
J
H
E
P
0
9
(
2
0
1
4
)
1
4
3

Published for SISSA by Springer

Received: July 25, 2014

Accepted: September 10, 2014

Published: September 24, 2014

The N = 8 superconformal bootstrap in three

dimensions

Shai M. Chester,a Jaehoon Lee,b Silviu S. Pufua and Ran Yacobya

aJoseph Henry Laboratories, Princeton University,

Princeton, NJ 08544, U.S.A.
bCenter for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.

E-mail: schester@Princeton.edu, jaehlee@MIT.edu, spufu@Princeton.edu,

ryacoby@Princeton.edu

Abstract: We analyze the constraints imposed by unitarity and crossing symmetry on the

four-point function of the stress-tensor multiplet of N = 8 superconformal field theories

in three dimensions. We first derive the superconformal blocks by analyzing the super-

conformal Ward identity. Our results imply that the OPE of the primary operator of the

stress-tensor multiplet with itself must have parity symmetry. We then analyze the relations

between the crossing equations, and we find that these equations are mostly redundant.

We implement the independent crossing constraints numerically and find bounds on OPE

coefficients and operator dimensions as a function of the stress-tensor central charge. To

make contact with known N = 8 superconformal field theories, we compute this central

charge in a few particular cases using supersymmetric localization. For limiting values

of the central charge, our numerical bounds are nearly saturated by the large N limit of

ABJM theory and also by the free U(1)×U(1) ABJM theory.

Keywords: Extended Supersymmetry, AdS-CFT Correspondence, Conformal and W

Symmetry

ArXiv ePrint: 1406.4814

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2014)143

mailto:schester@Princeton.edu
mailto:jaehlee@MIT.edu
mailto:spufu@Princeton.edu
mailto:ryacoby@Princeton.edu
http://arxiv.org/abs/1406.4814
http://dx.doi.org/10.1007/JHEP09(2014)143


J
H
E
P
0
9
(
2
0
1
4
)
1
4
3

Contents

1 Introduction 2

2 Constraints from global symmetry 4

2.1 Constraints from conformal symmetry and R-symmetry 5

2.2 Constraints from supersymmetry 7

3 Constraints from crossing symmetry 9

3.1 Relations between R-symmetry channels 9

3.2 Relations between the crossing equations 11

4 Superconformal blocks 11

4.1 Superconformal blocks from Ward identity 13

4.2 Derivation of superconformal blocks using the results of [1] 15

5 Central charge computation 19

5.1 Setup of the computation 20

5.2 Large N limit 21

5.3 U(1)×U(1) ABJM theory 22

5.4 U(2)×U(2) ABJM and SU(2)× SU(2) BLG theory 22

5.5 U(2)×U(1) ABJ theory 23

6 Numerics 24

6.1 Obtaining a lower bound on cT 26

6.2 Bounds on scaling dimensions of long multiplets 28

6.3 Bounds on OPE coefficients 31

7 Discussion 33

A so(d, 2) conformal blocks 36

B Characters of osp(8|4) 37

C Superconformal blocks 40

D Recurrence relations 46

E Details of central charge computation 48

E.1 U(2)×U(2) ABJM theory 49

E.2 Relating three-sphere partition function of ABJM to BLG 50

E.3 U(2)×U(1) ABJ theory 51

– 1 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
3

1 Introduction

The conformal bootstrap [2–4] is an old idea that uses the associativity of the operator

algebra to provide an infinite set of constraints on the operator dimensions and the operator

product expansion (OPE) coefficients of abstract conformal field theories (CFTs). For two-

dimensional CFTs, this idea was used to compute the correlation functions of the minimal

models [5] and of Liouville theory [6]. In more than two dimensions, conformal symmetry is

much less restrictive, and as a consequence it is difficult to extract such detailed information

from the bootstrap.

Recently, it has been shown by the authors of [7] that the constraints arising from

the conformal bootstrap can be reformulated as a numerical problem.1 This provides

a new method to exclude CFTs with a large enough gap in the operator spectrum and

to obtain non-perturbative bounds on certain OPE coefficients [7, 10–29]. In addition,

the operator spectrum and OPE coefficients of CFTs that saturate these bounds can be

determined numerically [30]. The CFTs analyzed through this method so far consist of

non-supersymmetric CFTs with various global symmetries in dimensions three [10–12, 22],

four [7, 13–18], five [19], more general fractional dimensions [20, 21, 31], and also of bound-

ary CFTs [31, 32]. The numerical bootstrap was also applied to 4-d superconformal field

theories (SCFTs) with (minimal)N = 1 supersymmetry [15, 17, 18, 23] and with (maximal)

N = 4 supersymmetry [24–28], and to 3-d SCFTs with N = 1 supersymmetry [29].

The goal of this paper is to set up and develop the conformal bootstrap program

in three-dimensional SCFTs with N = 8 supersymmetry, which is the largest amount of

supersymmetry in three dimensions. There are only a few infinite families of such theories

that have been constructed explicitly, and they can all be realized as Chern-Simons (CS)

theories with a product gauge group G1 × G2, coupled to two matter hypermultiplets

transforming in a bifundamental representation. These families are:2 the SU(2)k×SU(2)−k

reformulation [39, 40] of the theories of Bagger-Lambert-Gustavsson (BLG) [41–44], which

are indexed by an arbitrary integer Chern-Simons level k; the U(N)k × U(N)−k theories

of Aharony-Bergman-Jafferis-Maldacena (ABJM) [45], which are labeled by the integer

N and k = 1, 2; and the U(N + 1)2 × U(N)−2 theories [36] of Aharony-Bergman-Jafferis

(ABJ) [46], which are labeled by the integer N .3

That there should exist SCFTs with osp(8|4) global symmetry had been anticipated

from the AdS4/CFT3 correspondence. Indeed, the AdS4 × S7 background of eleven-

dimensional supergravity was conjectured to be dual to an N = 8 SCFT in three di-

1See also [8, 9] for a different recent method.
2It is believed that non-trivial N = 8 SCFTs such as some of the ones listed here can be obtained by

taking the infrared (IR) limit of N = 8 supersymmetric Yang-Mills (SYM) theories. In particular, the U(N)

and O(2N) SYM theories are believed to flow in the IR to the U(N) × U(N) ABJM theories with levels

k = 1 and k = 2, respectively. In addition, SO(2N +1) SYM is believed to flow to the U(N +1)2×U(N)−2

ABJ theory. See, for instance, [33–38] for evidence of the above relations between ABJ(M) theories and

N = 8 SYM. We thank O. Aharony for emphasizing this point to us.
3The invariance of the ABJM and ABJ theories under the N = 8 superconformal algebra, osp(8|4), is not

visible at the classical level, but an enhancement to N = 8 is expected at the quantum level. The arguments

for this symmetry enhancement are based partly on M-theory [45] and partly on field theory [35, 47–49].
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mensions, describing the infrared limit of the effective theory on N coincident M2-branes

in flat space, in the limit of large N . The ABJM theory with CS level k = 1 is an ex-

plicit realization of this effective theory4 that is believed to be correct for any N . When

N = 1 the theory becomes free, as the interaction potential between the matter fields

vanishes and the gauge interactions are trivial [51]. At large N , ABJM theory is strongly

coupled, but it can be studied through its supergravity dual, which is weakly coupled in

this limit. The duality with the supergravity description has passed impressive tests, such

as a match in the N3/2 behavior of the number of degrees of freedom [52, 53]. At finite

N > 1, both ABJM theory and its supergravity dual are strongly interacting and not

much detailed information is available. In this paper we aim to uncover such information

by using the conformal bootstrap. Indeed, our bootstrap study provides us, indirectly, with

non-perturbative information about M-theory.

At some level, our work parallels that of [24], who developed the numerical bootstrap

program in four-dimensional theories with N = 4 superconformal symmetry. The au-

thors of [24] studied the implications of unitarity and crossing symmetry on the four-point

function of the superconformal primary operator O20′ of the N = 4 stress-tensor multi-

plet.5 This superconformal primary is a Lorentz scalar that transforms in the 20′ irrep

under the so(6) R-symmetry. In the present work, we study the analogous question in

three-dimensional N = 8 SCFTs. In particular, we analyze the four-point function of the

superconformal primary O35c of the N = 8 stress-tensor multiplet. This superconformal

primary is a Lorentz scalar transforming in the 35c irrep of the so(8) R-symmetry.6

Upon using the OPE, the four-point function of O35c can be written as a sum of con-

tributions, called superconformal blocks, coming from all superconformal multiplets that

appear in the OPE of O35c with itself. In addition, this four-point function can be decom-

posed into the six R-symmetry channels corresponding to the so(8) irreps that appear in

the product 35c ⊗ 35c. Generically, each superconformal multiplet contributes to all six

R-symmetry channels. These superconformal blocks can be determined by analyzing the

superconformal Ward identity written down in [1]. Crossing symmetry then implies six pos-

sibly independent equations that mix the R-symmetry channels amongst themselves. The

situation described here is analogous to the case of 4-d N = 4 theories where one also has

six R-symmetry channels and, consequently, six possibly independent crossing equations.

There are a few significant differences between our work and that of [24] that are

worth emphasizing:

• In the case of 4-d N = 4 theories, the crossing equations contain a closed subset that

yields a “mini-bootstrap” program, which allows one to solve for the BPS sector of

the theory. In the 3-d N = 8 case, we do not know of any such closed subset of the

crossing equations that might allow one to solve for the BPS sector.

4The ABJM and ABJ theories have M-theory interpretation for any N and k. For some special values

of k the BLG theories were argued to be isomorphic to ABJM and ABJ theories with N = 2 [36, 50].

However, for general k the BLG theories have no known M-theory interpretation.
5The OPE of the stress-tensor multiplet in N = 4 SYM was first analyzed in [54–57].
6That this operator transforms in the 35c as opposed to 35v or 35s is a choice that we make. See the

beginning of section 2.
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• At a more technical level, in the case of 4-d N = 4 theories, the solution to the su-

perconformal Ward identity involves algebraic relations between the six R-symmetry

channels. As a consequence, after solving for the BPS sector, it turns out that the six

crossing equations reduce algebraically to a single equation. In 3-d, the solution to

the superconformal Ward identity can be written formally in terms of non-local oper-

ators acting on a single function [1]. As we will show, despite the appearance of these

non-local operators, the various R-symmetry channels can be related to one another

with the help of local second order differential operators. These relations show that

the six crossing equations are mostly redundant, but still no single equation implies

the others, as was the case in 4-d.

• As in the 4-d case, we will parameterize our abstract 3-d theories by the central

charge cT , which is defined as the coefficient of the stress-tensor two-point function

(in some normalization). In 4-d, cT is the Weyl anomaly coefficient, which allows one

to determine it rather easily in particular realizations of the 4-d N = 4 theory. In

3-d, there is no Weyl anomaly, so in order to connect our bootstrap study to more

conventional descriptions in terms of BLG and/or ABJ(M) theory, we calculate cT
for several of these theories using the supersymmetric localization results of [58, 59].

The remainder of this paper is organized as follows. In section 2 we set up our conven-

tions and review the constraints on the four-point function of O35c . In section 3 we write

the crossing equations and describe the differential relations that they satisfy. Section 4 is

devoted to the derivation of the superconformal blocks building on the results of [1]. In

preparation for our numerical results, in section 5 we calculate the coefficient cT for several

explicit N = 8 SCFTs using supersymmetric localization. In section 6 we study the cross-

ing equations using the semi-definite programing method introduced in [18] and present

our findings. We obtain quite stringent non-perturbative bounds on scaling dimensions of

operators belonging to long multiplets and on OPE coefficients. We provide several checks

of our results in the free theory (namely the U(1)k × U(1)−k ABJM theory) and in the

limit of large cT . We end with a discussion of our results in section 7. Several technical

details are delegated to the appendices.

2 Constraints from global symmetry

Let us start with a short review of some general properties of the four-point function of

the stress-tensor multiplet in an N = 8 SCFT, and of the constraints imposed on it by the

osp(8|4) superconformal algebra.

In any N = 8 SCFT, the stress tensor sits in a half-BPS multiplet, whose members

are listed in table 1. These include the spin-3/2 super-current, which in our convention7

transforms (like the supercharges) in the 8v of the so(8) R-symmetry; and the spin-1 R-

symmetry current, which transforms in the adjoint (i.e. the 28) of so(8)R. In addition,

the multiplet contains a spin-1/2 operator transforming (in our conventions) in the 8c,

7We use the notation 8v = [1000], 8c = [0010], and 8s = [0001]. In our convention, the supercharges

transform in the 8v of so(8).
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dimension spin so(8) irrep

1 0 35c = [0020]

3/2 1/2 8c = [0010]

2 0 35s = [0002]

2 1 28 = [0100]

5/2 3/2 8v = [1000]

3 2 1 = [0000]

Table 1. The operators comprising the N = 8 stress-tensor multiplet along with their scaling

dimension, spin, and R-symmetry representation.

and two spin-0 operators with scaling dimension 1 and 2, which transform in the 35c and

35s, respectively.

The dimension-one operator in the 35c is the superconformal primary, which we will

denote by O35c . In the rest of this paper we will only consider the four-point function of this

superconformal primary. The four-point functions of other members of the stress-tensor

multiplet can be obtained from the one of O35c with the help of the osp(8|4) algebra. The
constraints of superconformal invariance on the four-point functions of 1/2-BPS operators

in various dimensions were analyzed in detail in [1]. The rest of this section reviews some

details of [1] that are relevant for our case of interest.

2.1 Constraints from conformal symmetry and R-symmetry

Let us start by reviewing the constraints arising from the maximal so(3, 2)⊕so(8)R bosonic

subalgebra of osp(8|4).
The 35c of so(8)R can be identified as the rank-two symmetric traceless product of

the 8c. It is convenient to analyze any such symmetric traceless products by introducing

polarization vectors Y i, i = 1, . . . , 8, whose indices we can contract with the 8c indices to

form so(8)R invariants. For instance, for an 8c vector ψi we should define ψ = ψiY
i; for a

rank-two tensor Oij , as is the case for our operator, we should consider

O = OijY
iY j ; (2.1)

and so on.

The Y i should be thought of as a set of auxiliary commuting variables, and they are

required to satisfy the null condition Y · Y ≡ ∑8
i=1 Y

iY i = 0. Commutativity is related

to the fact that the tensor Oij is symmetric, while the null condition is connected to

its tracelessness. The advantage of introducing the polarization vectors is that instead

of keeping track of the various so(8)R tensor structures that can appear in correlation

functions, one can just construct all possible so(8)R invariants out of the polarizations.

Invariance of our SCFT under so(3, 2) implies that the four-point function of O35c

evaluated at space-time points xm, with m = 1, . . . , 4, should take the form

〈Oi1j1(x1)Oi2j2(x2)Oi3j3(x3)Oi4j4(x4)〉 =
1

x212x
2
34

Gi1···i4j1···j4(u, v) , (2.2)

– 5 –
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where x2mn = (xm − xn)
2, and u and v are the conformally-invariant cross-ratios

u ≡ x212x
2
34

x213x
2
24

, v ≡ x214x
2
23

x213x
2
24

. (2.3)

The four-point function of O35c(x, Y ) = Oij(x)Y
iY j can be written as a quadratic poly-

nomial in each Y coordinate. Furthermore, invariance under so(8)R implies that these

polynomials should only depend on the so(8)R invariant combinations Yn · Ym, which are

non-zero when n 6= m. In other words,

〈O35c(x1, Y1)O35c(x2, Y2)O35c(x3, Y3)O35c(x4, Y4)〉 =
(Y1 · Y2)2(Y3 · Y4)2

x212x
2
34

G(u, v;U, V ) ,

(2.4)

where G is a quadratic polynomial in 1/U and V/U , U and V being the cross-ratios

U ≡ Y1 · Y2 Y3 · Y4
Y1 · Y3 Y2 · Y4

, V ≡ Y1 · Y4 Y2 · Y3
Y1 · Y3 Y2 · Y4

. (2.5)

Being a quadratic polynomial in 1/U and V/U , G(u, v;U, V ) contains six distinct

functions of u and v. It is helpful to exhibit explicitly these six functions by writing

G(u, v;U, V ) =
2
∑

a=0

a
∑

b=0

Aab(u, v)Yab(1/U, V/U) , (2.6)

where the quadratic polynomials Yab(σ, τ) are defined as

Y00(σ, τ) = 1 ,

Y10(σ, τ) = σ − τ ,

Y11(σ, τ) = σ + τ − 1

4
,

Y20(σ, τ) = σ2 + τ2 − 2στ − 1

3
(σ + τ) +

1

21
,

Y21(σ, τ) = σ2 − τ2 − 2

5
(σ − τ) ,

Y22(σ, τ) = σ2 + τ2 + 4στ − 2

3
(σ + τ) +

1

15
.

(2.7)

The definition (2.7) could be regarded simply as a convention. It has, however, a more

profound meaning in terms of the so(8)R irreps that appear in the s-channel of the four-

point function (2.4). We have

35c ⊗ 35c = 1⊕ 28⊕ 35c ⊕ 300⊕ 567c ⊕ 294c . (2.8)

The six polynomials8 in (2.7) correspond, in order, to the six terms on the right-hand side

of (2.8). In terms of Dynkin labels, the indices (a, b) correspond to the irrep [0 (a−b) (2b) 0].
8The polynomials in (2.7) are harmonic polynomials, which are eigenfunctions of the so(8)R Casimir.

More details on these polynomials can be found in [60, 61].
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The irreps 28 = [0100] = (1, 0) and 567c = [0120] = (2, 1) are in the anti-symmetric

product of the two copies of 35c, while the other irreps are in the symmetric product.

Therefore only operators belonging to the O35c(x1, Y1)×O35c(x2, Y2) OPE with odd integer

spin can contribute to the [0100] and [0120] channels. The other R-symmetry channels

receive contributions only from operators with even integer spin.

2.2 Constraints from supersymmetry

The full osp(8|4) superconformal algebra imposes additional constraints on (2.6). For

the purpose of writing down these constraints, it is convenient to introduce the following

parameterization of the cross-ratios in terms of the variables x, x̄ and α, ᾱ:

u = xx̄ , v = (x− 1)(x̄− 1) , (2.9)

U =
1

αᾱ
, V =

(α− 1)(ᾱ− 1)

αᾱ
. (2.10)

In this parameterization, the function G(x, x̄;α, ᾱ) appearing in (2.4) as well as the function

Aab(x, x̄) appearing in (2.6) should be taken to be symmetric under the interchanges x↔ x̄

and α↔ ᾱ. As shown in [1], in terms of the variables (2.9) and (2.10) the superconformal

Ward identity takes a particularly neat form.

In [1], the superconformal Ward identity of the four-point function of 1/2-BPS oper-

ators was written down for any theory with so(n) R-symmetry in space-time dimension d

with 3 ≤ d ≤ 6. It takes the form

(x∂x − ε α∂α)G(x, x̄;α, ᾱ)|α=1/x = 0 ,

(x̄∂x̄ − ε ᾱ∂ᾱ)G(x, x̄;α, ᾱ)|ᾱ=1/x̄ = 0 ,
(2.11)

where ε ≡ (d−2)/2 is the scaling dimension of a free scalar field in d space-time dimensions.

The solution of the superconformal Ward identity (2.11) depends quite significantly

on the parameter ε. In the case ε = 1, which would apply to four-dimensional SCFTs

with N = 4 supersymmetry, the solution is very simple. Indeed, in this case, (2.11)

reduces to ∂xG(x, x̄; 1/x, ᾱ) = ∂x̄G(x, x̄;α, 1/x̄) = 0, as can be seen from using the chain

rule. Therefore, G(x, x̄; 1/x, ᾱ) is independent of x and G(x, x̄;α, 1/x̄) is independent of x̄.
Taking into account the fact that G is symmetric w.r.t. interchanging x with x̄ and α with

ᾱ, and that G is a quartic polynomial in α and ᾱ, as follows from the definition (2.10), one

can write the general solution for the four-point function as [61, 62]

Gd=4(x, x̄;α, ᾱ) = (xα− 1)(x̄α− 1)(xᾱ− 1)(x̄ᾱ− 1)A(x, x̄)− C

+
(x̄α− 1)(xᾱ− 1) [F (x, α) + F (x̄, ᾱ)]− (xα− 1)(x̄ᾱ− 1) [F (x, ᾱ) + F (x̄, α)]

(x− x̄)(α− ᾱ)
,

(2.12)

where A(x, x̄), F (x, α), and C are arbitrary. In other words, apart from the restricted

function F (x, α) and the constant C, which can be determined in terms of the anomaly

coefficient c [24], the whole four-point function Gd=4(x, x̄;α, ᾱ) can be written in terms of a

single function A(x, x̄). The six R-symmetry channels in this case are related algebraically.

– 7 –
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The solution of the superconformal Ward identity for arbitrary ε, and in particular for

ε = 1/2, can be written in terms of powers of the differential operator

Dε ≡
∂2

∂x∂x̄
− ε

x− x̄

(

∂

∂x
− ∂

∂x̄

)

. (2.13)

For non-integer ε, the general solution9 of (2.11) can be written, formally, in terms of a

single arbitrary function a(x, x̄) as10

G(x, x̄;α, ᾱ) = (xx̄)2ε (Dε)
ε−1 [(xα− 1)(x̄α− 1)(xᾱ− 1)(x̄ᾱ− 1)a(x, x̄)] . (2.14)

The appearance of the operator (Dε)
ε−1, which is non-local for non-integer ε, makes us-

ing (2.14) rather subtle. However, we can demystify the operator Dε and its non-integer

powers by interpreting Dε as the Laplacian in d = 2(ε+ 1) dimensions.11

Using conformal transformations we can fix three of the coordinates of the four-point

function on a line, such that: x1 = 0, x3 = (0, . . . , 0, 1) ≡ ẑ and x4 = ∞. (We denote

the unit vector (0, . . . , 0, 1) ∈ R
d by ẑ because we will eventually be interested in working

in three dimensions where we denote the third coordinate by z.) We write the remaining

unfixed point x2 ≡ ~r ∈ R
d in spherical coordinates ~r = (r, θ,Ωd−2), where θ is the angle

between ~r and ẑ, and Ωd−2 parameterizes Sd−2. The four-point function does not depend

on Ωd−2 because of the additional rotation symmetry which fixes the line determined by

x1, x3, and x4. The cross-ratios in these coordinates are given by

u = r2 , v = |ẑ − ~r|2 = 1 + r2 − 2r cos θ , (2.15)

x = reiθ , x̄ = re−iθ . (2.16)

In other words, u can be interpreted as the square of the distance to the origin of Rd, while

v is the square of the distance to the special point (0, . . . , 0, 1).

The operator Dε can then be written as

Dε =
1

4

[

1

r2ε+1
∂r
(

r2ε+1∂r
)

+
1

r2 sin2ε θ
∂θ
(

sin2ε θ∂θ
)

]

. (2.17)

Up to an overall factor of 1/4, Dε is nothing but the d-dimensional Laplacian ∆ acting on

functions that are independent of the azimuthal directions Ωd−2 ∈ Sd−2.

In d = 3, the solution (2.14) to the Ward identity can then be written formally as

G(~r;α, ᾱ) = r2
2√
∆

[

|α~r − ẑ|2 |ᾱ~r − ẑ|2 a(~r)
]

, (2.18)

for some undetermined function a(~r). Here, both G(~r;α, ᾱ) and a(~r) should be taken to be

invariant under rotations about the z-axis. This expression will become quite useful when

we analyze the crossing symmetry in the next section.

9The solution (2.14) corresponds to the four-point function of 1/2-BPS operators which are rank-2

symmetric traceless tensors of so(n)R. The solution for tensors of arbitrary rank can also be written in a

similar way, but it depends on more undetermined functions. The reader is referred to [1] for more details.
10The function a(x, x̄) that appears in this equation equals (xx̄)ε−1a(x, x̄) in the notation of [1].
11That Dε is the Laplacian in d = 2(ε+ 1) dimensions was first observed by Dolan and Osborn in [63].
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3 Constraints from crossing symmetry

In this section we will discuss the constraints of crossing symmetry on the four-point

function (2.4).

In terms of G(u, v;U, V ) defined in (2.4), the crossing constraint corresponding to the

exchange of (x1, Y1) with (x3, Y3) is

G(u, v;U, V ) =
u

v

(

V

U

)2

G (v, u;V,U) . (3.1)

By expanding (3.1) in U and V one obtains six crossing equations, mixing the different

R-symmetry channels (2.6). However, these crossing equations cannot be used in the

numerical bootstrap program as they stand, for the following reason. The different R-

symmetry channels are related by supersymmetry, so these equations are not independent.

Using these dependent equations in a semidefinite program solver like sdpa [64] (as we will

discuss in detail in section 6) results in a numerical instability.

To understand the dependencies between the equations (6.1) we have to study the

solution (2.18) of the Ward identity. In terms of (2.14) the crossing equation (3.1) takes

the form12

1√
∆

[

|α~r − ẑ|2 |ᾱ~r − ẑ|2
(

a(u, v)− a(v, u)
)

]

= 0 . (3.2)

This expression seems to suggest that there is only one independent crossing equation given

by a(u, v)−a(v, u) = 0. However, it is not easy to calculate a(u, v)−a(v, u) by acting with

the non-local operator
√
∆ on (3.2), because currently there is too little global information

available about the four point function of O35c and its (super)conformal block expansion.

It would be interesting to explore this avenue in future work.

Despite the appearance of a non-local operator in the solution of the superconformal

Ward identity, we can in fact show that the six R-symmetry channels and, consequently

the six crossing equations, satisfy certain differential equations that relate them to one

another. These relations will be crucial for the implementation of the numerical bootstrap

program in section 6.

3.1 Relations between R-symmetry channels

The inverse square root of the Laplacian appearing in (2.18) can be defined by its

Fourier transform

1√
∆

=
(

−p2
)−1/2

. (3.3)

In expressions of the form ∆− 1
2 f(r, θ)∆

1
2 , we can then use the canonical commutation

relation of quantum mechanics, [x, p] = i, to commute ∆
1
2 through f(r, θ). For example,

it is straightforward to show that

∆− 1
2 r2∆

1
2 = r2 −∆−1 (4 + 2r∂r) , (3.4)

∆− 1
2 z∆

1
2 = z −∆−1∂z , (3.5)

where we defined z ≡ r cos θ.
12In deriving (3.2) we use the fact that under crossing ~r → ẑ − ~r and ∆ is invariant.

– 9 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
3

To proceed, it is convenient to decompose the solution of the Ward identity (2.14) in

the basis

e1 ≡
1√
∆
a(u, v) , e2 ≡

1√
∆

[

(u− v) a(u, v)
]

,

e3 ≡
1√
∆

[

(u+ v) a(u, v)
]

, e4 ≡
1√
∆

[

(u2 − v2) a(u, v)
]

, (3.6)

e5 ≡
1√
∆

[

(u− v)2 a(u, v)
]

, e6 ≡
1√
∆

[

(u+ v)2 a(u, v)
]

.

These ei are simply related to the different R-symmetry channels Aab by


















e1
e2
e3
e4
e5
e6



















=
1

u



















1 −1 3
4

5
7 −3

5
2
5

−1 0 1
4

20
21 −1 14

15

1 0 −1
4

22
21 −1 16

15

−1 −1 −3
4 −5

7 −3
5

28
5

1 1 3
4 −9

7 −7
5

22
5

1 1 3
4

19
7

13
5

42
5





































A00

A10

A11

A20

A21

A22



















. (3.7)

Defining the operators

D± ≡ 1

4

√
∆(u± v)

√
∆ , (3.8)

it can be seen from (3.6) that the following relations hold:

D+e1 = ∆e3 , D−e1 = ∆e2 , (3.9)

D+e2 = ∆e4 , D−e2 = ∆e5 , (3.10)

D+e3 = ∆e6 , D−e3 = ∆e4 , (3.11)

D+e4 = D−e6 , D−e4 = D+e5 . (3.12)

It is easy to convince oneself that these are the most general relations between the ei
that can be obtained by acting with D±. Moreover, instead of thinking of the solution

to the Ward identity as given in terms of a single unconstrained function a(u, v), we can

think of it as given in terms of the six constrained functions ei, with the constraints given

by (3.9)–(3.12).

The advantage of this formulation of the solution is that the constraints (3.9)–(3.12)

only involve local differential operators. Indeed, using (3.4), (3.5), and the coordinate

transformation (2.16), we find

D− =
2z − 1

4
∆+

1

2
∂z ,

D+ =
1 + 2r2 − 2z

4
∆+ r∂r −

1

2
∂z + 1 .

(3.13)

In terms of the x, x̄ coordinates, we have

D− = (x+ x̄− 1)D 1
2
+

1

2

(

∂

∂x
+

∂

∂x̄

)

,

D+ = (1 + 2xx̄− x− x̄)D 1
2
+

(

x− 1

2

)

∂

∂x
+

(

x̄− 1

2

)

∂

∂x̄
+ 1 ,

(3.14)

where D 1
2
was defined in (2.13).
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3.2 Relations between the crossing equations

Define ẽi to be the same as the ei in (3.6), but with the factors of a(u, v) replaced by

a(u, v)− a(v, u). It is clear that the ẽi also satisfy the differential equations (3.9)–(3.12).

The crossing symmetry constraints are simply given by ẽi = 0.

One can solve the differential equations (3.9)–(3.12) by using series expansions around

the crossing symmetric point. In particular, define ẽin,m through the expansions

ẽi(x, x̄) =

∞
∑

n,m=0

1

n!m!

(

x− 1

2

)n(

x̄− 1

2

)m

ẽin,m , (3.15)

ẽin,m ≡ ∂n∂̄mei(x, x̄)
∣

∣

x=x̄= 1
2
. (3.16)

From x↔ x̄ symmetry and (anti-)symmetry under u↔ v we have

ẽin,m = ẽim,n , (3.17)

ẽin,m = 0 if







m+ n = even , i = 1, 3, 5, 6 ,

m+ n = odd , i = 2, 4 .
(3.18)

We can now plug the expansions (3.15) into the differential equations (3.9)–(3.12) and

solve for the coefficients ẽin,m order by order. The results can be stated as follows. If we

assume only the crossing equation ẽ2 = 0, then equations (3.9)–(3.12) imply

ẽ1 = 0 , (3.19)

ẽ3 = 0 , (3.20)

ẽ4n,m = anmẽ
4
m+n,0 , (3.21)

ẽ5n,m = bnmẽ
4
m+n+1,0 , (3.22)

ẽ6n,m = cnmẽ
4
m+n−1,0 , (3.23)

for some constants anm, bnm, and cnm that can be determined order by order in the

expansion. We conclude that the maximal set of independent crossing equations can be

taken to be ẽ2n,m = 0 and ẽ4n,0 = 0 for all integers n,m ≥ 0.

4 Superconformal blocks

In this section we will derive the N = 8 superconformal blocks of the four-point func-

tion (2.4). Any given superconformal block represents the total contribution to the four-

point function (2.4) coming from all operators appearing in the O35c × O35c OPE that

belong to a given superconformal multiplet. Since superconformal multiplets are made of

conformal multiplets, the superconformal blocks are just linear combinations of the usual

conformal blocks. Our task is to determine which conformal blocks appear in a given

superconformal block and with which coefficients.

A common approach to deriving superconformal blocks involves analyzing the detailed

structure of the three-point function between two O35c and a third generic superconformal
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Type BPS ∆ Spin so(8)R

(A, 0) (long) 0 ≥ ∆0 + j + 1 j [a1a2a3a4]

(A, 1) 1/16 ∆0 + j + 1 j [a1a2a3a4]

(A, 2) 1/8 ∆0 + j + 1 j [0a2a3a4]

(A, 3) 3/8 ∆0 + j + 1 j [00a3a4]

(A,+) 1/4 ∆0 + j + 1 j [00a30]

(A,−) 1/4 ∆0 + j + 1 j [000a4]

(B, 1) 1/8 ∆0 0 [a1a2a3a4]

(B, 2) 1/4 ∆0 0 [0a2a3a4]

(B, 3) 3/8 ∆0 0 [00a3a4]

(B,+) 1/2 ∆0 0 [00a30]

(B,−) 1/2 ∆0 0 [000a4]

conserved 5/16 j + 1 j [0000]

Table 2. Multiplets of osp(8|4) and the quantum numbers of their corresponding superconformal

primary operator. The conformal dimension ∆ is written in terms of ∆0 ≡ a1+a2+(a3+a4)/2. The

Lorentz spin can take the values j = 0, 1/2, 1, 3/2, . . .. Representations of the so(8) R-symmetry

are given in terms of the four so(8) Dynkin labels, which are non-negative integers.

multiplet. In this approach one has to construct the most general superconformal invari-

ants out of the superspace variables appearing in this three-point function (see e.g., [15]).

However, it is difficult to implement this method in theories with extended supersymmetry

due to complications in using superspace techniques in such theories.

In practice, we will compute the superconformal blocks in our case of interest using two

different methods. One method involves expanding the solution of the Ward identity given

in (2.18) in conformal blocks.13 Even though this method is hard to implement due to the

appearance of the non-local operator 1/
√
∆ in (2.14), significant progress was made in [1]

and we will build on it in section 4.2. In the next subsection we will introduce a new strategy

for computing the superconformal blocks. This second method relies on the fact that the

superconformal Ward identity (2.11) holds separately for each superconformal block. As

we will see momentarily in section 4.1, this approach is simpler and more systematic than

working directly with the full solution to the Ward identity.

Before we begin, let us quickly review the unitary irreducible representations of the

osp(8|4) superconformal algebra, following [65]. Unitary irreps of osp(8|4) are specified by

the scaling dimension ∆, Lorentz spin j, and so(8) R-symmetry irrep [a1 a2 a3 a4] of their

bottom component, as well as by various shortening conditions. There are twelve different

types of multiplets that we list in table 2. There are two types of shortening conditions

denoted by the A and B families. The multiplet denoted by (A, 0) is a long multiplet

and does not obey any shortening conditions. The other multiplets of type A have the

13The superconformal blocks of N = 2 and N = 4 theories in d = 4 were first derived in this way [62].
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property that certain so(2, 1) irreps of spin j−1/2 are absent from the product between the

supercharges and the superconformal primary. The multiplets of type B have the property

that certain so(2, 1) irreps of spin j ± 1/2 are absent from this product, and consequently,

the multiplets of type B are smaller. The stress-tensor multiplet that we encountered in

section 2 is of (B,+) type and has a3 = 2. The conserved current multiplet appears in

the decomposition of the long multiplet at unitarity: ∆ → j + 1. This multiplet contains

higher-spin conserved currents, and therefore can only appear in the free theory [66].

We will sometimes denote the superconformal multiplets by (∆, j)
[a1 a2 a3 a4]
X , with (∆, j)

and [a1 a2 a3 a4] representing the so(3, 2) and so(8)R quantum numbers of the superconfor-

mal primary, and the subscript X denoting the type of shortening condition (for instance,

X = (A, 2) or X = (B,+)).

4.1 Superconformal blocks from Ward identity

Our strategy to compute the superconformal blocks is very simple. Let G(a,b)
∆,j denote the

contribution to the four-point function of a multiplet whose primary has dimension and

spin (∆, j) and transforms in the (a, b) ≡ [0 (a−b) (2b) 0] irrep of so(8)R. This contribution

can be written as some linear combination of a finite number of conformal blocks:

G(a,b)
∆,j (x, x̄, α, ᾱ) =

2
∑

c=0

c
∑

d=0



Ycd(α, ᾱ)
∑

O∈(∆,j)a,b

λ2O g∆O,jO(x, x̄)



 , (4.1)

where g∆,j(x, x̄) is the conformal block corresponding to the exchange of an operator with

scaling dimension ∆ and Lorentz spin j. (We will determine precisely which conformal

blocks appear in this sum shortly.) The innermost sum runs over all conformal primaries

in the superconformal multiplet (∆, j)a,b transforming in the R-symmetry channel (c, d)

(specified by the outer sums).

By using the OPE one can show that the superconformal Ward identity (2.11) is

satisfied on each G(a,b)
∆,j contribution independently. We can expand (4.1) in a Taylor series

around x = x̄ = 0 using the known expansions of the conformal blocks (see, for example, [67]

or appendix A). Plugging in this expansion in the suprconformal Ward identity (2.11),

we can generate infinitely many equations for the undetermined coefficients λ2O. These

equations must be consistent if in (4.1) we sum over all the operators O belonging to a

given superconformal multiplet.

Before we can apply this strategy outlined above concretely, we need to determine

which superconformal multiplets can appear in the OPE. In addition, we should also

determine the spectrum of conformal primaries in each of those superconformal multiplets.

The first task was preformed in [68], and we list their results in table 3.

Note that a three-point function of two 1/2-BPS multiplets with a third multiplet of

any type is completely determined by the contribution of the superconformal primaries. It

then follows that if a superconformal primary has zero OPE coefficient, then so do all its

descendants. Consequently, in table 3, the (B, 2) multiplets in [0100] and [0120] cannot

actually appear in the OPE. The reason is that these representations appear in the anti-

symmetric product of the OPE, and can therefore contain only odd spin operators, while
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Type (∆, j) so(8)R irrep

(B,+) (2, 0) 294c = [0040]

(B, 2) (2, 0) 567c = [0120]

(B, 2) (2, 0) 300 = [0200]

(B,+) (1, 0) 35c = [0020]

(A,+) (j + 2, j) 35c = [0020]

(B, 2) (1, 0) 28 = [0100]

(A, 2) (j + 2, j) 28 = [0100]

(A, 0) ∆ ≥ j + 1 1 = [0000]

Table 3. The possible superconformal multiplets in the O35c
×O35c

OPE. The multiplets marked

in red do not appear in the OPE, as explained in the main text. In addition, j must be even for

the (A, 0) and (A,+) multiplets and odd for (A, 2). The so(3, 2) ⊕ so(8)R quantum numbers are

those of the superconformal primary in each multiplet.

the superconformal primaries of the above multiplets have even spin. Similarly, j must

be even in the (j + 2, j)
[0020]
(A,+) and the (long) (∆, j)

[0000]
(A,0) multiplets, and it must be odd for

(j + 2, j)
[0100]
(A,2) .

Next, we have to identify the conformal primaries belonging to the superconformal

multiplets listed in table 3. For each such superconformal multiplet, we can decompose

its corresponding osp(8|4) character [65] into characters of the maximal bosonic sub-

algebra so(3, 2) ⊕ so(8)R. This decomposition is rather tedious, and we describe it in

appendix B. Here, let us list the results. The conformal primaries of the stress-tensor mul-

tiplet (1, 0)
[0020]
(B,+) were already given in table 1. The conformal primaries of all the other

multiplets appearing in table 3 are given in tables 4–8. The first column in these tables

contains the conformal dimensions and the other columns contain the possible values of the

spins in the various R-symmetry channels. In each table, we only list the operators which

could possibly contribute to our OPE, namely only operators with R-symmetry representa-

tions in the tensor product (2.8), and only even (odd) integer spins for the representations

(a, b) with even (odd) a+ b.

Using this information and the Ward identity we can now determine the supercon-

formal blocks. In practice, we expand (4.1) to a high enough order so that we get an

overdetermined system of linear equations in the λ2O. We can then solve for the OPE

coefficients in terms of one overall coefficient. The fact that we can successfully solve an

overdetermined system of equations is a strong consistency check on our computation. The

final expressions are very complicated, and we collect the results in appendix C.

As an interesting feature of the superconformal blocks, we find that the OPE coeffi-

cients of all the operators which are marked in red in tables 4–8 vanish. These operators

are precisely the super-descendants obtained by acting on the superconformal primary with

εαβQaαQbβ an odd number of times. This combination of supercharges is odd under parity,

while O35c is even. There is no a priori reason, however, why an N = 8 SCFT should be
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(2, 0)
[0040]
(B,+) spins in various so(8)R irreps

dimension
1 28 35c 300 567c 294c

[0000] [0100] [0020] [0200] [0120] [0040]

2 — — — — — 0

3 — — — — 1 —

4 — — 2 0 — —

5 — 1 — — — —

6 0 — — — — —

Table 4. All possible conformal primaries in O35c
× O35c

corresponding to the (2, 0)
[0040]
(B,+) super-

conformal multiplet.

(2, 0)
[0200]
(B,2) spins in various so(8)R irreps

dimension
1 28 35c 300 567c 294c

[0000] [0100] [0020] [0200] [0120] [0040]

2 — — — 0 — —

3 — 1 — 0 1 —

4 0 1 0, 2 0, 2 1 0

5 0 1, 3 2 0 1 —

6 0, 2 1 2 0 — —

7 0 1 — — — —

8 0 — — — — —

Table 5. All possible conformal primaries in O35c
× O35c

corresponding to the (2, 0)
[0200]
(B,2) super-

conformal multiplet.

invariant under parity, even though all known examples do have this property. Our find-

ings show that even if parity is not a symmetry of the full theory, it is a symmetry of the

O35c ×O35c OPE.14

4.2 Derivation of superconformal blocks using the results of [1]

The superconformal blocks can also be computed using the solution (2.18) of the Ward

identity.15 One first observes that for all multiplets listed in tables 4–8, the [0040] channel

receives contributions from a single operator. The projection of the four-point function

onto this channel is then given by a single conformal block. The other channels are related

14A similar phenomenon occurs in four dimensional N = 4 supersymmetric Yang-Mills theory [62]. There,

the operators that decouple are the ones which are not invariant under the “bonus symmetry” discussed

in [69, 70].
15The superconformal blocks of N = 2, 4 SCFTs in d = 4 were derived in this way in [62].
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(j + 2, j)
[0020]
(A,+) spins in various so(8)R irreps

dimension
1 28 35c 300 567c 294c

[0000] [0100] [0020] [0200] [0120] [0040]

j + 2 — — j — — —

j + 3 — j ± 1 j — j + 1 —

j + 4 j ± 2, j j ± 1 j + 2, j j + 2, j j + 1 j + 2

j + 5 j + 2 j + 3, j ± 1 j + 2, j j + 2 j + 3, j + 1 —

j + 6 j + 2 j + 3, j + 1 j + 4, j + 2, j j + 2 — —

j + 7 j + 2 j + 3, j + 1 — — — —

j + 8 j + 2 — — — — —

Table 6. All possible conformal primaries in O35c
× O35c

corresponding to the (j + 2, j)
[0020]
(A,+)

superconformal multiplet, with j ≥ 2 even. For j = 0 one should omit the representations with

negative spins as well as (4, 0)[0000].

(j + 2, j)
[0100]
(A,2) spins in various so(8)R irreps

dimension
1 28 35c 300 567c 294c

[0000] [0100] [0020] [0200] [0120] [0040]

j + 2 — j — — — —

j + 3 j ± 1 j j ± 1 j + 1 — —

j + 4 j + 1 j ± 2, j j ± 1 j + 1 j + 2, j —

j + 5 j ± 3, j ± 1 j ± 2, j j + 3, j ± 1 j + 3, j ± 1 j + 2, j j + 1

j + 6 j + 3, j + 1 j + 4, j ± 2, j j + 3, j ± 1 j + 1 j + 2, j —

j + 7 j + 3, j + 1 j + 2, j j + 3, j ± 1 j + 1 — —

j + 8 j + 1 j + 2, j — — — —

j + 9 j + 1 — — — — —

Table 7. All possible conformal primaries in O35c
× O35c

corresponding to the (j + 2, j)
[0100]
(A,2)

superconformal multiplet, with j odd. For j = 1 one should omit (6, 0)[0000] and representations

with negative spin.

to the [0040] channel by (2.18), and their conformal block expansion can be determined by

using certain recurrence relations obeyed by the conformal blocks.

Let us first write (2.18) in terms of the decomposition into so(8)R representations

in (2.6),

A22 =
u

3

1√
∆
u2a ,

A21 = u
1√
∆
u(v − 1)a ,
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(∆, j)
[0000]
(A,0) spins in various so(8)R irreps

dimension
1 28 35c 300 567c 294c

[0000] [0100] [0020] [0200] [0120] [0040]

∆ j — — — — —

∆+ 1 j j ± 1 — — — —

∆+ 2 j j ± 1 j ± 2, j j — —

∆+ 3 j j ± 3, j ± 1 j ± 2, j j j ± 1 —

∆+ 4 j ± 4, j ± 2, j j ± 3, j ± 1 j ± 2, j j ± 2, j j ± 1 j

∆+ 5 j j ± 3, j ± 1 j ± 2, j j j ± 1 —

∆+ 6 j j ± 1 j ± 2, j j — —

∆+ 7 j j ± 1 — — — —

∆+ 8 j — — — — —

Table 8. All possible conformal primaries in O35c
×O35c

corresponding to the (∆, j)
[0000]
(A,0) (long)

superconformal multiplet, with j even, ∆ ≥ j+1. The decomposition of this multiplet at unitarity

contains a conserved current multiplet, which, in turn, contains higher-spin conserved currents.

A20 =
u

3

1√
∆
u (3(v + 1)− u) a ,

A11 = u
1√
∆

(

(v − 1)2 − 2

3
u(v + 1) +

1

9

)

a , (4.2)

A10 = u
1√
∆

(v − 1)

(

(v + 1)− 3

5
u

)

a ,

A00 =
u

2

1√
∆

(

(v + 1)2 − 1

2
(v − 1)2 − 3

7
u(v + 1) +

3

70
u2
)

a .

For the long multiplet A22 is determined (up to an overall coefficient) to be

A
(long)
22 (u, v) =

1

6
g∆+4,j(u, v) . (4.3)

Then, for example, the A21 channel is given by

A
(long)
21 (u, v) =

1

2
u

1√
∆

v − 1

u

√
∆
g∆+4,j(u, v)

u
, (4.4)

and the other channels are given by similar expressions. This expression can be expanded

in conformal blocks by using recurrence relations derived in [1]. We collect these relations16

in appendix D. The final result matches precisely the long multiplet superconformal block

that we found using the method of the previous section.

It turns out that the superconformal blocks of the short multiplets can be derived by

taking limits of the long superconformal block. These limits consist of taking ∆ and j in

16Appendix D also corrects several typos in the equations of [1].
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the long block to certain values below unitarity, i.e. ∆ < j+1. For instance, we can try to

obtain the superconformal block of the (2, 0)
[0040]
(B,+) multiplet (see table 4) by taking ∆ → −2

and j → 0 in the long superconformal block. In this limit

A
(long)
22 ∝ g∆+4,j → g2,0 ∼ A

(B,+)
22 , as ∆ → −2 and j → 0 . (4.5)

Note that such limits have to be taken with great care for two reasons. The first reason

is that some of the conformal blocks g∆,j are divergent in this limit, but the coefficients

multiplying them vanish, so the limit is finite. The divergence arises because the conformal

blocks g∆,j , viewed as functions of ∆, have poles below unitarity. The location and residues

of these poles were computed in [20]. For example, there is a “twist-0” pole at ∆ = j

given by

g∆,j ∼ −2
j(j − 1)

4j2 − 1

gj+2,j−2

∆− j
, as ∆ → j . (4.6)

The second reason why the limits have to be taken with care is that the limits ∆ → 2 and

j → 0 do not commute, so the result is ambiguous. We parameterize this ambiguity by

taking first ∆ = −2 + cj and later sending j → 0. The constant c is kept arbitrary at

this stage.

Taking the above considerations into account, for the (2, 0)
[0040]
(B,+) multiplet we find17

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
22 =

c+ 1

c− 1
g2,0 , (4.7)

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
21 = − 4(c+ 1)

3(c− 1)
g3,1 −

3

2(c− 1)
g1,0 , (4.8)

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
20 =

8(2c− 1)(c+ 1)

45c(c− 1)
g4,0 +

3(2c− 1)

4c(c− 1)
g2,1 , (4.9)

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
11 =

256(c+ 1)

675(c− 1)
g4,2 +

3

8(c− 1)
g0,1 , (4.10)

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
10 = − 64(2c− 1)(c+ 1)

875c(c− 1)
g5,1 −

2c− 1

4c(c− 1)
g3,2 −

1

10(c− 1)
g1,0

− 2c− 1

8c(c− 1)
g1,2 , (4.11)

− 1

128
lim
j→0

lim
∆→−2+cj

A
(long)
00 =

128(2c− 1)(c+ 1)

18375c(c− 1)
g6,0 +

2c− 1

70c(c− 1)
g2,1 +

9(2c− 1)

320c(c− 1)
g2,3 .

(4.12)

This result is, in general, inconsistent with unitarity because of the appearance of conformal

blocks with negative twists such as g2,3. These unphysical blocks can be removed in the

limit c → ∞. In this limit, the result matches precisely the (2, 0)
[0040]
(B,+) superconformal

block in (C.4)–(C.9), and we conclude that

G(2,2)
2,0 = − 1

128
lim
c→∞

lim
j→0

lim
∆→−2+cj

G(0,0)
∆,j . (4.13)

17We use the identity g∆,−j−1 = g∆,j , which can be derived from the conformal Casimir equation.
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All other short superconformal blocks can be obtained from the long block in a similar

fashion. Hence all the superconformal blocks can be derived from the solution (2.18) of

the Ward identity, because we derived the long superconformal block by using this solution

and all the short blocks are limits of the long block. This derivation provides a strong

consistency check on the expressions for the superconformal blocks given in appendix C

and on the solution (2.18) of the Ward identity.

5 Central charge computation

For the numerical bootstrap, we need to specify an input that distinguishes different N = 8

SCFTs. As with the 4-d N = 4 case in [24], we use the central charge cT , defined as the

overall coefficient appearing in the two-point function of the canonically normalized stress

tensor [71]:

〈Tµν(x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2x2
, (5.1)

where Pµν ≡ ηµν∇2 − ∂µ∂ν . In (5.1), we normalized cT such that it equals one for a real

massless scalar or Majorana fermion. For SCFTs preserving N ≥ 2 supersymmetry one can

use supersymmetric localization [58, 72, 73] on the three-sphere to compute cT exactly [59].

There are two approaches to using supersymmetric localization to compute cT . One

way is to compute the squashed sphere partition function Zb = e−Fb [74, 75] of the theory

with squashing parameter b, where b = 1 corresponds to the round sphere. Taking the

derivative with respect to the squashing parameter, the central charge can be computed

as cT = 32
π2 Re

∂2Fb
∂b2

∣

∣

∣

b=1
[76]. This computation has been carried out in [76–78] in a few

simple examples.

Another way of obtaining cT makes use of having extended supersymmetry. In our

N = 8 SCFTs, the stress tensor sits in the same osp(8|4) multiplet as the so(8) R-symmetry

current. But any N = 8 SCFT can also be thought of as an N = 2 SCFT by considering

an osp(2|4) sub-algebra of osp(8|4). From the N = 2 point of view, the so(8) R-symmetry

current decomposes into the so(2) R-symmetry current as well as several flavor currents.

There are three Abelian flavor currents that commute with one another and with the so(2)

R-symmetry current. Together, these four currents generate the Cartan of so(8).

The extended supersymmetry relates cT to the coefficient appearing in the two-point

function of the Abelian flavor currents. In general, the flat-space two-point functions of

Abelian flavor currents jµa , with a being a flavor index, takes the form

〈jµa (x)jνb (0)〉 =
τab
16π2

(δµν∂2 − ∂µ∂ν)
1

x2
. (5.2)

The normalization in (5.2) is such that for a free chiral superfield (where there is only

one flavor current jµ corresponding to multiplication of the superfield by a phase) we have

τ = 1 provided that the chiral superfield carries unit charge under the flavor symmetry.

As explained in [59], the quantity τab can be computed from the S3 partition function

corresponding to a supersymmetry-preserving deformation of the N = 2 SCFT. This
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deformation can be interpreted as a mixing of the R-symmetry with the flavor symme-

try, whereby the matter fields are assigned non-canonical R-charges. The deformed S3

partition function can be computed exactly using the supersymmetric localization results

of [58, 72, 73].

5.1 Setup of the computation

We will follow the second approach for computing cT exactly in a few N = 8 SCFTs. In

N = 2 notation, the matter content of all known N = 8 theories consists of two vector mul-

tiplets with gauge group G1 and G2, respectively, and four chiral multiplets that transform

in bifundamental representations of G1 × G2. Preserving the marginality of the quar-

tic superpotential, one can consider the most general R-charge assignment parameterized

as [79, 80]

∆A1 =
1

2
+ t1 + t2 + t3, ∆A2 =

1

2
+ t1 − t2 − t3 ,

∆B1 =
1

2
− t1 + t2 − t3, ∆B2 =

1

2
− t1 − t2 + t3 .

(5.3)

This parameterization is chosen such that τab will be diagonal.

F -maximization [79, 81, 82] tells us that ReF (∆) = − ln |Z(∆)|, where Z is the S3

partition function, is maximized for the superconformal R-charge assignment ∆α = ∆∗ =

1/2, i.e. for t = 0. Equivalently, |Z| is minimized at t = 0, so

∂ |Z|
∂ta

∣

∣

∣

∣

t=0

= 0 . (5.4)

As explained in [59], the coefficient τab can be computed from the second derivative of Z

evaluated at t = 0:

τab =
2

π2
Re

1

Z

∂2Z

∂ta∂tb

∣

∣

∣

∣

t=0

. (5.5)

As explained above, cT should be proportional to τab. The coefficient of proportionality

can be fixed through carefully defining representations of the osp(8|4) algebra and then

decomposing them into their osp(2|4) sub-algebra representations. A quicker way to fix

the proportionality factor is from ABJM theory in the large N limit, where cT is known

from supergravity computations [83] and Z was computed as a function of ∆ in [79].

The three-sphere partition function of R-charge deformed ABJ(M) theories with gauge

group U(M)k ×U(N)−k is given by [58, 73]

Z(∆) ∝
∫

dMλ dNµ eiπk[
∑

i λ
2
i−

∑
j µ

2
j ]
∏

i 6=j

sinh[π(λi − λj)]
∏

i 6=j

sinh[π(µi − µj)]
∏

α

fα(∆) ,

fα(∆) ≡
∏

i,j

exp [ℓ (1−∆α + i (−)α (λi − µj))] , (5.6)

where ℓ(z) ≡ −z ln(1− e2πiz) + i
2

[

πz2 + 1
πLi2(e

2πiz)
]

− iπ
12 . Here, α ranges from 1 to 4 and

labels the chiral superfields of our theory.
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The only ∆(t) dependence of (5.6) comes from fα(∆). To compute the second deriva-

tive required in (5.5), note that

1
∏

α fα

∂2

∂t21

∏

α

fα

∣

∣

∣

∣

∣

t=0

= 2π2
∑

i,j

sech2 [π(λi − µj)]− 4π2

[

∑

i,j

tanh [π(λi − µj)]

]2

, (5.7)

1
∏

α fα

∂2

∂t22,3

∏

α

fα

∣

∣

∣

∣

∣

t=0

= 2π2
∑

i,j

sech2 [π(λi − µj)] . (5.8)

At face value, it looks like (5.7) gives something different from (5.8). One can check,

however, that the extra term present in (5.7) does not contribute to (5.5) in the cases we

study, as required from N = 8 supersymmetry.

Note that sometimes the N = 8 theories that we consider have decoupled sectors. For

instance, the U(N)1 × U(N)−1 ABJM theory has a free N = 8 sector [35], which is not

visible at the level of the Lagrangian, but must clearly exist if one identifies this theory with

the IR limit of U(N) SYM.18 In such cases the theory has more than one stress tensor,

and our localization computations are only sensitive to the sum of the central charges

corresponding to the different decoupled CFTs.

In particular, we compute the central charges of U(1)1 × U(1)−1, U(2)2 × U(1)−2,

U(2)1×U(2)−1 and U(2)2×U(2)−2 ABJ(M) theories, which are expected to be equivalent

to the IR limit ofN = 8 SYM with gauge groups U(1), SO(3) ≃ SU(2), U(2) ≃ SU(2)×U(1)

and SO(4) ≃ SU(2)× SU(2), respectively. Therefore the U(2)1 × U(2)−1 theory factorizes

into a product of the U(1)1 × U(1)−1 and U(2)2 × U(1)−2 theories, while U(2)2 × U(2)−2

ABJM factorizes into two copies of U(2)2 ×U(1)−2 ABJ theories. Indeed we find that the

central charges computed below for these product CFTs are given by the appropriate sum

of central charges corresponding to the irreducible CFTs (see table 9).19

5.2 Large N limit

First let’s consider the theories with supergravity dual descriptions. For a theory admitting

an AdS4 dual description, the sphere free energy F is proportional to the central charge

cT =
64

π2
F . (5.9)

This relation follows from the fact that the central charge in our normalization is cT =
32L2

πG4
[83], and the S3 free energy is F = πL2

2G4
[52, 79].20

Using localization, the large N limit of F is given by the N3/2 scaling law [52, 79]

F (∆) =
4π

3

√
2kN3/2

√

∆A1∆A2∆B1∆B2 . (5.10)

Combining this expression with (5.9) gives us the central charge of ABJM theories in the

large N limit

cT =
64

3π

√
2k N3/2 . (5.11)

18On the gravity side this free sector simply corresponds to the center of mass motion of the stack of

M2-branes.
19We are grateful to O. Aharony for pointing this out to us.
20L is the AdS4 radius, and G4 stands for the 4-dimensional Newton constant.
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The flavor current two-point function coefficient can be computed using (5.5), so

cT = 4 τff =
8

π2
Re

1

Z

∂2Z

∂ t2a

∣

∣

∣

∣

∣

t=0

. (5.12)

Z(∆∗) for ABJ(M) theories have been computed for various values of N and k using

Fermi-gas techniques [84–88]. Thus to compute cT it suffices to compute ∂2Z
∂ t2a

∣

∣

∣

t=0
, as we do

for a few examples in the subsequent sections. It would be interesting to see if the techniques

used for computing Z(∆∗) in [84–88] can be generalized to compute cT systematically.

5.3 U(1) × U(1) ABJM theory

In the free U(1)k ×U(1)−k ABJM theory, the three-sphere partition function (5.6) is

Z(∆) =

∫ ∞

−∞

∫ ∞

−∞
dλ dµ exp

(

iπk(λ2 − µ2)
)

∏

α

exp (ℓ (1−∆α + i (−)α (λ− µ))) . (5.13)

The integration can be performed explicitly by changing integration variables to u± = λ±µ.
This choice exploits the fact that the product is independent of u+, giving us a delta-

function. Performing the integral, we obtain

Z(∆) = k−1 exp

(

∑

α

ℓ(1−∆α)

)

. (5.14)

We see that for ∆α = ∆∗ = 1/2,

Z(∆∗) =
1

4 k
,

∂2Z

∂ta∂tb

∣

∣

∣

∣

t=0

=
π2

2k
δab . (5.15)

Using (5.12), for the abelian theory we get cT = 16. This result can be directly interpreted

from free theory counting. There are four chiral multiplets in the theory and for each chiral

multiplet there is one complex scalar and one Dirac fermion, each of which contributes two

units to the central charge. In total, we get 16.

5.4 U(2) × U(2) ABJM and SU(2) × SU(2) BLG theory

Now we turn to interacting theories. We consider U(2)k ×U(2)−k ABJM theory at Chern-

Simons level k = 1, 2 and BLG theories at all k. This BLG theory can be described as a

SU(2)k×SU(2)−k CS-matter theory [39, 40]. The three-sphere partition function is related

to that of U(2)k ×U(2)−k theory by having the Coulomb branch parameters in the Cartan

elements of U(2) sum to zero. We see that the central charge result for the two theories

are equal.21 Using (5.12) we find the central charge in terms of one integral,

cT = 32

(

2− I4
I2

)

, with In ≡
∫ ∞

−∞
dy y

tanhn(πy)

sinh(πky)
. (5.16)

21See appendix E.1 for details.
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For general k, the integral In can be evaluated by contour integration as explained

in [84]. Depending on whether k is even or odd, one can choose a holomorphic function

and a contour that integrates to In. Summing the residues of the poles gives

I2 =































(−1)
k−1
2

π
+

k−1
∑

s=1

(−1)s+1

2k2
(k − 2s) tan2

(πs

k

)

, if k is odd ,

− ik

π2k
+

k−1
∑

s=1
s 6=k/2

(−1)s+1

4k3
(k − 2s)2 tan2

(πs

k

)

, if k is even ,

I4 =































ik+1
(

3k2 − 8
)

6π
+

k−1
∑

s=1

(−1)s

2k2
(k − 2s) tan4

(πs

k

)

, if k is odd ,

ik
(

k2 − 8
)

6π2k
+

k−1
∑

s=1
s 6=k/2

(−1)s

4k3
(k − 2s)2 tan4

(πs

k

)

, if k is even .

(5.17)

For ABJM theories with k = 1, 2 we get

ck=1
T =

112

3
≈ 37.333, ck=2

T =
128

3
≈ 42.667 . (5.18)

BLG theories have N = 8 superconformal symmetry for any Chern-Simons level k.

For k = 3, the central charge is

cT = 16
31− 10π

3− π
≈ 46.9998 . (5.19)

One can also consider the large k limit, where the theory becomes perturbative. The central

charge in the large k limit is

cT = 64

(

1− π2

k2
− 13π4

3k4
+

2539π6

90k6
+O(1/k8)

)

. (5.20)

The fact that the central charge asymptotes to 64 can be understood from free theory

counting. Four chiral multiplets in a single color factor contribute 16 to the central charge.

As chiral multiplets are in the bifundamental representation, there are four copies of them,

which sums to 64.

5.5 U(2) × U(1) ABJ theory

We now compute the central charge explicitly for U(2)k ×U(1)−k ABJ theory.22 Carrying

out the integral for both Z and its second t-derivatives, we get

cT = 32

∫∞
−∞ dy tanh(πy) csch(kπy) sech2(πy)

∫∞
−∞ dy tanh(πy) csch(kπy)

. (5.21)

For the N = 8 theories with k = 1, 2 the central charges are

ck=1
T = 16 , ck=2

T =
64

3
≈ 21.333 . (5.22)

The central charge for k = 1 is consistent with the ABJ duality [46, 89] as U(2)1 ×U(1)−1

ABJ theory is dual to the U(1)1 ×U(1)−1 ABJM theory.

22See section E.3 for details.
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6 Numerics

All ingredients are now in place for our numerical study of the crossing equations (3.1). Ex-

plicitly, in terms of the functions Aab(u, v) defined in (2.6) and expanded in superconformal

blocks in section 4 (see also appendix C), these equations are:

























d1

d2

d3

d4

d5

d6

























≡

























F+
10 + F+

11 +
5
3F+

20 − 2
5F+

21 − 14
3 F+

22

F+
00 − 1

4F+
11 − 20

21F+
20 + F+

21 − 14
15F+

22

F−
20 + F−

21 + F−
22

F−
11 +

4
3F−

21 +
8
3F−

22

F−
10 +

3
5F−

21 + 3F−
22

F−
00 − 12

7 F−
21 +

24
35F−

22

























= 0 , (6.1)

where we defined

F±
ab(u, v) ≡

1

u
Aab(u, v)±

1

v
Aab(v, u) . (6.2)

Recall that the contribution to Aab coming from each superconformal block takes the form

of a linear combination of conformal blocks. Note that the basis of equations di = 0 used

here is different from the basis ẽi = 0 of section 3.2. The two bases are related by the linear

transformation



















d1
d2
d3
d4
d5
d6



















=



















0 1 0 −1 0 0

0 −1 0 0 0 0

0 0 0 0 −1
4

1
4

1
2 0 −1 0 1

6
1
3

−1
2 0 0 0 1

4
1
4

1
8 0 3

4 0 17
56 − 5

28





































ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6



















. (6.3)

Crossing equations such as (6.1) have been used many times recently to rule out the

existence of (S)CFTs whose spectrum of operators satisfies certain additional assumptions.

We will perform several such studies with or without additional assumptions besides locality

(i.e. existence of a stress tensor), unitarity, and invariance under the N = 8 superconformal

algebra osp(8|4). The main observation is that, when expanded in superconformal blocks,

the crossing equations (6.1) take the form

di =
∑

M∈ osp(8|4) multiplets

λ2M di,M = 0 , (6.4)

where M ranges over all the superconformal multiplets that appear in the OPE of O35c

with itself — see table 3. In (6.4), di,M should be identified with the middle expression

in (6.1) in which one uses only the contributions to the F±
ab coming from the superconformal

block of the multiplet M.

There is in fact a superconformal multiplet that appears in the O35c ×O35c OPE and

that was omitted from table 3. It is a rather trivial multiplet that consists solely of the
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identity operator in the so(8)R singlet channel. Its superconformal block is given by

A00 = 1 , (6.5)

with all other Aab vanishing. We choose to set the OPE coefficient of this multiplet to

λId = 1. This choice is equivalent to fixing the normalization of the operator O35c whose

four-point function we want to study. With the help of the null polarization variables Y i

introduced in section 2, we can specify the normalization of O35c(x) = Oij(x)Y
iY j that

corresponds to λId = 1 by requiring its two-point function to satisfy

〈O35c(x1, Y1)O35c(x2, Y2)〉 =
(Y1 · Y2)2
|x1 − x2|2

. (6.6)

Importantly, the coefficients λ2M are positive in a unitary SCFT. Their normalization is

meaningful only once we specify the normalization of the (super)conformal blocks and that

of the operatorO35c . In our conventions, if the superconformal primary ofM has conformal

dimension ∆, spin j, and transforms as the (c, d) = [0 (c− d) (2d) 0] of so(8)R, then

Acd(x, x̄) ∼
Γ(j + 1/2)

4∆
√
π Γ(j + 1)

x
1
2
(∆+j)x̄

1
2
(∆−j) , as x, x̄→ 0 , (6.7)

where x̄ is taken to zero first. (See also appendix A.)

With the normalization described above, we can relate the OPE coefficient of the stress-

tensor multiplet (1, 0)
[0020]
(B,+) (which, for short, will henceforth be referred to as “stress”) to

the central charge cT discussed in the previous section. We have23

λ2stress =
256

cT
, (6.8)

where, as in the previous section, we normalized cT so that cT = 1 for a theory of a free

real scalar field or a free Majorana fermion. In table 9 we collect the lowest few values of cT
that we computed in the previous section for known SCFTs with N = 8 supersymmetry.

The approach for excluding (S)CFTs first introduced in [7] starts with constructing

linear functionals of the expressions di that are required to vanish by crossing symmetry.

One can construct such linear functionals by considering linear combinations of the di
and of their derivatives at the crossing-symmetric point x = x̄ = 1/2. Denoting such a

functional by α, we have

α(~d) =
∑

i

∑

m≥n

αi,mn

(

∂m∂̄ndi
)

∣

∣

∣

∣

x=x̄= 1
2

, (6.9)

where αi,mn are numerical coefficients. In (6.9), we restricted the second sum to run only

over m ≥ n because ∂m∂̄ndi = ∂n∂̄mdi, as follows from the fact that all conformal blocks

23We stress that λstress is not the OPE coefficient of the stress tensor in the O35c
× O35c

OPE, but

instead the coefficient of the superconformal primary in the stress-tensor multiplet. The OPE coefficient of

the stress tensor is λ3,2 = λstress/2.
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SCFT cT
U(1)k ×U(1)−k ABJM 16.0000

U(2)2 ×U(1)−2 ABJ 21.3333

U(2)1 ×U(2)−1 ABJM 37.3333

U(2)2 ×U(2)−2 ABJM 42.6667

SU(2)3 × SU(2)−3 BLG 46.9998

SU(2)4 × SU(2)−4 BLG 50.3575

SU(2)5 × SU(2)−5 BLG 52.9354
...

...

Table 9. A few values of cT for known SCFTs. See section 5 for a derivation as well as analytical

formulas for these central charges.

are chosen to be invariant under x ↔ x̄. Without this restriction, we would be double

counting all derivatives with m 6= n.

Note that still not all the terms in the sum (6.9) are linearly independent. There are

two additional sources of linear dependencies between the various terms in (6.9). The first

such source can be seen from the definitions (6.1)–(6.2) whereby d1 and d2 are even under

x→ 1−x and x̄→ 1− x̄, while the other di are odd. Therefore, at the crossing-symmetric

point x = x̄ = 1/2, we have ∂m∂̄ndi = 0 for i = 1, 2 and m + n odd or i = 3, 4, 5, 6 and

m+ n even. We should not include these terms that vanish in (6.9).

The second source of dependencies is more subtle and follows from the discussion in

section 3.2. Indeed, in section 3.2 we have shown that the derivatives of the ẽi were not

all independent. The linear relation (6.3) then shows that the derivatives of the di are also

not all independent. It is straightforward to check based on the results of section 3.2 that

a possibly independent set of derivatives of the di consists of the derivatives of d2 as well

as the holomorphic derivatives of d1. There are many other such choices, but we make this

one for convenience.

We can now attempt to find linear functionals (6.9) that satisfy certain positivity

properties in order to obtain bounds on operator dimensions and OPE coefficients.

6.1 Obtaining a lower bound on cT

In the previous section we have seen that the U(1)×U(1) ABJM theory at level k = 1, 2 is

free and has cT = 16. This value can be obtained by adding up the equal unit contributions

from the eight real scalars and eight Majorana fermions. One may then wonder if there

exist other N = 8 SCFTs with cT < 16, or, given (6.8), with λ2stress > 16. Let us therefore

use the bootstrap to find an upper bound on λ2stress.

The first step is to separate out the contributions from the identity multiplet and from

the stress-tensor multiplet in (6.9). Since crossing requires ~d = 0, we must have

0 = α(~d) = α(~dId) + λ2stressα(
~dstress) +

∑

M6=Id,stress

λ2Mα(~dM) . (6.10)
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An upper bound on λ2stress can be obtained by considering the space of functionals α

that satisfy

α(~dstress) = 1 , and α(~dM) ≥ 0 , for all M 6= Id, stress . (6.11)

The conditions (6.11) and the equation (6.10) imply the bound

λ2stress ≤ −α(~dId) . (6.12)

To obtain the most stringent bound we should minimize −α(~dId) under the con-

straints (6.11).

The minimization problem described above needs to be truncated for a numerical

implementation. There are two truncations that should be performed: one in the number

of derivatives used to construct α and one in the range of multiplets M that we consider.

Instead of (6.9), we can consider the truncated version

αΛ(~d) =
∑

i

∑

m+n≤Λ

αi,mn

(

∂m∂̄ndi
)

∣

∣

∣

∣

x=x̄= 1
2

, (6.13)

where the sum over m and n should only contain independent terms. In practice, the cutoff

Λ that determines the size of our search space will be taken to be Λ = 15, 17, or 19. We

can then minimize −αΛ(~dId) under the constraints

αΛ(~dstress) = 1 ,

αΛ(~dM) ≥ 0 , for all other M with j ≤ jmax and ∆ ≥ j + 1
(6.14)

Here, ∆ and j refer to the conformal dimension and spin of the superconformal primary,

and ∆ ≥ j + 1 is just the unitarity condition. The second equation refers to all multiplets

M other than the identity and the stress-tensor multiplet. In practice, we found that

taking jmax = 20 provides fairly accurate results.

For the long multiplet (∆, j)
[0000]
(A,0) (henceforth referred to as “long”) the quantity

αΛ(~dlong) can further be approximated, for each spin, by a positive function times a poly-

nomial in ∆. Such expansion is obtained by expanding the conformal blocks that comprise

the long superconformal block in a Taylor series around x = x̄ = 0 using the recursion

formula given in [20], and then approximating some of the poles as a function of ∆ that

appear in this expansion in terms of a smaller set of poles, as explained in the appendix

of [20].

The minimization of −αΛ(~dId) under the constraints (6.14) can then be rephrased

as a semidefinite programing problem using the method developed in [18]. This prob-

lem can be solved efficiently by freely available software such as sdpa gmp [64]. Imple-

menting it as a dual problem, we obtain λ2stress ≤ 17.02, 16.95, 16.67, or equivalently,

cT ≥ 15.04, 15.11, 15.35, for Λ = 15, 17, 19, respectively. Clearly, it would be desirable

to increase Λ further, but we take these numerical results as good evidence that cT ≥ 16

in all local unitary SCFTs with N = 8 supersymmetry. In the rest of this paper we only

study such SCFTs with cT ≥ 16.
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6.2 Bounds on scaling dimensions of long multiplets

A small variation on the method presented in the section 6.1 yields upper bounds on the

lowest scaling dimension ∆∗
j of spin-j superconformal primaries in a long multiplet. Such

superconformal primaries must all be singlets under the so(8) R-symmetry — see table 3,

where the long multiplet is in the last line. It is worth emphasizing that, as was the case

in section 6.1, these bounds do not depend on any assumptions about our N = 8 SCFTs

other than locality and unitarity.

The variation on the method presented in section 6.1 is as follows. Let us fix cT and

look for functionals α satisfying the following conditions:

α(~dId) +
256

cT
α(~dstress) = 1 ,

α(~dM) ≥ 0 , for all short and semi-short M /∈ {Id, stress} ,

α(~dM) ≥ 0 , for all long M with ∆ ≥ ∆∗
j .

(6.15)

The existence of any such functional α would prove inconsistent all SCFTs with the prop-

erty that superconformal primaries of spin-j long multiplets all have conformal dimension

∆ ≥ ∆∗
j , because if this were the case, then equation (6.10) could not possibly hold. If

we cannot find a functional α satisfying (6.15), then we would not be able to conclude

anything about the existence of an SCFT for which superconformal primaries of spin-j

long multiplets all have conformal dimension ∆ ≥ ∆∗
j —such SCFTs may or may not be

excluded by other consistency conditions we have not examined. An instance in which a

functional α with the properties (6.15) should not exist is if cT is chosen to be that of an

ABJ(M) or a BLG theory and if we only impose restrictions coming from unitarity, namely

if we take ∆∗
j = j+1 for all j. Indeed, we should not be able to exclude the ABJ(M) and/or

BLG theories, assuming that these theories are consistent as is believed to be the case.

As in the previous section, in order to make the problem (6.15) amenable to a numerical

study, we should truncate the number of spins used in the second and third lines to j ≤
jmax (where in practice we take jmax = 20) and replace α by αΛ such that our search

space becomes finite-dimensional. We can then use sdpa gmp to look for functionals αΛ

satisfying (6.15) for various choices of ∆∗
j . In practice, we will take Λ = 15, 17, and 19.

We present three numerical studies:

1. We first find an upper bound on the lowest dimension ∆∗
0 of a spin-0 long multiplet

assuming that all long multiplets with spin j > 0 are only restricted by the unitarity

bound. In other words, we set ∆∗
j = j + 1 for all j > 0. This upper bound is plotted

as a function of cT in figure 1 for Λ = 15 (in light brown), Λ = 17 (in black), and

Λ = 19 (in orange). As can be seen from figure 1, there is very good agreement

between the latter two values of Λ, especially at large cT .

The upper bound on ∆∗
0 interpolates monotonically between ∆∗

0
<∼ 1.02 at cT = 16

and ∆∗
0
<∼ 2.03 as cT → ∞ when Λ = 19. As we will now explain, these bounds are

very close to being saturated by the U(1)k × U(1)−k ABJM theory at cT = 16 and

by the large N U(N)k×U(N)−k ABJM theory (or its supergravity dual) at cT = ∞.
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Figure 1. Upper bounds on ∆∗

0, which is the smallest conformal dimension of a long multiplet of

spin-0 appearing in the O35c
×O35c

OPE. The long multiplets of spin j > 0 are only restricted by

unitarity. These bounds are computed with jmax = 20 and Λ = 19 (orange), Λ = 17 (black), and

Λ = 15 (light brown). The plot on the right is a zoomed-in version of the plot on the left. The

dashed vertical lines correspond to the values of cT in table 9.

Let us denote the real and imaginary parts of the bifundamental scalar matter fields

in U(N) × U(N) ABJM theory with Chern-Simons levels ±1 or ±2 by Xi, with

i = 1, . . . , 8. In our convention, the Xi transform as the 8c of the emergent so(8)R.

The operator Oij whose four-point function we have been analyzing transforms in

the 35c of so(8)R. It can be written schematically as24

Oij = tr

[

XiXj −
1

8
δijXkX

k

]

, (6.16)

up to an overall normalization. There are two so(8) singlets appearing in the Oij×Okl

OPE as the bottom components of long multiplets that are worth emphasizing: the

single trace operator OK = trXkX
k, which is the analog of the Konishi operator in

4-d N = 4 SYM, and the double trace operator OijOij . When N = 1, the theory

is free, and OK has scaling dimension 1, while OijOij has dimension 2. In this case

∆∗
0 = 1, and therefore this theory almost saturates our numerical bound. When

N = ∞, OK is expected to acquire a large anomalous dimension,25 while OijOij still

has dimension 2 by large N factorization. Therefore, in this case ∆∗
0 = 2, and so

the large N ABJM theory also almost saturates our numerical bound. It would be

interesting to know whether for intermediate values 16 < cT < ∞ ABJM theory is

close to saturating the bounds on ∆∗
0 as well.

There is another feature of the bounds in figure 1 that is worth noting: as a function

of cT , the bound on ∆∗
0 has a kink. The location of the kink is approximately at

cT ≈ 22.8 and ∆∗
0 ≈ 1.33. We do not know of any SCFT with osp(8|4) symmetry at

this particular value of cT . The known such SCFTs in this region are marked with

24For Chern-Simons levels k = 1, 2, the products XiXj must be combined with monopole operators into

gauge invariant combinations.
25Single trace long multiplets are not part of the supergravity spectrum. The only single-trace operators

that are dual to supergravity fluctuations around AdS4×S7 are part of the half-BPS multiplets (n/2, 0)
[00n0]

(B,+)

with n ≥ 2 [90].
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Figure 2. Upper bounds on ∆∗

0 (the smallest conformal dimension of a spin-0 long multiplet

appearing in the O35c
×O35c

OPE) for large values of cT . The bounds are computed with jmax = 20

and Λ = 19. The long multiplets of spin j > 0 are only restricted by unitarity. The best fit for the

last ten points (shown in black) is log(∆∗

0(∞)−∆∗

0) = 4.55− 1.00 log cT .

dashed lines in figure 1. At this point it is hard to know if the kink in figure 1 has

any physical meaning.

From a fit at large values of cT we obtain ∆∗
0
>∼ 2.03 − 94.6/cT + . . .. See figure 2.

In particular, the first subleading term at large cT scales as 1/cT . Such a behavior is

also what would be expected from supergravity. Indeed, in radial quantization, the

anomalous dimension of the double trace operator OijOij takes the form of a binding

energy, and, within supergravity, one expects such binding energies to be of the order

of the effective 4-d Newton constant G4 ∝ 1/cT (see section 5.2).26

2. Our second numerical study is similar to the first. Instead of obtaining an upper

bound on ∆∗
0, we now obtain an upper bound on ∆∗

2, which is the lowest scaling

dimension of a spin-2 long multiplet. We obtain the bound on ∆∗
2 under the assump-

tion that long multiplets of spin j 6= 2 are only restricted by the unitarity condition.

In other words, we set ∆∗
j = j +1 for all j 6= 2. In figure 3, we plot the upper bound

on ∆∗
2 as a function of cT for Λ = 15 (in light brown), Λ = 17 (in black), and Λ = 19

(in orange). The convergence as a function of Λ is poorer than in the ∆∗
0 case, but it

is still reasonably good throughout, especially at large cT .

A main feature of the plot in figure 3 is that it interpolates monotonically between

∆∗
2
<∼ 3.11 at cT = 16 and ∆∗

2
<∼ 4.006 at cT = ∞. It is likely that as one increases Λ,

the bound at cT = 16 will become stronger still, since at this value of cT the bound

obtained when Λ = 19 is still noticeably different from that obtained when Λ = 17

and convergence has not yet been achieved.

As was the case for the bounds on ∆∗
0, the bounds on ∆∗

2 are also almost saturated

by ABJM theory at cT = 16 and cT = ∞. Indeed, two of the spin-2 so(8) singlets

that appear in the Oij ×Okl OPE as bottom components of long multiplets are the

26We thank I. Klebanov for a discussion on this issue.
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Figure 3. Upper bounds on ∆∗

2, which is the smallest conformal dimension of a long multiplet of

spin-2 appearing in the O35c
×O35c

OPE. The long multiplets of spin j 6= 2 are only restricted by

unitarity. These bounds are computed with jmax = 20 and Λ = 19 (orange), Λ = 17 (black), and

Λ = 15 (light brown). The plot on the right is a zoomed-in version of the plot on the left. The

dashed vertical lines correspond to the values of cT in table 9.

single trace operator trXk∂µ∂νX
k and the double trace operator Oij∂µ∂νOij . For

U(1) × U(1) ABJM theory, they have scaling dimensions 3 and 4, respectively; in

ABJM theory at infinite N , the first has a large anomalous dimension, while the

second has scaling dimension 4 because of large N factorization. Therefore, the

N = 1 theory has ∆∗
2 = 3, while the large N theory has ∆∗

2 = 4, in agreement with

our numerical bounds.

Note that just as in the ∆∗
0 case, our upper bound on ∆∗

2 in figure 3 also exhibits a

kink for cT ≈ 22.8. Within our numerical precision, this kink is in the same location

as that in figure 1.

3. Our last numerical study yields combined upper bounds on ∆∗
0 and ∆∗

2 under the

assumption that all long multiplets with spin j > 2 are restricted only by the unitarity

bound, i.e. ∆∗
j = j + 1 for all j > 2. In figure 4 we provide such combined upper

bounds only for a few values of cT corresponding to the ABJ(M) / BLG theories for

which we computed cT in section 5.

As can be seen from figure 4, the combined bounds take the form of a rectangle in

the ∆∗
0-∆

∗
2 plane, suggesting that these bounds are set by a single N = 8 SCFT,

if such an SCFT exists. A similar feature is present for the N = 4 superconformal

bootstrap in 4-d [24].

Note that for cT = ∞, the combined ∆∗
0-∆

∗
2 bound comes very close to the values

(∆∗
0,∆

∗
2) = (2, 4) of the large N ABJM theory.

6.3 Bounds on OPE coefficients

We can also obtain upper bounds on various OPE coefficients, just as we did in section 6.1

for λ2stress. In this section we will only do so for the protected multiplets (2, 0)
[0040]
(B,+) and

(2, 0)
[0200]
(B,2) , which for brevity will henceforth be denoted by (B,+) and (B, 2), respectively.
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Figure 4. Combined upper bounds on ∆∗

0 and ∆∗

2, which are the smallest scaling dimensions of

spin-0 and spin-2 long multiplets appearing in the O35c
×O35c

OPE. The long multiplets of spin

j > 2 are only restricted by unitarity. The bounds are computed with jmax = 20 and Λ = 19. The

solid lines correspond to the expected scaling dimensions in ABJM theory at large N .

An upper bound on λ2(B,+), for instance, can be found by considering functionals α

satisfying

α(~d(B,+)) = 1 ,

α(~dM) ≥ 0 , for all short and semi-short M /∈ {Id, stress, (B,+)} ,

α(~dM) ≥ 0 , for all long M with ∆ ≥ ∆∗
j .

(6.17)

If such a functional α exists, then (6.10) implies that

λ2(B,+) ≤ −α(~dId)−
256

cT
α(~dstress) , (6.18)

provided that all long multiplets (∆, j) satisfy ∆ ≥ ∆∗
j . (Choosing the unitarity values

∆∗
j = j + 1 provides no restrictions on the set of N = 8 SCFTs for which the inequal-

ity (6.18) holds.) To obtain the most stringent upper bound on λ2(B,+), one should then

minimize the r.h.s. of (6.18) under the constraints (6.17). A similar prescription obtained

by replacing (B,+) by (B, 2) in (6.17)–(6.18) yields an upper bound on λ2(B,2). As in the

previous sections, one should consider a truncated version αΛ of α and restrict the set of

spins of the superconformal multiplets to a finite number such as j ≤ jmax = 20.

As a warm-up, let us start with the cT = ∞ limit and see how sensitive the bounds on

λ2(B,+) and λ
2
(B,2) are on the values of ∆∗

j that we choose. Requiring only unitarity means

setting ∆∗
j = j + 1 for all j. When cT = ∞ we know, however, that there exists an N = 8

SCFT (namely ABJM theory with k = 1, 2 and N = ∞) for which ∆∗
j = j+2. In table 10

we show the upper bounds on λ2(B,+) and λ
2
(B,2) that we obtain under the assumption that

∆∗
j = j+1 for j < J and ∆∗

j = j+2 for j ≥ J as we vary J . The bounds for J = 0 are the

least restrictive and they hold in any SCFT with N = 8 supersymmetry. As we increase
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J λ2(B,+) bound λ2(B,2) bound

0 −5.42443 −11.1221

2 −5.33344 −10.6672

4 −5.33344 −10.6672

6 −5.33338 −10.6669

8 −5.33338 −10.6669

10 −5.33337 −10.6668

12 −5.33337 −10.6668

14 −5.33336 −10.6668

Table 10. Upper bounds on OPE coefficients for the (2, 0)
[0040]
(B,+) and (2, 0)

[0200]
(B,2) mutliplets. These

bounds are computed for cT = ∞ and under the assumption that ∆∗

j = j + 1 for j ≥ J and

∆∗

j = j + 2 for j < J .

J , the bounds converge to

λ2(B,+) → −16

3
, λ2(B,2) → −32

3
, (as J → ∞ for cT = ∞) (6.19)

extremely quickly. The limiting values in (6.19) can be derived analytically using large N

factorization. In the large N limit, they correspond to the double-trace operators OijOkl

projected onto the [0040] (symmetric traceless) and [0200] irreps of so(8)R.

In figures 5 and 6, we show upper bounds on λ2(B,+) and λ2(B,2) for a wide range of

cT . The bounds plotted in blue correspond to ∆∗
j = j + 1 for all j and hold for any

N = 8 SCFTs. The bounds plotted in orange are more restrictive. They are obtained

with ∆∗
j = j + 1 for all j > 0 and ∆∗

0 chosen approximately by the bounds given in

figure 1. At large cT , these latter bounds approach approximately the limits in (6.19).

At cT = 16, the upper bound for λ2(B,+) is approximately 16, while that for λ2(B,2) is very

small. In the U(1)×U(1) ABJM theory at CS level k = 1, 2 one can show analytically that

λ2(B,+) = 16 while λ2(B,2) = 0. The latter value follows from the fact that there are simply

no (B, 2) multiplets, because the projection of XiXjXkXl onto the [0200] irrep involves

anti-symmetrizations of the Xi, which in this case commute.

Lastly, in figure 7 we show a comparison plot between upper bounds on λ2(B,+) and

λ2(B,2) that differ in how the functionals α are constructed. The bounds in orange correspond

to constructing α from derivatives w.r.t. x and x̄ of the quantity d2 defined in (6.1) as well

as holomorphic derivatives of d1. The bounds in green are obtained only using derivatives

w.r.t. x and x̄ of d2. As can be seen from figure 7, the holomorphic derivatives of d1 do

carry additional information not contained in d2.

7 Discussion

Our conformal bootstrap analysis provides us with true non-perturbative information

about N = 8 SCFTs. Generically these theories are strongly coupled, and the confor-
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Figure 5. Upper bounds on λ2(B,+) using only the unitarity assumption (in blue) or a more

restrictive assumption on scaling dimensions of long multiplets of spin-0 in orange. (See main text.)

These bounds are computed with jmax = 20 and Λ = 19. For the more restrictive bounds, we also

show the corresponding values computed with Λ = 17 (in black) and Λ = 15 (in light brown). The

plot on the right is a zoomed-in version of the plot on the left. The dashed vertical lines correspond

to the values of cT in table 9.

Figure 6. Upper bounds on λ2(B,2) using only the unitarity assumption (in blue) or a more restrictive

assumption on scaling dimensions of long multiplets of spin-0 in orange. (See main text.) These

bounds are computed with jmax = 20 and Λ = 19. For the more restrictive bounds, we also show

the corresponding values computed with Λ = 17 (in black) and Λ = 15 (in light brown). The plot

on the right is a zoomed-in version of the plot on the left. The dashed vertical lines correspond to

the values of cT in table 9.

mal bootstrap is possibly the only available method to study them. Indeed, except for

the U(1) × U(1) ABJM theory (which is trivial) and BLG theory at large k (which has

no known gravity description), all known N = 8 SCFTs are strongly interacting. In ad-

dition, while the large N limit of the ABJM theory can be studied through its weakly

coupled supergravity dual, it is hard to obtain detailed information directly from the field

theory side.

The operator spectrum and OPE coefficients of theories that saturate the bounds

provided by the numerical bootstrap can be determined numerically [30]. It is therefore

interesting to contemplate whether the known N = 8 theories saturate (or come close

to saturating) our numerical bounds. Note that since N = 8 theories are not expected
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Figure 7. Upper bounds on λ2(B,+) and λ
2
(B,2) computed either using derivatives w.r.t. x and x̄ of d2

(see (6.1)) and holomorphic derivatives of d1 (in orange), or using only derivatives of d2 (in green).

These bounds are obtained with jmax = 20, Λ = 19, and a more restrictive set of assumptions on

∆∗

0 only.

to have continuous parameters, it seems plausible that there are unique N = 8 SCFTs

corresponding to particular given values of cT . In such cases, if the numerical bounds were

optimal, they would be saturated by those unique theories. In contrast, 4-d N = 4 SCFTs

have a continuous coupling, and therefore there is a continuous family of theories for any

given value of the central charge.

Our results show that the bounds are indeed very close to being saturated for large cT
by the large N ABJM theory, and for cT = 16 by the (free) U(1) × U(1) ABJM theory.

However, for values of cT corresponding to large k BLG theories the bounds seem far

from being saturated. Moreover, it is hard to determine whether the bounds we obtained

for intermediate values of cT are saturated by ABJ(M) theories without any additional

independent information on those theories.

An additional feature of our numerical studies is the appearance of a kink in the bounds

on operator dimensions as a function of cT , for cT ≈ 22.8. We have seen that these bounds

are approximately saturated by certain single trace operators in the free (cT = 16) theory,

while they are saturated by different, double trace operators for cT → ∞. It is possible that

the region near the kink corresponds to a situation in which these two operators become

nearly degenerate.27 However, note that we do not know of any N = 8 SCFTs with this

particular value of cT .

Our results can be generalized in various ways. For example, the Ward identity for

1/2-BPS multiplets other than the stress-tensor multiplet28 is also given by (2.11). It

should be straightforward to use our methods to determine the superconformal blocks

and the relations between the various crossing equations for four-point functions of those

multiplets. This information could then be used to study other correlation functions using

the numerical bootstrap method.29

27Indeed, in other numerical bootstrap studies, kinks were shown to correspond to abrupt changes in the

operator spectrum [22].
28The solution to the Ward identity is slightly different in those cases (see [1]).
29In the 4-dimensional N = 4 theory such a study was performed in [26].
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In addition, our results for the superconformal blocks show that the O35c ×O35c OPE

has parity symmetry. While all the known N = 8 SCFTs have parity symmetry, we do not

know of a proof that this must always be the case. Since the Ward identities for the four-

point functions of other 1/2-BPS operators are identical to the one we studied, it should be

possible to generalize this result for the OPE of any 1/2-BPS operators in N = 8 theories.

In 4-dimensional N = 4 SCFTs the contributions coming from short multiplets to

four-point functions of 1/2-BPS operators can be determined analytically. One way to fix

these contributions is by proving a non-renormalization theorem [91], showing that they

are the same as in the free theory. In interacting 3-dimensional N = 8 theories there are no

continuous couplings that one can tune to obtain a free theory. One could then argue that

the absence of continuous couplings implies that the short multiplet contributions cannot

be determined in the same way as in four dimensions.

However, in 4-d N = 4 SCFTs one can also fix the short multiplet contributions by us-

ing only superconformal invariance and crossing symmetry, without ever referring to a free

theory or Lagrangian description.30 It is possible that such contributions to the four-point

functions of 1/2-BPS operators in 3-d N = 8 theories could also be fixed in this fash-

ion. In this work we have solved the differential relations between the crossing equations,

which were implied by superconformal invariance, in a series expansion around the crossing

symmetric point. While this solution was sufficient for the purpose of implementing the

numerical bootstrap, it is possible that with a more thorough analysis of those equations,

one would be able to determine the contributions from short operators in three dimensions

as well. We hope to return to this interesting question in the future.
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A so(d, 2) conformal blocks

It was shown in [60] that conformal blocks in any dimension can be written as series

expansions in two variable Jack polynomials. Jack polynomials31 can be defined using

Gegenbauer polynomials as

P
(ε)
λ1λ2

(x, x̄) =
(λ1 − λ2)!

(2ε)λ1−λ2

(xx̄)
1
2
(λ1+λ2)C

(ε)
λ1−λ2

(

x+ x̄

2(xx̄)1/2

)

, ε =
d− 2

2
. (A.1)

The conformal blocks can then be written as

g∆,j(x, x̄) =
∑

m,n≥0

rm,n(∆, j)P
(ε)
1
2
(∆+j)+m, 1

2
(∆−j)+n

(x, x̄) . (A.2)

30These contributions are parameterized by the central charge.
31Strictly speaking these are polynomials only if both λ1 and λ2 in (A.1) are integers. In the expansions

of conformal blocks we use (A.1) with λ1 − λ2 = 0, 1, 2, . . ., but λ1 can take non-integer values.
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Define

rmn =

(

1

2
(∆ + j)

)2

m

(

1

2
(∆− j)− ε

)2

n

r̂mn . (A.3)

The coefficients r̂mn can be computed using the recursion relation

(m(m+∆+ j − 1) + n(n+∆− j − 2ε− 1)) r̂mn

=
j +m− n− 1 + 2ε

j +m− n− 1 + ε
r̂m−1n +

j +m− n+ 1

j +m− n+ 1 + ε
r̂mn−1 . (A.4)

Our normalization convention is fixed by taking r00 = 1/4∆. With this convention

we have

g∆,j(x, x̄) ∼
(ε)j

4∆(2ε)j
x

1
2
(∆+j)x̄

1
2
(∆−j) , as x, x̄→ 0 , (A.5)

where x̄ is taken to zero first. This normalization is adapted to the r, η coordinates32 of [67]

which are related to x and x̄ by

r2 =
xx̄

(

1 +
√
1− x

)2 (
1 +

√
1− x̄

)2 , η =
1−

√

(x− 1)(x̄− 1)√
xx̄

. (A.6)

The normalization (A.5) is equivalent to

g∆,j(x, x̄) ∼ r∆ , as r → 0 . (A.7)

In practice, to approximate conformal blocks in our numerics we use the recursion relations

of [20, 67].

B Characters of osp(8|4)

In this section we will review the character formulas of osp(8|4), which were computed

in [65], as well as their decomposition under osp(8|4) → so(3, 2)⊕so(8). This decomposition

was used in section 4 to determine which conformal primaries reside in each supermultiplet

appearing in the O35c ×O35c OPE, and, in particular, to derive table 1 and tables 4–8.

The osp(8|4) characters are defined by

χ(∆;j;r)(s, x, y) ≡ TrR(∆;j;r)

(

s2Dx2J3yH1
1 · · · yH4

4

)

, (B.1)

where ∆, j, and r = (r1 , . . . , r4) ∈ 1
2Z

4 are, respectively, the conformal dimension, spin

and so(8)R highest weights defining the osp(8|4) representation. Moreover, Hi and J3 are

the Cartan generators of so(8)R and the su(2) Lorentz algebra, respectively, and D is the

dilatation operator. The Dynkin labels are related to (r1, . . . , r4) by

[a1 a2 a3 a4] = [r1 − r2 , r2 − r3 , r3 + r4 , r3 − r4] . (B.2)

32This r coordinate should not be confused with that introduced in section 2.
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The characters are most easily computed by first computing the Verma module charac-

ters. Verma modules are infinite (reducible) representations obtained from highest weights

by acting unrestrictedly with lowering ladder operators. For instance, the su(2) and so(8)

Verma module characters are given by

Cj(x) =
xj+1

x− x−1
, (B.3)

Cr(y) =

∏4
j=1 y

rj+4−j
j

∆(y + y−1)
, (B.4)

∆(y) ≡
∏

1≤i<j≤4

(yi − yj) . (B.5)

The characters of irreducible representations are obtained from the Verma module

characters by Weyl symmetrization, which projects out all the null states in the Verma

module. For su(2) and so(8), these symmetrizations are given, respectively, by

WS2f(x) = f(x) + f(x−1) , (B.6)

WS4⋉(S2)3f(y) =
∑

ǫ1 ,... ,ǫ3=±1∏
ǫi=1

∑

σ∈S4

f(yǫ1σ(1) , . . . , y
ǫ4
σ(4)) . (B.7)

Indeed, acting with WS2 and WS4⋉(S2)3 on (B.3) and (B.4), one obtains the standard

expressions for the su(2) and so(8) characters,

χj(x) = WS2Cj(x) =
xj+1 − x−j−1

x− x−1
, (B.8)

χr(y) = WS4⋉(S2)3Cr(y)

=
(

det
[

y
rj+4−j
i + y

−rj−4+j
i

]

+ det
[

y
rj+4−j
i − y

−rj−4+j
i

])

/2∆(y + y−1) . (B.9)

Defining W = WS2WS4⋉(S2)3 , the osp(8|4) characters are given by

χ
(i,n)
(∆;j;r1,...,r1,rn+1,...,r4)

(s, x, y)

= s2∆P (s, x)W

(

C2j(x)Cr(y)R(i,n)(s, x, y)
∏

ǫ=±1

Q̄4(s
−1y, xǫ)

)

, (B.10)

χ
(i,+)
(∆;j;r,r,r,r)(s, x, y)

= s2∆P (s, x)W

(

C2j(x)Cr(y)R(i,+)(s, x, y)
∏

ǫ=±1

Q̄3(s
−1y, xǫ)

)

, (B.11)

where

R(i,n) =







Q0(sy, x)Qn(sy, x
−1) i = A ,

Qn(sy, x)Qn(sy, x
−1) i = B ,

(B.12)
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R(i,+) =







Q0(sy, x)(1 + sy−1
4 x)(1 + sy−1

4 x−1) i = A ,

(1 + sy−1
4 x)(1 + sy−1

4 x−1) i = B ,
(B.13)

Qn(y, x) =
4
∏

j=n+1

(1 + yjx) , Q̄n(y, x) =
n
∏

j=1

(1 + y−1
j x) , (B.14)

P (s, x) =
1

1− s4

∞
∑

n=0

s2nχ2n(x) . (B.15)

The function P (s, x) in (B.10) and (B.11) is related to the so(3, 2) characters A∆,j ,

computed in [92, 93]:

A∆,j = Tr(∆,j)

(

s2Dx2J3
)

= s2∆χ2j(x)P (s, x) . (B.16)

Note that since conformal representations decompose at unitarity as

(∆, j)
∆→j+1−−−−−→ (j + 1, j)short + (j + 2, j − 1) , (B.17)

the so(3, 2) character of a spin-j conserved current is actually Aj+1,j −Aj+2,j−1.

In order to expand the osp(8|4) characters as a sum of products of conformal char-

acters (B.16) times R-symmetry characters (B.9), we need to disentangle the s, x and y

dependence in (B.10), and (B.11). Explicitly, it is straightforward to show that33

χ
(A,+)
(∆;j;r,r,r,r)(s, x, y)

= s2∆P (s, x)

2
∑

a1 ,... ,a4=0

1
∑

ā1 ,... ,ā4=0

sa1+···+a4+ā1+···+ā4χ2j+ā1+···+ā4(x)

×
(

4
∏

i=1

χjai
(x)

)

χ(r+ā1−a1 ,... ,r+ā4−a4)(y) , (B.18)

χ
(B,+)
(∆;0;r,r,r,r)(s, x, y)

= s2∆P (s, x)

2
∑

a1 ,... ,a4=0

sa1+···+a4

(

4
∏

i=1

χjai
(x)

)

χ(r−a1 ,... ,r−a4)(y) , (B.19)

χ
(A,n)
(∆;j;r1,...,r1,rn+1,...,r4)

(s, x, y)

= s2∆P (s, x)
2
∑

a1 ,... ,a4=0

2
∑

ān+1,...,ā4=0

1
∑

ā1,...,ān=0

sa1+···+a4+ā1+···+ā4χ2j+ā1+···+ān(x)

×
(

4
∏

i=n+1

χjāi
(x)

)(

4
∏

i=1

χjai
(x)

)

χ(r1+ā1−a1 ,... ,r4+ā4−a4)(y) , (B.20)

33Note that for the B series ∆ = r1, while for the A series ∆ = r1 + j + 1 except for the long multiplet

(A, 0) for which ∆ ≥ r1 + j + 1.
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χ
(B,n)
(∆;0;r1,...,r1,rn+1,...,r4)

(s, x, y)

= s2∆P (s, x)

2
∑

a1 ,... ,a4 ,ān+1,...,ā4=0

sa1+···+a4+ān+1+···+ā4

(

4
∏

i=n+1

χjāi
(x)

)

×
(

4
∏

i=1

χjai
(x)

)

χ(r1−a1,...,r1−an,rn+1+ān+1−an+1,...,r4+ā4−a4)(y) ,

(B.21)

where ja ≡ a (mod 2).

The products of the su(2) characters in (B.18)–(B.21) are easily transformed into

sums of such characters by decomposing su(2) tensor products. After doing so, we see

that (B.18)–(B.21) become sums over so(3, 2)⊕ so(8) characters, as desired.34

C Superconformal blocks

Let us write our results for the superconformal blocks in order of increasing complexity.

In all the supermultiplets, we normalize the coefficient of the superconformal primary to

one. The results are presented in terms of the R-symmetry channels Aab(u, v), which were

defined in (2.6).

For (1, 0)
[0020]
(B,+), corresponding to the stress-tensor multiplet, we have

A11(u, v) = g1,0(u, v) , (C.1)

A10(u, v) = −g2,1(u, v) , (C.2)

A00(u, v) =
1

4
g3,2(u, v) . (C.3)

The superconformal blocks corresponding to (2, 0)
[0040]
(B,+) are

A22(u, v) = g2,0(u, v) , (C.4)

A21(u, v) = −4

3
g3,1(u, v) , (C.5)

A20(u, v) =
16

45
g4,0(u, v) , (C.6)

A11(u, v) =
256

675
g4,2(u, v) , (C.7)

34Sometimes the so(8) characters in (B.18)–(B.21) appear with negative Dynkin labels. One can then

try to use the identity

χrω (y) = (−)ℓ(ω)χr(y) ,

to obtain a character with non-negative Dynkin labels. In this identity ω ∈ S4 ⋉ (S2)
3 is a Weyl transfor-

mation, rω = ω(r+ρ)−ρ is a Weyl reflection, ρ = (3, 2, 1, 0) is the Weyl vector, and (−)ℓ(ω) is the signature

of the Weyl transformation. If there is no Weyl transformation such that rω correspond to non-negative

integer Dynkin labels, then χr = 0.
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A10(u, v) = −128

875
g5,1(u, v) , (C.8)

A00(u, v) =
256

18375
g6,0(u, v) . (C.9)

For (2, 0)
[0200]
(B,2) , the superconformal blocks are

A22(u, v) =
8

9
g4,0(u, v) , (C.10)

A21(u, v) = −8

3
g3,1(u, v)−

192

175
g5,1(u, v) , (C.11)

A20(u, v) = g2,0(u, v) +
16

63
g4,0(u, v) +

64

45
g4,2(u, v) +

256

1225
g6,0(u, v) , (C.12)

A11(u, v) =
32

135
g4,0(u, v) +

512

945
g4,2(u, v) +

8192

25725
g6,2(u, v) , (C.13)

A10(u, v) = −12

35
g3,1(u, v)−

128

525
g5,1(u, v)−

2304

6125
g5,3(u, v)−

1024

11319
g7,1(u, v) , (C.14)

A00(u, v) =
16

735
g4,0(u, v) +

512

56595
g6,0(u, v) +

1024

25725
g6,2(u, v) +

5120

539539
g8,0(u, v) . (C.15)

For (j + 2, j)
[0200]
(A,+), we find

A22(u, v) =
16

3
gj+4,j+2(u, v) , (C.16)

A21(u, v) = − 4gj+3,j+1(u, v)−
32(j + 2)(j + 3)2

(2j + 5)2(2j + 7)
gj+5,j+1(u, v)

− 64(j + 3)4

(4j2 + 24j + 35)2
gj+5,j+3(u, v) , (C.17)

A20(u, v) =
4(j + 1)

2j + 3
gj+4,j(u, v) +

32(j + 2)(j + 3)

3(2j + 3)(2j + 7)
gj+4,j+2(u, v)

+
64(j + 3)3(j + 4)2

(2j + 5)(2j + 7)3(2j + 9)
gj+6,j+2(u, v) , (C.18)

A11(u, v) = gj+2,j(u, v) +
16(j + 1)(j + 2)(j + 3)

3(2j + 3)2(2j + 7)
gj+4,j(u, v)

+
64(j + 2)2(j + 3)2

9(2j + 3)2(2j + 7)2
gj+4,j+2(u, v)

+
48(j + 1)(j + 2)(j + 3)2(j + 4)2

(2j + 3)(2j + 5)2(2j + 7)2(2j + 9)
gj+6,j(u, v)

+
256(j + 2)(j + 3)4(j + 4)2

3(2j + 3)(2j + 5)(2j + 7)4(2j + 9)
gj+6,j+2(u, v)

+
256(j + 3)4(j + 4)4

(2j + 5)2(2j + 7)4(2j + 9)2
gj+6,j+4(u, v) , (C.19)

A10(u, v) = − j

2j + 1
gj+3,j−1(u, v)−

12(j + 1)(j + 3)

5(2j + 1)(2j + 7)
gj+3,j+1(u, v)

− 6j(j + 1)(j + 3)2

(2j + 1)(2j + 3)(2j + 5)(2j + 7)
gj+5,j−1(u, v)
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− 48(j + 2)(2j(j + 5)(4j(j + 5) + 35) + 137)(j + 3)2

5(2j + 1)(2j + 3)(2j + 5)2(2j + 7)2(2j + 9)
gj+5,j+1(u, v)

− 192(j + 2)(j + 3)4(j + 4)

5(2j + 3)(2j + 5)2(2j + 7)2(2j + 9)
gj+5,j+3(u, v)

− 96(j + 2)(j + 3)3(j + 4)2(j + 5)2

(2j + 5)2(2j + 7)3(2j + 9)2(2j + 11)
gj+7,j+1(u, v)

− 256(j + 3)4(j + 4)3(j + 5)2

(2j + 5)2(2j + 7)3(2j + 9)3(2j + 11)
gj+7,j+3(u, v) , (C.20)

A00(u, v) =
3(j − 1)j

32j2 − 8
gj+4,j−2(u, v) +

4j(j + 1)(j + 3)

7(2j − 1)(2j + 3)(2j + 7)
gj+4,j(u, v)

+
72(j + 1)(j + 2)(j + 3)(j + 4)

35(2j + 1)(2j + 3)(2j + 7)(2j + 9)
gj+4,j+2(u, v)

+
64(j + 2)(j + 3)3(j + 4)2(j + 5)

7(2j + 3)(2j + 5)(2j + 7)3(2j + 9)(2j + 11)
gj+6,j+2(u, v)

+
96(j + 3)3(j + 4)3(j + 5)2(j + 6)2

(2j + 5)(2j + 7)3(2j + 9)3(2j + 11)2(2j + 13)
gj+8,j+2(u, v) . (C.21)

The blocks for (j + 2, j)
[0100]
(A,2) are given by

A22(u, v) =
32(j + 2)

6j + 15
gj+5,j+1(u, v) , (C.22)

A21(u, v) = − 8(j + 1)

2j + 3
gj+4,j(u, v)−

32(j + 2)2

(2j + 3)(2j + 5)
gj+4,j+2(u, v)

− 48(j + 1)(j + 2)(j + 4)2

(2j + 3)(2j + 5)(2j + 7)(2j + 9)
gj+6,j(u, v)

− 128(j + 2)2(j + 3)(j + 4)2

(2j + 3)(2j + 5)(2j + 7)2(2j + 9)
gj+6,j+2(u, v) , (C.23)

A20(u, v) = 4gj+3,j+1(u, v) +
6j(j + 1)

4j(j + 2) + 3
gj+5,j−1(u, v)

+
64(j + 2)

(

j2 + 5j + 3
)

3(2j + 5) (4j2 + 20j + 9)
gj+5,j+1(u, v)

+
64(j + 2)2(j + 3)2

(2j + 3)(2j + 5)2(2j + 7)
gj+5,j+3(u, v)

+
96(j + 2)(j + 3)(j + 4)2(j + 5)2

(2j + 5)(2j + 7)2(2j + 9)2(2j + 11)
gj+7,j+1(u, v) , (C.24)

A11(u, v) =
2j

2j + 1
gj+3,j−1(u, v) +

16(j + 1)(j + 2)

3(2j + 1)(2j + 5)
gj+3,j+1(u, v)

+
8j(j + 1)(j + 3)(j + 4)

(2j + 1)(2j + 3)(2j + 5)(2j + 9)
gj+5,j−1(u, v)

+
32(j + 2)2(j + 3)(j(j + 5)(52j(j + 5) + 445) + 822)

9(2j + 1)(2j + 3)(2j + 5)3(2j + 7)(2j + 9)
gj+5,j+1(u, v)

+
256(j + 2)2(j + 3)3(j + 4)

3(2j + 3)(2j + 5)3(2j + 7)(2j + 9)
gj+5,j+3(u, v)
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+
80j(j + 1)(j + 2)(j + 4)2(j + 5)2

(2j + 1)(2j + 3)(2j + 5)(2j + 7)(2j + 9)2(2j + 11)
gj+7,j−1(u, v)

+
128(j + 1)(j + 2)2(j + 3)(j + 4)2(j + 5)2

(2j + 1)(2j + 5)2(2j + 7)2(2j + 9)2(2j + 11)
gj+7,j+1(u, v)

+
512(j + 2)2(j + 3)2(j + 4)3(j + 5)2

(2j + 3)(2j + 5)2(2j + 7)2(2j + 9)3(2j + 11)
gj+7,j+3(u, v) , (C.25)

A10(u, v) = − gj+2,j(u, v)−
3(j − 1)j

8j2 − 2
gj+4,j−2(u, v)

− 4(j + 1)(j + 2)2(44j(j + 4)− 75)

5(2j − 1)(2j + 3)2(2j + 5)(2j + 9)
gj+4,j(u, v)

− 48(j + 2)2(2j(j + 5)(4j(j + 5) + 35) + 137)

5(2j + 1)(2j + 3)2(2j + 5)(2j + 7)(2j + 9)
gj+4,j+2(u, v)

− 10j
(

j2 − 1
)

(j + 4)2

(2j − 1)(2j + 1)(2j + 3)(2j + 7)(2j + 9)
gj+6,j−2(u, v)

− 72(j + 1)(j + 2)(2j(j + 5)− 3)(j + 4)2

5(2j − 1)(2j + 3)(2j + 5)(2j + 7)(2j + 9)(2j + 11)
gj+6,j(u, v)

− 64(j + 2)2(j + 3)3(44j(j + 6) + 145)(j + 4)2

5(2j + 1)(2j + 3)(2j + 5)2(2j + 7)3(2j + 9)(2j + 11)
gj+6,j+2(u, v)

− 256(j + 2)2(j + 3)2(j + 4)4

(2j + 3)(2j + 5)2(2j + 7)3(2j + 9)2
gj+6,j+4(u, v)

− 160(j + 1)(j + 2)(j + 3)(j + 5)2(j + 6)2(j + 4)2

(2j + 3)(2j + 5)(2j + 7)2(2j + 9)2(2j + 11)2(2j + 13)
gj+8,j(u, v)

− 384(j + 2)2(j + 3)(j + 4)3(j + 5)2(j + 6)2

(2j + 3)(2j + 5)(2j + 7)2(2j + 9)3(2j + 11)2(2j + 13)
gj+8,j+2(u, v) ,

(C.26)

A00(u, v) =
j

8j + 4
gj+3,j−1(u, v) +

4(j + 1)(j + 4)

7(2j + 1)(2j + 9)
gj+3,j+1(u, v)

+
5(j − 2)(j − 1)j

8(2j − 3)(2j − 1)(2j + 1)
gj+5,j−3(u, v)

+
6j(j + 2)

(

j2 − 1
)

7(2j + 5) (8j3 + 4j2 − 18j − 9)
gj+5,j−1(u, v)

+
144(j + 2)2(j + 3)(j(j + 5)(4j(j + 5) + 5)− 14)

35(2j − 1)(2j + 1)(2j + 3)(2j + 5)(2j + 7)(2j + 9)(2j + 11)
gj+5,j+1(u, v)

+
64(j + 1)(j + 2)2(j + 3)2(j + 4)

7(2j + 1)(2j + 3)(2j + 5)2(2j + 7)(2j + 9)
gj+5,j+3(u, v)

+
96(j + 2)(j + 3)2(j + 5)2(j + 6)(j + 4)2

7(2j + 5)2(2j + 7)2(2j + 9)2(2j + 11)(2j + 13)
gj+7,j+1(u, v)

+
64(j + 2)2(j + 3)2(j + 4)3(j + 5)2

(2j + 3)(2j + 5)2(2j + 7)2(2j + 9)3(2j + 11)
gj+7,j+3(u, v)

+
160(j + 2)(j + 3)(j + 5)2(j + 6)2(j + 7)2(j + 4)3

(2j + 5)(2j + 7)2(2j + 9)3(2j + 11)2(2j + 13)2(2j + 15)
gj+9,j+1(u, v) .

(C.27)
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Finally, for the long multiplet (∆, j)
[0000]
(A,0) we find

A22(u, v) =
128(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

3(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+4,j(u, v) , (C.28)

A21(u, v) = − 64j(∆− j + 1)(∆− j − 1)(∆ + j)

(2j + 1)(∆− j + 2)(∆− j)(∆ + j + 1)
g∆+3,j−1(u, v)

− 64(j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(2j + 1)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+3,j+1(u, v)

− 256(∆ + 3)2j

(2∆ + 5)(2∆ + 7)(2j + 1)

× (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+5,j−1(u, v)

− 256(∆ + 3)2(j + 1)

(2∆ + 5)(2∆ + 7)(2j + 1)

× (∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+5,j+1(u, v) , (C.29)

A20(u, v) =
16(∆− j − 1)(∆ + j)

(∆− j)(∆ + j + 1)
g∆+2,j(u, v)

+
64(j − 1)j(∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)

(4j2 − 1) (∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)
g∆+4,j−2(u, v)

+
8(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(

3

2∆ + 3
− 3

2∆ + 7
+

4(8j(j + 1)− 3)

4j(j + 1)− 3

)

3(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+4,j(u, v)

+
64(j + 1)(j + 2)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(2j + 1)(2j + 3)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+4,j+2(u, v)

+
256(∆ + 3)2(∆ + 4)2

(2∆ + 5)(2∆ + 7)2(2∆ + 9)

× (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+6,j(u, v) , (C.30)

A11(u, v) =
32(j − 1)j(∆− j + 1)(∆− j − 1)

(2j − 1)(2j + 1)(∆− j + 2)(∆− j)
g∆+2,j−2(u, v)

+
64j(j + 1)(∆− j − 1)(∆ + j)

3(2j − 1)(2j + 3)(∆− j)(∆ + j + 1)
g∆+2,j(u, v)

+
32(j + 1)(j + 2)(∆ + j)(∆ + j + 2)

(4j2 + 8j + 3) (∆ + j + 1)(∆ + j + 3)
g∆+2,j+2(u, v)

+
512(∆ + 2)(∆ + 3)j(j + 1)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

9(2∆ + 3)(2∆ + 7)(2j − 1)(2j + 3)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+4,j(u, v)

+
256(∆ + 2)(∆ + 3)(j + 1)(j + 2)

3(2∆ + 3)(2∆ + 7)(2j + 1)(2j + 3)

× (∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+4,j+2(u, v)

+
256(∆ + 2)(∆ + 3)(j − 1)j(∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)

3(2∆ + 3)(2∆ + 7) (4j2 − 1) (∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)
g∆+4,j−2(u, v)

+
512(∆ + 3)2(∆ + 4)2(j − 1)j

(2∆ + 5)(2∆ + 7)2(2∆ + 9)(2j − 1)(2j + 1)

× (∆− j + 5)(∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(∆− j + 6)(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+6,j−2(u, v)+

+
1024(∆ + 3)2(∆ + 4)2j(j + 1)

3(2∆ + 5)(2∆ + 7)2(2∆ + 9)(2j − 1)(2j + 3)

× (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+6,j(u, v)

+
512(∆ + 3)2(∆ + 4)2(j + 1)(j + 2)

(2∆ + 5)(2∆ + 7)2(2∆ + 9)(2j + 1)(2j + 3)

× (∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + j + 6)

(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)(∆ + j + 7)
g∆+6,j+2(u, v) , (C.31)
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A10(u, v) = − 8j(∆− j − 1)

(2j + 1)(∆− j)
g∆+1,j−1(u, v)− 8(j + 1)(∆ + j)

(2j + 1)(∆ + j + 1)
g∆+1,j+1(u, v)

− 32(j − 2)(j − 1)j(∆− j + 3)(∆− j + 1)(∆− j − 1)

(2j − 3)(2j − 1)(2j + 1)(∆− j + 4)(∆− j + 2)(∆− j)
g∆+3,j−3(u, v)−

− 96j

5(2j − 3)(2j + 1)(2j + 3)(2∆ + 1)(2∆ + 7)

× (∆− j + 1)(∆− j − 1)(∆ + j)
(

(8∆(∆ + 4) + 19)j2 − 13∆(∆ + 4)− 34
)

g∆+3,j−1(u, v)

(∆− j + 2)(∆− j)(∆ + j + 1)

− 96(j + 1)
(

(8∆(∆ + 4) + 19)j2 + 2(8∆(∆ + 4) + 19)j − 5(∆ + 1)(∆ + 3)
)

5(2j − 1)(2j + 1)(2j + 5)(2∆ + 1)(2∆ + 7)

× (∆− j − 1)(∆ + j)(∆ + j + 2)

(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+3,j+1(u, v)

− 32(j + 1)(j + 2)(j + 3)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(2j + 1)(2j + 3)(2j + 5)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+3,j+3(u, v)

− 128(j − 2)(j − 1)j(∆ + 3)2

(2j − 3)(2j − 1)(2j + 1)(2∆ + 5)(2∆ + 7)

× (∆− j + 5)(∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)

(∆− j + 6)(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)
g∆+5,j−3(u, v)

− 384j
(

(8∆(∆ + 6) + 59)j2 − 13∆(∆ + 6)− 99
)

(∆ + 3)2

5(2j − 3)(2j + 1)(2j + 3)(2∆ + 3)(2∆ + 5)(2∆ + 7)(2∆ + 9)

× (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+5,j−1(u, v)

− 384(j + 1)
(

(8∆(∆ + 6) + 59)j2 + 2(8∆(∆ + 6) + 59)j − 5(∆ + 2)(∆ + 4)
)

5(2j − 1)(2j + 1)(2j + 5)(2∆ + 3)(2∆ + 5)(2∆ + 7)(2∆ + 9)

× (∆− j + 1)(∆− j − 1)(∆ + 3)2(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+5,j+1(u, v)

− 128(j + 1)(j + 2)(j + 3)(∆ + 3)2

(2j + 1)(2j + 3)(2j + 5)(2∆ + 5)(2∆ + 7)

× (∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + j + 6)

(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)(∆ + j + 7)
g∆+5,j+3(u, v)

− 512j(∆ + 4)2(∆ + 5)2(∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + 3)2

(2j + 1)(2∆ + 5)(2∆ + 7)2(2∆ + 9)2(2∆ + 11)

× (∆− j + 5)(∆− j + 3)(∆− j + 1)(∆− j − 1)

(∆− j + 6)(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+7,j−1(u, v)

− (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + j + 6)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)(∆ + j + 7)

× 512(j + 1)(∆ + 4)2(∆ + 5)2(∆ + 3)2

(2j + 1)(2∆ + 5)(2∆ + 7)2(2∆ + 9)2(2∆ + 11)
g∆+7,j+1(u, v) , (C.32)

A00(u, v) = g∆,j(u, v) +
16(∆− j − 1)∆(∆ + 3)(∆ + j)g∆+2,j(u, v)

7(∆− j)(∆ + j + 1)(2∆− 1)(2∆ + 7)

+
16(j − 3)(j − 2)(j − 1)j(∆− j − 5)(∆− j + 3)(∆− j + 1)(∆− j − 1)g∆+4,j−4(u, v)

(2j − 5)(2j − 3)(2j − 1)(2j + 1)(∆− j − 6)(∆− j + 4)(∆− j + 2)(∆− j)

+
64(j − 2)(j − 1)j(j + 1)(∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)g∆+4,j−2(u, v)

7(2j − 5)(2j − 1)(2j + 1)(2j + 3)(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)

+
288

35(2∆ + 1)(2∆ + 3)(2∆ + 7)(2∆ + 9)(2j − 3)(2j − 1)(2j + 3)(2j + 5)

×
[

8∆2(∆+5)2j(j+1)(4j(j+1)−13)+40∆(∆+5)j(j+1)(7j(j + 1)− 24)

+3(15(∆ + 1)(∆ + 2)(∆ + 3)(∆ + 4) + j(j + 1)(191j(j + 1)− 702))
]

× (∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)

(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)
g∆+4,j(u, v)

+
64j(j + 1)(j + 2)(j + 3)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

7(2j − 1)(2j + 1)(2j + 3)(2j + 7)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+4,j+2(u, v)
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+
16(j + 1)(j + 2)(j + 3)(j + 4)

(2j + 1)(2j + 3)(2j + 5)(2j + 7)

× (∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + j + 6)

(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)(∆ + j + 7)
g∆+4,j+4(u, v)

+
256(∆ + 2)(∆ + 3)2(∆ + 5)(∆ + 4)2

7(2∆ + 3)(2∆ + 5)(2∆ + 7)2(2∆ + 9)(2∆ + 11)

× (∆− j + 3)(∆− j + 1)(∆− j − 1)(∆ + j)(∆ + j + 2)(∆ + j + 4)

(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)
g∆+6,j(u, v)

+
(∆− j + 1)(∆− j − 1)(∆− j + 3)(∆− j + 5)(∆ + j)(∆ + j + 2)(∆ + j + 4)(∆ + j + 6)

(∆− j − 6)(∆− j + 4)(∆− j + 2)(∆− j)(∆ + j + 1)(∆ + j + 3)(∆ + j + 5)(∆ + j + 7))

× 256(∆ + 3)2(∆ + 5)2(∆ + 6)2(∆ + 4)2

(2∆ + 5)(2∆ + 7)2(2∆ + 9)2(2∆ + 11)2(2∆ + 13)
g∆+8,j(u, v) . (C.33)

D Recurrence relations

In this section we collect various recurrence relations that were derived in [1] and used in

section 4.2 to derive the superconformal blocks. We also correct various mistakes in ap-

pendix D of [1], some of which lead to inconsistencies with known results in four dimensions.

Define

Fr,s(x, x̄) ≡ D(∆, j, r, s)g∆+r+s,j+r−s(x, x̄) , (D.1)

D(∆, j, r, s) ≡ (−4)r+s (j + 2ε)r−s

(j + ε)r−s
Bsgn r

1
2
(∆+j),r

Bsgn s
1
2
(∆−j)−ε,s

×Aj+1,− 1
2
(sgn(r−s)−1)(r−s)A2−∆,− 1

2
(sgn(r+s)+1)(r+s) , (D.2)

where

Aλ,t ≡
(λ+ ε)t(λ+ ε− 1)t
(λ)t(λ+ 2ε− 1)t

, B+
λ,t ≡ 16−t (λ)t(λ+ ε− 1)t

(λ− 1
2)t(λ+ 1

2)t
, B−

λ,t ≡
(λ)t

(λ+ 1− ε)t
. (D.3)

The following recurrence relations hold

u2ε∆ε
v − 1

u
∆−1

ε g∆,j = F−1,0 + F0,−1 + F0,1 + F1,0 , (D.4)

1

2
u2ε∆ε

v + 1

u
∆−1

ε g∆,j = F−1,−1 + F−1,1 + F1,−1 + F1,1

+
1

4

(

1− 1

2
ε(ε− 1)

(

Aj+1 +A2−∆

− (2ε− 1)(2ε− 3)Aj+1A2−∆

)

)

F0,0 , (D.5)

u2ε∆ε
(v − 1)2

u2
∆−1

ε g∆,j = F−2,0+F0,−2+F0,2+F2,0 + 2 (1− ε(ε− 1)Aj+1) (F−1,−1,+F1,1)

+ 2 (1− ε(ε− 1)A2−∆) (F−1,1 + F1,−1) + C∆,jF0,0 , (D.6)

1

2
u2ε∆ε

v2 − 1

u2
∆−1

ε g∆,j = F−2,−1 + F−1,−2 + F−2,1 + F1,−2 + F−1,2 + F2,−1 + F1,2 + F2,1

+ a∆,jF0,−1 + a∆,−j−2εF−1,0

+ a2ε+2−∆,jF1,0 + a2ε+2−∆,−j−2εF0,1 , (D.7)
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1

2
u2ε∆ε

(v + 1)2

u2
∆−1

ε g∆,j = F−2,−2 + F−2,2 + F2,−2 + F2,2

+
1

8
(1− (2ε− 1)(2ε− 3)Bl+ε+1−∆) (F−2,0 + F2,0)

+
1

8
(1− (2ε− 1)(2ε− 3)B∆+j−ε−1) (F0,−2 + F0,2)

+ e∆,jF−1,−1 + e−j+3,1−∆F−1,1 + e−j+1,1−∆F1,−1

+ e2+∆,jF1,2 +D
(ε)
∆,jF0,0 . (D.8)

Here, we used the definitions

Aλ =
1

(λ+ ε)(λ+ ε− 2)
, Bλ =

1

(λ+ ε+ 2)(λ+ ε− 2)
, Cλ =

1

(λ+ ε+ 1)(λ+ ε− 2)
,

(D.9)

and

a∆,j =
1

8

(

3− 3

2
ε(ε− 1) (Cj+1 + C2−∆)− (2ε− 1)(2ε− 3)B∆+j−ε−1

+ ε(ε− 1)(2ε− 1)(2ε− 3)×

×
(

Cj+1C2−∆ +
1

2
B∆+j−ε−1 (Cj+1 + C2−∆ − 10Cj+1C2−∆)

))

, (D.10)

e∆,j =
1

2

(

1− 1

2
ε(ε− 1) (Aj+1 + B2−∆ − (2ε− 1)(2ε− 3)Aj+1B2−∆)

)

, (D.11)

C∆,j =
1

4

(

1− 1

2
(2ε− 1)(2ε− 3) (Bj+ε+1−∆ + B∆+j−ε−1)

+ 2ε(ε− 1) (ε(ε− 1)Aj+1A2−∆ −Aj+1 −A2−∆)

×
(

1

2
− (2ε− 1)(2ε− 3)

(

1

4
Bj+ε+1−∆ +

1

4
B∆+j−ε−1

− 3Bj+ε+1−∆B∆+j−ε−1

)))

(D.12)

For D
(ε)
∆,j we can write the results for specific dimensions:

D
(1/2)
∆,j =

9

512(2∆− 7)(2∆ + 1)
+

124j(j + 1)− 77

512(2∆− 5)(2∆− 1)(2j − 1)(2j + 3)

+
40(4j(j + 1)− 17)(j + 1)j + 327

128(2j − 3)(2j − 1)(2j + 3)(2j + 5)
, (D.13)

D
(1)
∆,j =

1

64

(

4j2 − 3

(∆− j − 1)(∆− j − 5)(∆ + j − 3)(∆ + j + 1)

+
2

(∆− j − 5)(∆ + j + 1)
+ 5

)

, (D.14)

D
(3/2)
∆,j =

1

512

(

20(8j(j + 3)(4j(j + 3)− 5)− 37)

(2j − 1)(2j + 1)(2j + 5)(2j + 7)

− 3(140(j + 3)j + 127)

(2∆− 7)(2∆− 3)(2j + 1)(2j + 5)
− 15

4(∆− 5)∆ + 9

)

, (D.15)
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D
(2)
∆,j =

3(j − 1)(j + 3)(4j(j + 2)− 3)

512(j + 1)2(j + 2)(∆− j − 3)(∆ + j − 3)

− 3(j + 1)(j + 5)(4(j + 6)j + 29)

512(j + 2)(j + 3)2(∆− j − 7)(∆ + j + 1)

− j(j + 4)(5(j + 4)j + 8)

32(∆− 4)(∆− 2)(j + 1)2(j + 3)2
+

5((j + 4)j + 1)

64(j + 1)(j + 3)
. (D.16)

E Details of central charge computation

Here we lay out details of computations in section 5. The theories we consider have a

natural parity transformation that flips the sign of k, so we choose k > 0 without loss of

generality.

Recall that the three-sphere partition function of ABJ(M) theories (5.6) is given

by [72, 94]

Z(∆) = NM,N

∫

dMλ dNµ eiπk[
∑

i λ
2
i−

∑
j µ

2
j ]
∏

i<j

[2 sinh[π(λi − λj)]]
2

×
∏

i<j

[2 sinh[2π(µi − µj)]]
2
∏

α

fα(∆) , (E.1)

where

NM,N ≡ i−(M2−N2) sgn(k)/2

M !N !
,

fα(∆) ≡
∏

i,j

exp (ℓ (1−∆α + i (−)α (λi − µj))) ,

ℓ(z) ≡ −z ln(1− e2πiz) +
i

2

(

πz2 +
1

π
Li2(e

2πiz)

)

− iπ

12
.

(E.2)

The function ℓ(z) satisfies ℓ′(z) = −πz cot(πz). Using the property of ℓ(z) at ∆ = ∆∗ =

1/2, one can show that

ℓ(z) + ℓ(z∗) = − ln (2 cosh(πθ)) for z =
1

2
+ iθ . (E.3)

When ∆ = ∆∗, the product over fα(∆) in (E.1) can be written simply as

∏

α

fα(∆
∗) =

∏

i,j

1

[2 coshπ(λi − µj)]
2 . (E.4)

For ABJM theories with M = N , we use the Cauchy identity

∏

i<j sinh [π(λi − λj)] sinh [π(µi − µj)]
∏

i,j cosh [π(λi − µj)]
=
∑

ρ∈SN

(−)ρ
N
∏

i

1

cosh
[

π(λi − µρ(i))
] , (E.5)

to rewrite the three-sphere partition function of undeformed ABJM theory as

Z(∆∗) =
1

22N N !

∫

dNλ dNµ
∑

ρ∈SN

(−)ρ
N
∏

i

exp(iπk(λ2i − µ2i ))

cosh [π(λi − µi)] cosh
[

π(λi − µρ(i))
] . (E.6)
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E.1 U(2) × U(2) ABJM theory

We now provide more details on the computation given in section 5.4. In the end, we

want to compute ∂2F/∂t2a

∣

∣

∣

t=0
= −Z−1∂2Z/∂t2a

∣

∣

∣

t=0
so the overall normalization of Z is

irrelevant, and we will not keep track of it. From (E.1), we have

Z(∆) =

∫

dλ1dλ2dµ1dµ2 exp
[

iπk
(

λ21 + λ22 − µ21 − µ22
)]

× sinh2 [π (λ1 − λ2)] sinh
2 [π (µ1 − µ2)]

∏

α

fα(∆) .
(E.7)

Schematically, we get

∂2Z

∂t2a

∣

∣

∣

∣

∣

t=0

=

∫

dλ1dλ2dµ1dµ2 Zint(∆∗)Da , Da ≡ 1
∏

α fα

∂2

∂t2a

∏

α

fα

∣

∣

∣

∣

∣

t=0

, (E.8)

where Da can be read off from (5.7)–(5.8), and Zint(∆∗) is the integrand of (E.6) . We will

first ignore the second term in (5.7), which is shown later to cancel anyway. Defining the

following variables

x = λ1 − µ2, y = λ1 − µ1, z = λ2 − µ2, w = λ1 + µ1 , (E.9)

w only appears in the exponential giving us a δ-function that sets y + z = 0. Combining

both terms for a 6= 1,

∂2Z

∂t2a

∣

∣

∣

∣

∣

t=0

=
π2

8k

∫

dxdy e2iπkxy sech2(πy)
[

sech4(πy)− sech4(πx)
]

=
π2

8k2

(

1− 2k2
∫ ∞

−∞
dy y sech4(πy) csch(πky)

)

=
π2

4

(

2

∫ ∞

−∞
dy y tanh2(πy) csch(πky)−

∫ ∞

−∞
dy y tanh4(πy) csch(πky)

)

.

(E.10)

Similarly for Z(∆∗):

Z(∆∗) =
1

32k

∫

dxdy e2iπkxy sech2(πy)
[

sech2(πy)− sech2(πx)
]

=
1

32k2

(

1− 2k2
∫ ∞

−∞
dy y sech2(πy) csch(πky)

)

=
1

16

∫ ∞

−∞
dy y tanh2(πy) csch(πky) .

(E.11)

Thus we get the central charge give in (5.16)

cT =
8

π2
Re

1

Z(∆∗)

∂2Z

∂ta∂ta

∣

∣

∣

t=0
= 32

(

2− I4
I2

)

, (E.12)

with In ≡
∫∞
−∞ dy y tanhn(πy) csch(πky) and a = 2, 3.
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Lastly, we show that the second term in (5.7) does not contribute to τ11. Up to

normalization, in terms of the variables defined in (E.9), its contribution would be

[

2
∑

i,j

tanh [π(λi−µj)]
]2

= −2 [tanh(πx) + tanh(πy) + tanh(πz) + tanh(π(−x+ y + z))]2 .

(E.13)

Due to w independence we again obtain a delta function integration setting y + z = 0.

Since tanh(−x) = − tanhx, one sees that (E.13) vanishes.

E.2 Relating three-sphere partition function of ABJM to BLG

First, start with the S3 partition function (E.7) of U(2)k ×U(2)−k ABJM theory35

Z(∆∗)U(2) =
1

32

∫

dλ1dλ2dµ1dµ2 exp
[

iπk
(

λ21 + λ22 − µ21 − µ22
)]

×
[

sech2 [π(λ1 − µ1)] sech
2 [π(λ2 − µ2)]−

2
∏

ij

sech [π(λi − µj)]

]

.

(E.14)

To get the S3 partition function of the SU(2)k × SU(2)−k BLG theory one needs to factor

out the diagonal U(1)×U(1) contribution. Introducing the following variables

x = λ1 + λ2 + µ1 + µ2, y = λ1 + λ2 − µ1 − µ2, λ− = λ1 − λ2, µ− = µ1 − µ2 ,

(E.15)

the three-sphere partition function becomes

Z(∆∗)U(2) =
1

256

∫

dx dy dλ− dµ− exp
[

iπk
(

x y + λ2− − µ2−
)

/2
]

F(y, λ−, µ−) , (E.16)

where F is an x independent function given by

F(y, λ−, µ−) ≡ sech [π(y + η+)/2] sech [π(y − η−)/2]

× [sech (π(y + η+)/2) sech (π(y − η−)/2)− sech (π(y + η−)/2) sech (π(y − η−)/2)] ,

(E.17)

with η± ≡ λ− ± µ−. Since the only x dependence is in the exponential factor, integrating

x gives a δ-function which sets y = 0. Then we get

Z(∆∗)U(2) =
1

16k

∫

dλ−dµ− exp
[

2iπk
(

λ2− − µ2−
)] sinh2(2πλ−) sinh

2(2πµ−)

cosh4 [π(λ− − µ−)] cosh
2 [π(λ− + µ−)]

.

(E.18)

35The computations in this appendix are similar to the ones performed in [95].
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Recall that the SU(2) theory three-sphere partition function is obtained by restricting the

Cartan elements of the U(2) three-sphere partition function

Z(∆∗)SU(2)

=
1

8

∫

dλ1 dλ2 dµ1 dµ2 dα dβ e
2πi[α (λ1+λ2)+β (µ1+µ2)] eiπk(λ

2
1+λ2

2−µ2
1−µ2

2)

×
[

sech2 [π(λ1 − µ1)] sech
2 [π(λ2 − µ2)]−

2
∏

ij

sech [π(λi − µj)]

]

=
1

8

∫

dλ1 dµ1 exp
[

2iπk
(

λ21 − µ21
)] sinh2(2πλ1) sinh

2(2πµ1)

cosh4 [π(λ1 − µ1)] cosh
2 [π(λ1 + µ1)]

.

(E.19)

Thus we find36

Z(∆∗)SU(2) = 2k Z(∆∗)U(2) . (E.20)

Similarly, one can look at how the second derivative of Z with respect to t is related between

the U(2) and SU(2) theories. These derivatives are obtained by multiplying the previous

integrand by 2π2
∑

i,j sech
2 [π(λi − µj)]. Using a similar procedure of reducing to the form

of SU(2)k × SU(2)−k theory one can show that

∂2

∂t2a
Z(∆∗)SU(2) = 2k

∂2

∂t2a
Z(∆∗)U(2) . (E.21)

From (5.12) we conclude that the central charges of U(2)k ×U(2)−k theories and SU(2)k ×
SU(2)−k theories are equal.

E.3 U(2) × U(1) ABJ theory

Recall the three-sphere partition function (E.1) for ABJ(M) theories with gauge group

U(M)k ×U(N)−k:

Z(∆∗) = NM,N

∫

dMλ dNµ eiπk[
∑

i λ
2
i−

∑
j µ

2
j ]×

×
∏

i<j [2 sinh[π(λi − λj)]]
2∏

i<j [2 sinh[2π(µi − µj)]]
2

∏M
i

∏N
j [2 cosh(π(λi − µj))]

2
. (E.22)

For the U(2)k ×U(1)−k theory, we have

Z(∆∗) =
N2,1

4

∫

d2λdµ1 exp
[

iπk(λ21 + λ22 − µ21)
]

[

sinh(π(λ1 − λ2))

cosh(π(λ1 − µ1)) cosh(π(λ2 − µ1))

]2

.

(E.23)

Using the following variables

x = λ1 − µ1 , y = λ2 − µ1 , and z = λ2 + µ1 , (E.24)

36This procedure generalizes to Z(∆∗)SU(N) = NkZ(∆∗)U(N) [96].
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the three-sphere partition function becomes

Z(∆∗) =
N2,1

8

∫

dx dy dz exp
[

iπk
(

z2/4 + (x+ y/2) z + x2 − xy + y2/4
)]

H1(x, y) ,

(E.25)

where H1(x, y) ≡ [tanh(πx)− tanh(πy)]2. The integral in z is Gaussian and gives

Z(∆∗) =
N2,1

4

√

i

k

∫

dx dy e−2πik x yH1(x, y) . (E.26)

Only the cross-term in H1(x, y), namely −2 tanh(πx) tanh(πy), contributes to this integral:

Z(∆∗) =
N2,1

2

i3/2

k1/2

∫ ∞

−∞
dy

tanh(πy)

sinh(πky)
=

1

4
√
k

∫ ∞

−∞
dy tanh(πy) csch(πky) , (E.27)

This expression reproduces the results in [87, 88].

For ∂2Z/∂t2a

∣

∣

∣

t=0
, the only change is that we get H2(x, y) instead of H1(x, y)

∂2Z

∂t2a

∣

∣

∣

∣

t=0

=
N2,1

4

√

i

k

∫

dx dy e−2πik x yH2(x, y) . (E.28)

where H2(x, y) ≡ 2π2 [tanh(πx)− tanh(πy)]2
[

sech2(πx) + sech2(πy)
]

. Expanding H2 we

see that there are three categories of terms that are doubly degenerate due to the symmetry

that interchanges x and y. The first category is of the form h
(1)
2 ≡ tanh2(πy) sech2(πy),

which does not contribute to the integral. The second category is of the form h
(2)
2 =

tanh2(πx) sech2(πy). The x integral is just a Fourier transform and in this case it gives

∫

dx dy e−2πik x yh
(2)
2 (x, y) = 2k

∫ ∞

−∞
dy y tanh2(πy) csch(πky) . (E.29)

The last category consists of h
(3)
2 ≡ −2 tanh(πx) tanh(πy) sech2(πy). Performing the x

integral yields

∫

dx dy e−2πik x yh
(3)
2 (x, y) = 2i

∫ ∞

−∞
dy tanh(πy) sech2(πy) csch(πky) . (E.30)

Combining all these terms we get (for a = 2, 3)

∂2Z

∂t2a

∣

∣

∣

∣

t=0

=
N2,1

4

√

i

k

∫

dx dy e−2πik x y
(

4π2
(

h
(1)
2 (x, y) + h

(2)
2 (x, y) + h

(3)
2 (x, y)))

=
π2

k1/2

∫ ∞

−∞
dy

[

tanh(πy)

cosh2(πy)
− iky tanh2(πy)

]

csch(πky) .

(E.31)

Thus the central charge of U(2)k ×U(1)−k ABJ theory (5.21) is

cT =
8

π2
Re

1

Z(∆∗)

∂2Z

∂ta∂ta

∣

∣

∣

t=0
= 32

∫∞
−∞ dy tanh(πy) csch(kπy) sech2(πy)

∫∞
−∞ dy tanh(πy) csch(kπy)

, (E.32)

again for a = 2, 3.
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Finally, for a = 1, we should check the extra term from ∂2

∂t21

∏

α
fα|t=0 does not contribute

to the central charge computation. Following the same procedure as above, we get

D1 −D2 =
N2,1

4

√

i

k

∫

dx dy e−2πik x y H3(x, y) , (E.33)

where H3(x, y) = 8π2
[

tanh2(πx)− tanh2(πy)
]2
. As with the H1 example, we see that only

the cross term contributes giving us

D1 −D2 = 8π2kN2,1

√

i

k

∫ ∞

−∞
dy y

tanh2(πy)

sinh(πky)
= −4π2i

√
k I2 . (E.34)

where I2 is defined in (5.16) and the result is given by (5.17). Notice that this extra term is

non zero, nevertheless it is purely imaginary. It has no effect on the central charge as (5.12)

depends only on the real part.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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