P (x)− λ
∏n

i=1(x− xi) = Ln(x). �

Lemma 11.1. Let Lm(x) be the Lagrange interpolation polynomial for (h2i+1,1,
( i
2m+1

)
), where 2m +

1 ≤ i ≤ 3m. If we let r(t) = Ln(
t(t−2m)
2(2m+1) ), then

r(t) =

∏3m
i=2m+1(t− i)(t− 2m+ i)

(2m+ 1)!

×
3m∑

i=2m+1

(
(i!)2(−1)i+m

(i− 2m− 1)!2(3m− i)!(i +m)!
(

1

t− i
− 1

t− 2m+ i
)

)
∈ C[t].

Now, we have an important technical result (in a slightly different setup a similar result has

been proven in Appendix of [AM2]).

Proposition 11.2. For every m ≥ 1 we have

Lm(h2i+1,1) 6= 0, 0 ≤ i ≤ m.

Proof. As in [AM2] it suffices to let

s(t) =
r(t)∏3m

i=2m+1(t− i)(t− 2m+ i)

and check first

s(0) < 0, s(1) < 0,

which follows by using hypergeometric summations. That r(h2i+1,1) 6= 0 for 0 ≤ i ≤ m follows

now from the recursion

s(t)(m+t)(2m+1−t)2 = 2(m+1−t)(2m2+2tm−2−t2+2t)s(t−1)+(t−1)2(3m+2−t)s(t−2),

because all coefficients in the recursion are positive for 1 ≤ t ≤ m. �

As in Appendix of [AM2] we now observe that

Ĥ ∗ F̂ = a.F,
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where

a ∈ U(ns).

From

deg(Ĥ−1F̂ ) = 4m+ 2,

and

(11.1) [Ĥ ] ∗ [F̂ ] = −q([ω])[F̂ ],

for some q ∈ C[x]. It follows that q([ω]) is a polynomial of degree at most m. In [AM2] this

observation was sufficient to argue that q has to be the interpolation polynomial. However, in

view of Proposition 11.1 and Lemma 11.1, we are unable to argue that q = Lm, because Lm is

of degree m− 1. Thus, it is not clear what the q polynomial should be.

Proposition 11.3. Let g(x) be as in Proposition 8.4 and

u(x) =

3m∏

i=2m+1

(x− h2i+1,1).

Then

g(x) = Dmu(x),

for some constant Dm. Moreover,

(11.2) Dmu([ω]) ∗ [X̂] = 0, X ∈ {F,H,E}.

Proof. First we notice that UF,E = F ◦E ∈ O(SW(m)). Then Proposition 8.4 implies that

g([ω]) ∗ [Ĥ] = 0 in A(SW(m))

for some polynomial of degree at most m. Because we already know all irreducible SW(m)-

modules we also know that g([ω]) must act as zero on all SW(m)-modules with two-dimensional

highest weight subspaces (here [Ĥ] acts nontrivially). Thus we know that

g([ω]) = Dmu([ω])

for some constant Dm. Since Q preserves O(SW(m)) we get (11.2). �

It is crucial for our considerations to show that Dm 6= 0 (i.e., g(x) 6= 0). This will requires

an explicit computation of UF,E(0) on the top degree subspaces of certain SM(1)-modules. We

have the following result.

Theorem 11.1. If m ∈ N such that 2m+ 1 is a prime integer, then g(x) 6= 0.
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For the proof of this important technical result we refer the reader to Appendix.

If Dm 6= 0, Proposition 11.3 and (11.1) we get

[Ĥ] ∗ [F̂ ] = −q([ω])[F̂ ] = −q′([ω])[F̂ ],

where q′([ω]) is a polynomial of degree m − 1, which forces q′ = Lm. We should say here that

in [AM2] the formula (11.2) was a consequence of a formula analogous to (11.1).

Theorem 11.2. Assume that 2m+ 1 is prime or Dm 6= 0. Then we have

(i) [Ê]2 = [F̂ ]2 = 0

(ii) [Ĥ]2 = CmP ([ω]), where

P (x) =
2m∏

i=0

(x− h2i+1,1) ∈ C[x]

and Cm is a nonzero constant.

(iii)

[Ĥ] ∗ [F̂ ] = −[F̂ ] ∗ [Ĥ ] = −q([ω]) ∗ [F̂ ],

[Ĥ] ∗ [Ê] = −[Ê] ∗ [Ĥ ] = q([ω]) ∗ [Ê],

where q(x) is a nonzero polynomial of degree m− 1 and

q(h2i+1,1) 6= 0, 0 ≤ i ≤ m.

(iv)

[Ĥ] ∗ [F̂ ]− [F̂ ] ∗ [Ĥ] = −2q([ω])[F̂ ],

[Ĥ] ∗ [Ê]− [Ê] ∗ [Ĥ] = 2q([ω])[Ê],

[Ê] ∗ [F̂ ]− [F̂ ] ∗ [Ê] = −2q([ω])[Ĥ ],

where q(x) is as in (iii).

(v)
3m∏

i=2m+1

([ω]− h2i+1,1) ∗ [X] = 0, X ∈ {Ê, F̂ , Ĥ}.

(vi) The center of A(SW(m)) is a subalgebra generated by [ω].

Proof. We recall that SW(m) is generated by [ω] and [X̂], X = F , H and E (see Proposition

10.1).
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For (i) we recall [AM2] that Q lifts to a derivation ofA(SW(m)), denoted by the same symbol.

Now, because of Lemma 5.3 we have

[F̂ ] ∗ [F̂ ] = [Ê] ∗ [Ê] = 0.

Part (ii) has been proven in Lemma 8.2.

It is left to show relations (iii), (iv) and (v). As in [AM2] we compute

0 = Q([F̂ ] ∗ [F̂ ]) = [Ĥ ] ∗ [F̂ ] + [F̂ ] ∗ [Ĥ],

which yields

[Ĥ] ∗ [F̂ ] = −[F̂ ] ∗ [Ĥ].

After an application of Q2 on the previous equation we get

[Ĥ] ∗ [Ê] = −[Ê] ∗ [Ĥ].

Two remaining formulas in (iii)

(11.3) [Ĥ] ∗ [F̂ ] = −q([ω]) ∗ [F̂ ],

[Ĥ] ∗ [Ê] = q([ω]) ∗ [Ê],

have already been proven in the discussion preceding the theorem.

The relation (iv) follow from (iii) (cf. [AM2]). Part (v) follows directly from Proposition 11.3.

Part (vi) follows from the fact that q([ω]) is a unit in A(SW(m)). �

Corrolary 11.1. Under the assumptions of Theorem 11.2, the associative algebra A(SW(m)) is spanned

by

{[ω]i, 0 ≤ i ≤ 3m} ∪ {[ω]i ∗ [X], 0 ≤ i ≤ m− 1, X = Ê, F̂ or Ĥ}.

Thus, A(SW(m)) is at most 6m+ 1-dimensional.

By using the same ideas as in [AM2] it is not hard to show that

Theorem 11.3. Assume 2m + 1 be prime or Dm 6= 0. Then the Zhu’s algebra decomposes as a sum of

ideals

A(SW(m)) =

3m⊕

i=2m+1

Mh2i+1,1 ⊕
m−1⊕

i=0

Ih2i+1,1 ⊕ Ch2m+1,1 ,

where Mh2i+1,1
∼= M2(C), 1 ≤ dim(Ih2i+1,1) ≤ 2 and Ch2m+1,1 is one-dimensional.
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It is also not hard to find explicit generators for every ideal, in parallel with [AM2].

As with the triplet we expect that all Ih2i+1,1 are two-dimensional (which is related to exis-

tence of logarithmic modules). This is equivalent to

Conjecture 11.1. The associative algebra A(SW(m)) is 6m + 1-dimensional. Then the center of

A(SW(m)) is 3m+ 1-dimensional.

Remark 11.1. Dong and Jiang have recently proven [DJ] that if A(V ) is semisimple and every

irreducible admissible module is an ordinary module, then V is rational. It is feasible to assume

that their result applies for vertex operator superalgebras. This would imply dim(Ih2i+1,1) = 2

for at least one i, and in particular

dim A(SW(1)) = 7.

(Note that in the case m = 1, D1 6= 0 certainly holds.)

12. MODULAR PROPERTIES OF CHARACTERS OF IRREDUCIBLE SW(m)-MODULES

We first introduce several basic facts regarding classical modular forms needed for descrip-

tion of irreducible SW(m) characters. The Dedekind η-function is usually defined as the infi-

nite product

η(τ) = q1/24
∞∏

n=1

(1− qn),

an automorphic form of weight 1
2 . As usual in all these formulas q = e2πiτ , τ ∈ H 3. We also

introduce

f(τ) = q−1/48
∞∏

n=0

(1 + qn+1/2),(12.1)

f1(τ) = q−1/48
∞∏

n=1

(1− qn−1/2),(12.2)

f2(τ) = q1/24
∞∏

n=1

(1 + qn).(12.3)

These (slightly normalized) Weber functions form a vector-valued modular form of weight

zero. More precisely,

f(−1/τ) = f(τ), f2(−1/τ) =
1√
2
f1(τ), f1(−1/τ) =

√
2f2(τ),

3Here τ - the coordinate of H - should not be confused with the superconformal vector used in previous sections.
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f(τ + 1) = e−2πi/48f1(τ), f2(τ + 1) = e2πi/24f2(τ), f1(τ + 1) = e−2πi/48f(τ).

In what follows, we denote by

Θj,k(τ) =
∑

n∈Z

q(2kn+j)2/4k

Jacobi-Riemann Θ-series where j ∈ Z and k ∈ N/2. We also let

(∂Θ)j,k(τ) =
∑

n∈Z

(2kn + j)q(2kn+j)2/4k.

Then we have transformation formulas (notice that here k ∈ N/2 so Θj,k(τ) is not invariant

under τ −→ τ + 1 in general):

η(−1/τ) =
√
−iτη(τ), η(τ + 1) = eπi/12η(τ)(12.4)

Θj,k(−1/τ) =

√
−iτ

2k

2k−1∑

j′=0

eiπjj
′/kΘj′,k(τ)(12.5)

Θj,k(τ + 2) = eiπj
2/kΘj,k(τ)(12.6)

(∂Θ)j,k(τ + 2) = eiπj
2/k(∂Θ)j,k(τ),(12.7)

(∂Θ)j,k(−1/τ) = (−τ)
√

−iτ/2k

2k−1∑

j′=1

eiπjj
′/k(∂Θ)j′,k(τ).(12.8)

For a vertex operator algebra module M we define its graded-dimension or simply character

χM (τ) = tr|MqL(0)−c/24.

If V = Lns(c2m+1,0, 0) and M = L(c2m+1,0, h
2i+1,2n+1), then (see [IK2], for instance)

(12.9) χLns(c2m+1,1,h2i+1,2n+1)(τ) = q
m2

2(2m+1)
f(τ)

η(τ)

(
qh

2i+1,2n+1 − qh
2i+1,−2n−1

)
.

By combining Theorem 6.1, 6.2 and 6.3, and formula (12.9) we obtain

Proposition 12.1. For i = 0, ...,m − 1

χSΛ(i+1)(τ) =
f(τ)

η(τ)

(
2i+ 1

2m+ 1
Θm−i, 2m+1

2
(τ) +

2

2m+ 1
(∂Θ)m−i, 2m+1

2
(τ)

)
,(12.10)

χSΠ(m−i)(τ) =
f(τ)

η(τ)

(
2m− 2i

2m+ 1
Θm−i, 2m+1

2
(τ)− 2

2m+ 1
(∂Θ)m−i, 2m+1

2
(τ)

)
.(12.11)

Also,

(12.12) χSΛ(m+1)(τ) =
f(τ)

η(τ)
Θ0, 2m+1

2
(τ).
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For purposes of modular invariance, it is also important to compute supercharacters of irre-

ducible modules. Let us recall that a supercharacter of a V -module M is defined

χF
M (τ) = tr|MσqL(0)−c/24,

where σ is the sign operator taking values 1 (resp. −1) on even (resp. odd) vectors.

In parallel with Proposition 12.1, it is not hard to compute irreducible supercharacters of

SW(m)-modules. Here is an explicit description in terms of Θ-constants and their derivatives.

Proposition 12.2. For i = 0, ...,m − 1

χF
SΛ(i+1)(τ) =

f2(τ)

η(τ)

(
2i+ 1

2m+ 1

(
Θ2(m−i),2(2m+1)(τ)−Θ2(m+i+1),2(2m+1)(τ)

)
+(12.13)

+
1

2m+ 1

(
(∂Θ)2(m−i),2(2m+1)(τ)− (∂Θ)2(m+i+1),2(2m+1)(τ)

))
.(12.14)

χF
SΠ(m−i)(τ) =

f2(τ)

η(τ)

(
2m− 2i

2m+ 1

(
Θ2(m−i),2(2m+1)(τ)−Θ2(m+i+1),2(2m+1)(τ)

)
+(12.15)

− 1

2m+ 1

(
(∂Θ)2(m−i),2(2m+1)(τ)− (∂Θ)2(m+i+1),2(2m+1)(τ)

))
.(12.16)

Also,

(12.17) χF
SΛ(m+1)(τ) =

f2(τ)

η(τ)

(
Θ0,2(2m+1)(τ)−Θ2(2m+1),2(2m+1)(τ)

)
.

As in [F2] we now study modular invariance properties of irreducible SW(m) characters

and supercharacters. We only consider some special modular transformations. For example,

χSΛ(i+1)(−1/τ) =
f(τ)

η(τ)

2m∑

k=0

λkΘk, 2m+1
2

(τ)+

+
f(τ)

η(τ)
(−τ)

2m∑

j=1

νj(∂Θ)j, 2m+1
2

(τ),

for some constants λk and νj . Because of

Θj,k = Θ−j,k = Θ2k−j,k = Θ2k+j,k,

(∂Θ)j,k = −(∂Θ)−j,k
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the previous formula indicates that

(12.18) τ
f(τ)

η(τ)
(∂Θ)j, 2m+1

2
(τ), j = 1, ...,m

have to be added to the vector space spanned by irreducible SW(m) characters in order to pre-

serve modular invariance. In the case of the triplet vertex algebra expressions similar to (12.18)

could be interpreted as Miyamoto’s pseudocharacters (cf. [AM2]). On the other hand, the T

transformation τ 7→ τ + 1, maps characters to supercharacters (multiplied with appropriate

scalars). In order to find an SL(2,Z)-closure, we would have to apply the S transformation

on the space of supercharacters, but this requires a knowledge of irreducible σ-twisted charac-

ters. Since we do not study σ-twisted SW(m)-modules in this paper, at this point we record

modular invariance property for the untwisted sector only.

Theorem 12.1. The vector space NS spanned by:

χSΛ(m+1)(τ), χSΛ(i+1)(τ), χSΠ(m−i)(τ), i = 0, ...,m − 1,

τ
f(τ)

η(τ)
(∂Θ)m−i, 2m+1

2
(τ), i = 0, ...,m − 1(12.19)

is (3m+ 1)-dimensional and invariant under the subgroup Γθ ⊂ SL(2,Z), where Γθ = 〈S, T 2〉.

Remark 12.1. We expect that S-transforms of (generalized) supercharacters are expressible in

terms of characters and generalized characters of σ-twisted SW(m)-modules. More precisely,

appropriately defined vector space spanned by characters and generalized supercharacters ,

denoted by ÑS , and the vector space spanned by characters and generalized characters of

σ-twisted modules, denoted by R, should be inter-related as on the diagram

NSS --
T ,, ÑST

ll

S
wwRT 55

S

88

It is known that (super)characters of N = 1 minimal models in NS and R sector transform

according to this picture (see [IK1]).

13. SW(m)-CHARACTERS AND q-SERIES IDENTITIES

In this section we discuss fermionic expressions for irreducible characters of SW(m)-modules.

As we shall see irreducible SW(m)-modules admit q-series formulas similar to those for the

triplet, conjectured by Flohr-Grabov-Koehn [FGK], and proven by Warnaar [Wa] ( Feigin et al.
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independently obtained similar identities by using different methods [FFT]). More precisely,

the characters of irreducible modules for the super triplet SW(m) are intimately related to char-

acters of irreducible W(2m + 1)-modules. It is not clear whether a deeper connection persists

beyond characters.

13.1. The m = 1 case: first computation. Motivated by computations in [FGK] for W(2), here

we probe double-sum fermionic expressions of irreducible characters of SW(1)-modules.

As usual, we will be using

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1),

(a; q)∞ =

∞∏

i=1

(1− aqi−1),

and sometimes we shall write

(q)n = (q; q)n,

for simplicity.

We start a basic relation

(13.1)

∏∞
n=1(1 + qn−1/2)∏∞

n=1(1− qn)
=

1∏∞
n=1(1− qn/2)(1 + qn)

.

We shall also use a Durfee rectangle identities which hold for every k ∈ Z≥0,

1∏
n≥1(1− qn/2)

=

∞∑

n=0

q(n
2+kn)/2

(q1/2)n(q1/2)n+k

=

∞∑

n=0

(−q1/2)n(−q1/2)n+kq
(n2+kn)/2

(q)n(q)n+k
.(13.2)

Another useful elementary formula due to Euler is

(13.3) η(q) = q1/24
∞∑

n=0

(−1)nq(n+1)n/2

(q)n
.

For m = 1 there are three irreducible characters. We will focus here on

(13.4) χSΛ(1)(τ) =
f(τ)

η(τ)

(
1

3
Θ1, 3

2
(τ) +

2

3
(∂Θ)1, 3

2
(τ)

)
.

We first notice a theta-function identity

(∂Θ)1,3/2(τ) =
η(τ)3

f(τ)2
,
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(essentially, a consequence of the Jacobi triple product identity) or equivalently

f(τ)

η(τ)
(∂Θ)1,3/2(τ) =

η(τ)2

f(τ)
.

Now, we apply the relation

f(τ) =
η(τ)2

η(τ/2)η(2τ)

and (13.3), so we obtain

f(τ)

η(τ)
(∂Θ)1,3/2(τ) = η(2τ)η(τ/2) = q5/48

∞∏

n=1

(1− q2n)(1− qn/2)(13.5)

= q5/48
∑

(m1,m2)∈Z2
≥0

(−1)m1+m2(−q1/2; q1/2)m2q
m1(m1+1)+m2(m2+1)/4

(q2)m1(q)m2

.

On the other hand Durfee square identity (13.2) yields (after some computation)

f(τ)

η(τ)
Θ1,3/2(τ)

=
q5/48

(−q; q)∞

∑

(m1,m2) ∈ Z
2
≥0

m1 ≡ m2 (2)

(−q1/2; q1/2)m1(−q1/2; q1/2)m2q
3(m1−m2)

2

8
+

(m1−m2)

2
+

m1m2
2

(q)m1(q)m2

.(13.6)

Evidently, double fermionic expressions for (∂Θ)1,3/2(τ) and Θ1,3/2(τ) (cf. formulas (13.5)

and (13.6), respectively) appear to have little in common, so it is unclear to us that (13.4) admits

representation as a closed double fermionic sum. Thus, it appears that the m = 1 case is rather

different compared to the triplet W(2). This is perhaps reflected by the fact that p = 2 triplet

admits a fermionic construction, while such a realization seems to be absent for SW(1) and its

modules.

13.2. Irreducible SW(m) characters from W(2m+ 1) characters. In this part we will be using

character formulas of irreducible W(p)-modules (see for instance (6.34) and (6.35) in [AM2], or

[FHST]). Recall

f2(τ) = q1/24
∞∏

n=1

(1 + qn).

The first result in this part is

Proposition 13.1. (i) For 0 ≤ i ≤ m, we have

χSΛ(i+1)(τ) =
χΛ(2i+1)(

τ
2 )

f2(τ)
.
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(ii) For 0 ≤ i ≤ m− 1, we also have

χSΠ(m−i)(τ) =
χΠ(2m−2i)(

τ
2 )

f2(τ)
.

Here Λ(i) and Π(2m+ 2− i), i = 1, . . . , 2m+ 1, are irreducible W(2m+ 1)-modules [AM2].

Proof. The proof follows from character formulas for irreducible W(p)-modules, Theorem

12.1, and the following transformation formulas

Θ2j,2m+1(τ/2) = Θ
j,
2m+1

2
(τ),

(∂Θ)2j,2m+1(τ/2) = 2(∂Θ)
j,
2m+1

2
(τ),

1

η(τ/2)
=

f(τ)

η(τ)
f2(τ).

�

We recall two multi-sum identities obtain recently by Warnaar [Wa] (these identities are es-

sentially conjectures from [FGK]):

Theorem 13.1. For λ = 0, . . . , p and σ ∈ {0, 1} we have

∑

n1, ..., np = 0

np−1 + np ≡ 0 (2)

q
Pp

i,j=1 Bi,jninj+λ/2(np−1−np+σ)−σp/4

(q; q)n1 · · · (q; q)nk

(13.7)

=
1

(q; q)∞

∑

n∈Z

qpn
2+(λ−σp)n

and

∑

n1, ..., np = 0,

np−1 + np ≡ 0 (2)

q
Pp

i,j=1 Bi,jninj+λ/2(np−1+np+σ)+
Pp−2

p−λ
(i−p+λ+1)ni−σp/4

(q; q)n1 · · · (q; q)nk

(13.8)

=
1

(q; q)∞

∑

n∈Z

(2n− σ + 1)qpn
2+(λ−σp)n,

where Bi,j are entries of the inverse Cartan matrix of the Lie algebra Dp.

Equipped with Warnaar’s formulas and Proposition 13.1 it is now not hard to prove the next

result
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Theorem 13.2. We have the following formulas for irreducible SW(m)-characters:

q−1/16χSΛ(m+1)(τ)(13.9)

=
∑

n1, ..., n2m+1 = 0,

n2m + n2m+1 ≡ 0 (2)

(−q1/2; q1/2)n1 · · · (−q1/2; q1/2)n2m+1q
P2m+1

k,l=1 Bk,lnknl/2

(−q; q)∞(q; q)n1 · · · (q; q)n2m+1

.

For i = 0, ...,m − 1, we have

q
−ai,mχSΛ(i+1)(τ)

=
X

n1, ..., n2m+1 = 0

n2m + n2m+1 ≡ 0 (2)

(−q
1/2; q1/2)n1 · · · (−q

1/2; q1/2)n2m+1
q

P2m+1
k,l=1

Bk,lnknl/2+(m−i)(n2m+n2m+1)/2+
P2m−1

k=2i+1
(k−2i)nk/2

(−q; q)∞(q; q)n1 · · · (q; q)n2m+1

,

and

q
−bi,mχSΠ(m−i)(τ)

=
X

n1, ..., n2m+1 = 0

n2m + n2m+1 ≡ 1 (2)

(−q
1/2; q1/2)n1 · · · (−q

1/2; q1/2)n2m+1
q

P2m+1
k,l=1

Bk,lnknl/2+(m−i)(n2m+n2m+1)/2+
P2m−1

k=2i+1
(k−2i)nk/2

(−q; q)∞(q; q)n1 · · · (q; q)n2m+1

,

where ai,m and bi,m are certain rational numbers.

Proof. We prove the middle formula only. The other two formulas follow along the same lines.

Recall that

(13.10) χSΛ(i+1)(τ) =
f(τ)

η(τ)

(
2i+ 1

2m+ 1
Θm−i, 2m+1

2
(τ) +

2

2m+ 1
(∂Θ)m−i, 2m+1

2
(τ)

)
.

Now,

2i+ 1

2m+ 1
Θm−i, 2m+1

2
(τ) +

2

2m+ 1
(∂Θ)m−i, 2m+1

2
(τ)

= q(m−i)2/(2(2m+1))
∑

n∈Z

(2n + 1)q
(2m+1)n2+2(m−i)n

2 .

Finally, if we substitute q1/2 for q in (13.8), and let p = 2m+1, σ = 0, λ = 2m− 2i, and apply

formula (13.1) and simple identity

1

(q1/2; q1/2)n
=

(−q1/2; q1/2)n
(q)n

.

the proof automatically follows. �
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14. A CONJECTURAL RELATION OF SW(m) WITH QUANTUM GROUPS

Let ĝ be an untwisted affine Kac-Moody Lie algebra. Then there is a well-known (Kazhdan-

Lusztig) equivalence between the tensor category of Lg(k, 0)-modules k ∈ N, and the semisim-

ple part of the tensor category of Uq(g)-modules where q is a certain root of unity (not to be

confused with q = e2πiτ used in the previous section) depending on the level k and g [Fi].

Notice that on the quantum group side we have a semisimplified category, and not the full

category of Uq(g)-modules.

In [FGST1] and [FGST2] (see also [Se]) the authors proposed a remarkable equivalence be-

tween the (enhanced) tensor category of W(p)-modules and the category of Uq(sl2)-modules,

q = eiπ/p, where Uq(sl2) is the restricted finite-dimensional quantum group. While this is still a

conjecture for p > 2, the same authors established an important weaker equivalence among the

SL(2,Z)-module Zcft formed by generalized W(p) characters and the SL(2,Z)-module Z, the

center of Uq(sl2). Thus, it is natural question to find Kazhdan-Lusztig dual of the category or

ordinary and logarithmic SW(m)-modules. In our case the relevant space of generalized char-

acters is the Γθ invariant subspace described in Theorem 12.1, which is 3m+ 1-dimensional.

As indicated in the introduction, we believe that the quantum group U small
q (sl2), q = e

2iπ
2m+1

is relevant for the supertriplet SW(m). Here are some evidences. Firstly, both SW(m) and

U small
q (sl2) have the same number of inequivalent irreducible representations. Also, in [Ker]

(see also [La]) it was proven that the center of U small
q (sl2) is 3m + 1-dimensional, and that it

carries a projective action of the modular group. Notice that 3m + 1 is also (conjecturally) the

dimension of the center of A(SW(m)). Thus, in parallel with [FGST1], we expect the following

conjecture to be true.

Conjecture 14.1. The category of weak SW(m)-modules is equivalent to the category of U small
q (sl2)-

modules, where q = e
2πi

2m+1 .

Finally, Proposition 13.1 is a strong indication for a possible that the category of SW(m)-

modules should be related to a subcategory of W(2m+1) and Uq(sl2)-modules, q = eπi/(2m+1).

15. OUTLOOK AND FINAL REMARKS

There are several research directions we plan to pursue in the future. Let us mention only a

few we found the most interesting.
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(i) The most important problem that we left open is the existence and description of log-

arithmic SW(m)-modules. We strongly believe the ideas based on modular invariance

as in [AM2] could be successfully applied for the super triplet.

(ii) As with any N = 1 vertex operator superalgebra, the most obvious next step would be

to examine the category of σ-twisted SW(m)-modules, where σ is the parity automor-

phisms. As we already indicated (cf. Theorem 12.1) the space of SL(2,Z)-transforms

of irreducible SW(m)-modules should close a finite-dimensional vector space. Suppos-

edly characters of irreducible σ-twisted modules are included in the same vector space

(cf. Remark 12.1).

(iii) Singular vectors in Feigin-Fuchs modules for the N = 1 Neveu-Schwarz algebra cer-

tainly deserve more attention. We expect these vectors to have description in terms

of modified Jack polynomials and as kernels of super Calogero-Sutherland operators.

Similar results for the Virasoro algebra have been obtained in [MY].

(iv) Our fermionic expressions for theSW(m)-characters indicate a possibility of parafermionic

(or quasiparticle) bases for SW(m)-modules. For the triplet W(p) this problem has been

resolved in [FFT].

16. APPENDIX

Here we prove Theorem 11.1 and give a strong evidence that in Proposition 11.3 the polyno-

mial g(x) is nonzero for every m. In the process of proving these results we discovered certain

constant term identities which are of independent interest.

We recall

UF,E := Resz
(1 + z)2m

z
Y (F, z)E ∈ SM(1).

Then we have

UF,E(0) := o(UF,E) =
∑

i≥0

(
2m

i

)
o(Fi−1E).

In Proposition 8.4 we proved that inside A(SM(1)) we have the relation

[UF,E] = g([ω])[Ĥ ].

Because of the homomorphism from A(SM(1)) to A(SW(m)) and Proposition 11.3 it is suf-

ficient to show that UF,E(0) acts nontrivially on the top components of at least one SM(1)-

modules M(1, λ)⊗ F .
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Proposition 16.1. Let vλ be the highest weight vector in M(1, λ)⊗ F . Then we have

UF,E(0) · vλ = −Gm(t)vλ,

where t = 〈λ, α〉 and

Gm(t) =

2m+1∑

l=1

l−1∑

i=0

2m+1+i−l∑

j=0

l−1−i∑

k=0

(−1)j+k+l

(
2m+ 1

l

)(−2m− 1

j

)
·

(−2m− 1

k

)(
2m− t

j + k + 2m+ 1

)(
t

i− j − l + 2m+ 1

)(
t

l − k − 1− i

)
.

Proof. It is not hard to see that

UF,E =

(
2m∑

i=0

Resz1Resz2Resz3
(1 + z1)

2m

z1
z−i−1
2 zi3Y (e−α, z1)Y (eα, z2)Y (eα, z3)e

−α

)
+ w,

where w ∈ T . By repeatedly using the well-known formula (cf. [LL])

E+(δ, x)E−(γ, y) = (1− y/x)〈δ,γ〉E−(γ, y)E+(δ, x),

which holds for every δ, γ ∈ Zβ, we get

UF,E =
2m∑

i=0

Resz1Resz2Resz3
(1 + z1)

2m

z1
z−i−1
2 zi3(z1z2z3)

−2m−1·

(1− z2/z1)
−2m−1(1− z3/z1)

−2m−1(z2 − z3)
2m+1E−(α, z1)E

−(−α, z2)E
−(−α, z3) + w.

Previous formula together with

o(E−(β, x)) · vλ = (1 + x)−〈β,λ〉vλ

and

o(w)vλ = 0

implies

UF,E(0) · vλ =
2m∑

i=0

Resz1Resz2Resz3
(1 + z1)

2m

z1
z−i−1
2 zi3(z1z2z3)

−2m−1·

(1− z2/z1)
−2m−1(1− z3/z1)

−2m−1(z2 − z3)
2m+1(1 + z1)

−t(1 + z2)
t(1 + z3)

tvλ.

The rest follows by expanding generalized rational functions with respect to standard conven-

tions in vertex algebra theory and extracting the residues in all three variables. �

If we view parameter t as a variable, the expression Gm(t) is a polynomial in t of degree at

most 4m+ 1. However, it is a priori not clear that the polynomial Gm(t) is nonzero. We made

some computations for small m and we came up with the following hypothesis.
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Conjecture 16.1.

Gm(t) =

(
2m

m

)2( t+m

4m+ 1

)
.

We checked this conjecture by using Mathematica package for every m ≤ 20.

As in Section 11, by using representation theory of SW(m) it is not hard to see that
( t+m
4m+1

)

must divide Gm(t) for every m. Since deg(Gm(t)) ≤ 4m+ 1, then we have

(16.1) Gm(t) = Am

(
t+m

4m+ 1

)
,

for some constant Am. But even proving Am 6= 0 seems to be a nontrivial problem.

Proposition 16.2. Let 2m+ 1 be prime. Then Gm(t) 6= 0.

Proof. We will prove this result by virtue of reduction mod 2m+ 1. Let

p = 2m+ 1

be a prime. It is not hard to see that in fact Gm(a) ∈ Z(p), for every a ∈ Z (in other words, Gm(a)

is p-integral). Thus it is sufficient to prove that for some t = t0 we have Gm(t0) 6= 0 mod p. We

take t0 = 3m+ 1 and examine

Gm(t) =

2m+1∑

l=1

l−1∑

i=0

2m+1+i−l∑

j=0

l−1−i∑

k=0

(−1)j+k+l

(
2m+ 1

l

)(−2m− 1

j

)
·

(−2m− 1

k

)( −m− 1

j + k + 2m+ 1

)(
3m+ 1

i− j − l + 2m+ 1

)(
3m+ 1

l − k − 1− i

)
.

The finite sum Gm(3m + 1) has many terms divisible by p. For instance, in the summation, all

terms
(2m+1

l

)
≡ 0 mod p unless l = 2m+1. After some analysis it is not hard to see that possible

nontrivial (mod p) contribution comes only if k = j = 0 and l = 2m+ 1 (in other cases at least

one binomial coefficient is divisible by p). Thus we get:

Gm(3m+ 1) ≡
2m∑

i=0

(−1)

(−m− 1

2m+ 1

)(
3m+ 1

i

)(
3m+ 1

2m− i

)
mod p.

Observe the basic relation
(−m− 1

2m+ 1

)
= −

(
3m+ 1

2m+ 1

)
= −

(
3m+ 1

m

)
.

Also, for i as in the summation we have
(
3m+ 1

i

)(
3m+ 1

2m− i

)
≡ 0 mod p, i 6= m.
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However for i = m we have
(
3m+ 1

m

)
≡ 11−122−1 · · ·mm−1 ≡ 1 mod p.

Consequently, the summation reduces to a single term

Gm(3m+ 1) ≡
(
3m+ 1

m

)3

≡ 1 mod p.

�

Notice that the previous computations support our Conjecture 16.1 because
(
2m

m

)
≡ ±1 mod p,

so that for t = 3m+ 1
(
2m

m

)2( t+m

4m+ 1

)
=

(
2m

m

)2(4m+ 1

4m+ 1

)
≡ 1 mod p.

Remark 16.1. Because of interesting arithmetics involved in Propositions 16.1 and 16.2, we plan

to return to Conjecture 16.1 in our future work.
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