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Abstract We extend the Newtonian n-body problem of celestial mechanics to spaces
of curvature κ = constant and provide a unified framework for studying the motion. In
the 2-dimensional case, we prove the existence of several classes of relative equilib-
ria, including the Lagrangian and Eulerian solutions for any κ �= 0 and the hyperbolic
rotations for κ < 0. These results lead to a new way of understanding the geometry
of the physical space. In the end we prove Saari’s conjecture when the bodies are on
a geodesic that rotates elliptically or hyperbolically.
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1 Introduction

This paper extends the Newtonian n-body problem to spaces of curvature κ = con-
stant �= 0 and studies its relative equilibria. This problem has its roots in the 2-body
case, independently proposed by Bolyai (1913), and Lobachevsky (1949). Their geo-
metric ideas were expressed analytically by Schering (1870, 1873), who showed that
the natural extension of the Newtonian potential is given by the cotangent of the dis-
tance, as we will later explain. Like in the Euclidean Kepler problem, the potential is
a harmonic function in 3-space and generates a central field for which bounded orbits
are closed. Liebmann generalized Kepler’s laws and proved that the orbits of the cor-
responding Kepler problem are conics (Liebmann 1902, 1903, 1905). A more recent
paper is Dombrowski and Zitterbarth (1991), but we were mostly inspired by Car-
iñena et al. (2005). The research presented here is also the basis of an investigation on
the homographic solutions of the curved 3-body problem (Diacu and Pérez-Chavela
2011).

After obtaining the equations of motion in Hamiltonian form, we study relative
equilibria. We show that we can restrict our investigations to the sphere S2 (κ = 1)
and the hyperbolic plane H2 (κ = −1), which we identify with the upper sheet of
the hyperboloid of two sheets corresponding to Weierstrass’s model of hyperbolic
geometry (see the Appendix). But the generalization of our results to any κ �= 0 is
straightforward.

We show that the Lagrangian equilateral triangle can be a solution for κ = ±1 only
if the masses are equal. We also prove the existence of hyperbolic rotation orbits for
κ = −1, as well as the existence of fixed points for κ = 1. These results have some in-
teresting consequences towards understanding the shape of the physical space. Gauss
allegedly tried to determine if space is Euclidean, spherical, or hyperbolic by mea-
suring the angles of triangles having the vertices some miles apart (Miller 1972). His
results were inconclusive. Unfortunately his idea does not apply to cosmic triangles
because we cannot reach distant stars. Our results, however, show that cosmic travel
is not necessary for understanding the nature of space. Since there exist specific ce-
lestial orbits for each of the cases κ < 0, κ = 0, and κ > 0, we could, in principle,
determine the geometry of our universe through astronomical observations of trajec-
tories. The existence of Lagrangian orbits of non-equal masses in our solar system,
such as the triangle formed by the Sun, Jupiter, and the Trojan asteroids, proves that,
at distances of a few astronomical units, the physical space is Euclidean. This con-
clusion can be drawn under the reasonable assumption that the universe has constant
curvature.

Our extension of the Newtonian n-body problem to curved space also reveals new
aspects of Saari’s conjecture (Saari 2005). Proposed in 1970 by Don Saari in the
Euclidean case, this conjecture claims that solutions with constant moment of inertia
are relative equilibria. Rick Moeckel solved the case n = 3 in 2005 (Moeckel 2005);
the collinear case, for any number of bodies and more general potentials, was settled
the same year by the authors of this paper, (Diacu et al. 2008). Saari’s conjecture is
also connected to the Chazy–Wintner–Smale conjecture (Smale 1998; Wintner 1947),
which asks us to determine whether the number of central configurations is finite for
n given bodies in Euclidean space.
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Since relative equilibria have elliptic and hyperbolic versions in H2, Saari’s con-
jecture raises new questions for κ < 0. We answer them here for the case when the
bodies are restrained to a geodesic that rotates elliptically or hyperbolically.

2 Equations of Motion

We derive in this section a Newtonian n-body problem on surfaces of constant cur-
vature. The equations of motion are simple enough to allow an analytic approach. At
the end, we provide a straightforward generalization of these equations to spaces of
constant curvature of any finite dimension.

2.1 Unified Trigonometry

Let us first consider what, following Cariñena et al. (2005), we call trigonometric
κ-functions, which unify circular and hyperbolic trigonometry. We define the κ-sine,
snκ , as

snκ(x) :=

⎧
⎪⎨

⎪⎩

κ−1/2 sinκ1/2x if κ > 0,

x if κ = 0,

(−κ)−1/2 sinh(−κ)1/2x if κ < 0,

the κ-cosine, csnκ , as

csnκ(x) :=

⎧
⎪⎨

⎪⎩

cosκ1/2x if κ > 0,

1 if κ = 0,

cosh(−κ)1/2x if κ < 0,

as well as the κ-tangent, tnκ , and κ-cotangent, ctnκ , as

tnκ(x) := snκ(x)

csnκ(x)
and ctnκ(x) := csnκ(x)

snκ(x)
,

respectively. We can also define inverse functions; for example csn−1
κ (y) is equal

to (κ)−1/2 cos−1 y if κ > 0, (−κ)−1/2 cosh−1 y if κ < 0 and 1 if κ = 0. The entire
trigonometry can be rewritten in this unified context, but the only identity we will
further need (to obtain the expression of (1), below) is the fundamental formula

κsn2
κ (x) + csn2

κ(x) = 1.

2.2 The Potential

To obtain the differential equations of the n-body problem on surfaces of constant
curvature, we start with some notations. Consider n bodies of masses m1, . . . ,mn

moving on a surface of constant curvature κ . When κ > 0, the surfaces are spheres
of radii κ−1/2 given by the equation x2 + y2 + z2 = κ−1; for κ = 0, we recover
the Euclidean plane; and if κ < 0, we consider the Weierstrass model of hyperbolic
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geometry (see the Appendix), which is devised on the sheets with z > 0 of the hy-
perboloids of two sheets x2 + y2 − z2 = κ−1. The coordinates of the body of mass
mi are given by qi = (xi, yi, zi) and a constraint, depending on κ , that restricts the
motion of this body to one of the above described surfaces.

We denote by ∇̃qi
= (∂xi

, ∂yi
, σ∂zi

) the gradient with respect to qi , where σ = 1
for κ ≥ 0 and σ = −1 for κ < 0. We will use ∇qi

to denote the gradient for κ ≥ 0 and
∇qi

for κ < 0. ∇̃ stands for (∇̃q1 , . . . , ∇̃qn). For a = (ax, ay, az) and b = (bx, by, bz)

in R
3, we define the inner product and the cross product as follows:

a � b := (axbx + ayby + σazbz),

a ⊗ b := (
aybz − azby, azbx − axbz, σ (axby − aybx)

)
.

For κ ≥ 0 (κ < 0) these operations reduce to the Euclidean (Lorentz) inner product
and cross product, which we denote by · and × (� and �), respectively.

We will define the potential in R
3 if κ > 0, and in the Minkowski space M

3 (see
the Appendix) if κ < 0, so that we can use a variational method to derive the equations
of motion. For this purpose we define the distance as

dκ(a,b) :=
{

csn−1
κ (Γk(a,b)), for κ �= 0,

|a − b|, for κ = 0,

where Γk(a,b) = κa�b√
κa�a

√
κb�b

and | · | is the Euclidean norm. This definition matches

the standard distance on the sphere x2 + y2 + z2 = κ−1 or on the hyperboloid x2 +
y2 −z2 = κ−1, when we restrict the vectors a and b to those surfaces. We also rescale
the units such that the gravitational constant G is 1, and define the potential as −Uκ ,
where

Uκ(q) := 1

2

n∑

i=1

n∑

j=1,j �=i

mimj ctnκ

(
dκ(qi ,qj )

)

stands for the force function, and q = (q1, . . . ,qn) is the configuration of the system.
Notice that ctn0(d0(qi ,qj )) = |qi − qj |−1, which means that we recover the Newto-
nian potential in the Euclidean case. Therefore the potential Uκ varies continuously
with the curvature κ .

Remark 1 The Newtonian potential has two fundamental properties: it is a harmonic
function in 3-space and it is one of the two potentials (the other corresponds to the
elastic spring) that generates a central field in which all bounded orbits are closed.
The cotangent potential generalizes these properties to spaces of constant curvature,
and thus it is widely accepted as an extension of the Newtonian potential.

Now that we have defined a potential that satisfies the basic continuity condition
required of any extension of the n-body problem beyond the Euclidean space, we
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focus on the case κ �= 0. A straightforward computation shows that

Uκ(q) = 1

2

n∑

i=1

n∑

j=1,j �=i

mimj (σκ)1/2 Γκ(qi ,qj )
√

σ − σ (Γκ(qi ,qj ))2
, κ �= 0. (1)

2.3 Derivation of the Equations of Motion

Using Euler’s formula for homogeneous functions (in our case Uκ is homogeneous
of degree zero), we obtain

q � ∇̃Uκ(q) = 0, (2)

or, in terms of coordinates,

qi � ∇̃qi
Uκ(q) = 0, i = 1, n. (3)

Notice that potential is a homogeneous function of degree zero in intrinsic coordi-
nates too, so all the properties connected to this feature are preserved (Diacu et al.
2011; Pérez Chavela and Reyes Victoria 2012).

To derive the equations of motion for κ �= 0, we apply a variational method to the
force function (1). The Lagrangian of the n-body system has the form

Lκ(q, q̇) = Tκ(q, q̇) + Uκ(q),

where Tκ(q, q̇) := 1
2

∑n
i=1 mi(q̇i � q̇i )(κqi � qi ) is the kinetic energy of the sys-

tem (we introduced the factors κqi � qi = 1 to endow the equations of motion with
a Hamiltonian structure). Then, according to the theory of constrained Lagrangian
dynamics (see, e.g. Gelfand and Fomin 1963), the equations of motion are

d

dt

(
∂Lκ

∂q̇i

)

− ∂Lκ

∂qi

− λi
κ(t)

∂f i
κ

∂qi

= 0, i = 1, n, (4)

where f i
κ = qi � qi − κ−1 gives the constraint f i

κ = 0, which keeps the body of mass
mi on the surface of constant curvature κ , and λi

κ is the corresponding Lagrange
multiplier. Since qi � qi = κ−1 implies that q̇i � qi = 0, it follows that

d

dt

(
∂Lκ

∂q̇i

)

= mi q̈i (κqi � qi ) + 2mi(κq̇i � qi ) = mi q̈i .

This relation, together with

∂Lκ

∂qi

= miκ(q̇i � q̇i )qi + ∇̃qi
Uκ(q),

implies that (4) are equivalent to

mi q̈i − miκ(q̇i � q̇i )qi − ∇̃qi
Uκ(q) − 2λi

κ(t)qi = 0, i = 1, n. (5)
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By straightforward computation we get λi
κ = −κmi(q̇i � q̇i ). Substituting λi

κ , i =
1, n, into (5), the equations of motion, which can be put in Hamiltonian form, become

mi q̈i = ∇̃qi
Uκ(q) − miκ(q̇i � q̇i )qi , qi � qi = κ−1, κ �= 0, i = 1, n. (6)

Consider the coordinate and time-rescaling transformations

qi = |κ|−1/2ri , i = 1, n, and dτ = |κ|3/4 dt. (7)

Let r′
i and r′′

i denote the first and second derivative of ri with respect to the rescaled
time variable τ . Then the equations of motion (6) take the form

r′′
i =

N∑

j=1,j �=i

mj [rj − σ(ri � rj )ri]
[σ − σ(ri � rj )2]3/2

− σ
(
r′
i � r′

i

)
ri , i = 1, n. (8)

Notice that the explicit dependence on κ vanishes; it shows up only as σ = 1 for
κ > 0 and σ = −1 for κ < 0. Moreover, the change of coordinates (7) shows that

ri � ri = |κ|qi � qi = |κ|κ−1 = σ.

It follows that ri ∈ S2 for κ > 0 and ri ∈ H2 for κ < 0, i = 1, n. Thus, the qualitative
behavior of the orbits is independent of the value of the curvature, and we can restrict
our study to S3 and H2. So the equations to study are

q̈i =
N∑

j=1,j �=i

mj [qj − σ(qi � qj )qi]
[σ − σ(qi � qj )2]3/2

− σ(q̇i � q̇i )qi , qi � qi = σ, i = 1, n.

(9)

The force function, its gradient, and the kinetic energy then have the form

U(q) =
∑

1≤i<j≤N

σmimj qi � qj

[σ(qi � qi )(qj � qj ) − σ(qi � qj )2]1/2
, (10)

∇̃qi
U(q) =

N∑

j=1,j �=i

mimj [qj − σ(qi � qj )qi]
[σ − σ(qi � qj )2]3/2

, (11)

T (q, q̇) := 1

2

N∑

i=1

mi(q̇i � q̇i )(σqi � qi ). (12)

From Noether’s theorem, the system (8) has the energy and total angular-momentum
integrals (with integration constants h ∈ R and c ∈ R

3) given by

T (q, q̇) − U(q) = h and
n∑

i=1

qi ⊗ pi = c.
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Remark 2 The equations of motion encounter singularities when, for i �= j , we have
qi ·qj = 1 (collisions) or, in S2 only, we have qi ·qj = −1 (antipodal configurations).
These singularities are studied in detail in Diacu et al. (2012), Diacu (2011).

Remark 3 If U = constant, the equations of motion reduce to the geodesic equations
determined by T , therefore a free body on a surface of constant curvature is either at
rest or moves uniformly along a geodesic. Moreover, for κ > 0, every orbit is closed.

3 Relative Equilibria in S2

We prove in this section some results about fixed points and relative equilibria, orbits
which are invariant to rotations about a fixed axis in S2. In general, a relative equi-
librium is a trajectory contained in a single group orbit, a fact which implies that the
mutual distances between bodies remain constant. In our case, however, we would
like a clear representation of the elliptic relative equilibria in order to prove their ex-
istence. Since, by Euler’s theorem (see the Appendix), every element of the group
SO(3) can be written, in an orthonormal basis, as a rotation about the z axis, we can
define elliptic relative equilibria as follows.

Definition 1 An elliptic relative equilibrium in S2 is a solution of system (9) with
σ = 1 of the form qi = (xi, yi, zi), i = 1, n, where xi = ri cos(ωt + αi), yi =
ri sin(ωt + αi), zi = constant, where ω,αi, ri , with 0 ≤ ri = (1 − z2

i )
1/2 ≤ 1, i =

1, n, are constants.

3.1 Fixed Points

The simplest solutions of the equations of motion are fixed points. They can be seen
as trivial relative equilibria that correspond to ω = 0.

Definition 2 A solution of system (9) with σ = 1 is called a fixed point if

∇qi
U(q)(t) = pi (t) = 0 for all t ∈ R and i = 1, n.

Let us find the simplest fixed points, those that occur when all the masses are
equal.

Theorem 1 Consider the n-body problem in S2 with n odd. If m1 = · · · = mn, the
regular n-gon lying on any geodesic is a fixed point of the equations of motion. For
n = 4, the regular tetrahedron is a fixed point too.

Proof Consider an n-gon with an odd number of sides inscribed in a geodesic of S2

with a body, initially at rest, at each vertex. (The assumption that n is odd is imposed
to avoid antipodal configurations.) In general, two forces act on the body of mass mi :
∇qi

U(q), which is due to the interaction with the other bodies, and −mi(q̇i · q̇i )qi ,
which is due to the constraints. The latter force is zero at t = 0 because the bodies are
initially at rest. Since qi · ∇qi

U(q) = 0, it follows that ∇qi
U(q) is orthogonal to qi ,
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and thus tangent to S2. Then the symmetry of the n-gon implies that, at the initial mo-
ment t = 0, ∇qi

U(q) is the sum of forces that cancel each other, so ∇qi
U(q(0)) = 0.

From the equations of motion and the fact that the bodies are initially at rest, it follows
that

q̈i (0) = −(
q̇i (0) · q̇i (0)

)
qi (0) = 0, i = 1, n.

But then no force acts on mi at time t = 0; consequently, the body does not move. So
q̇i (t) = 0 for all t ∈ R. Then q̈i (t) = 0 for all t ∈ R, therefore ∇qi

U(q(t)) = 0 for all
t ∈ R, so the n-gon is a fixed point of (9) with σ = 1.

The regular tetrahedron is a fixed point because four bodies of equal masses
with initial coordinates q1 = (0,0,1), q2 = (0,2

√
2/3,−1/3), q3 = (−√

6/3,

−√
2/3,−1/3), q4 = (

√
6/3,−√

2/3,−1/3) satisfy system (9) with σ = 1. �

Remark 4 Equal masses placed at the vertices of the other convex regular polyhedra:
octahedron (six bodies), cube (eight bodies), dodecahedron (12 bodies), and icosahe-
dron (20 bodies), have antipodal singularities, so they do not form fixed points.

3.2 Polygonal Solutions

We further show that fixed points lying on geodesics of spheres can generate relative
equilibria. The first result is an immediate consequence of the fact that the equator S1

is invariant to the flow generated by (6).

Proposition 1 Consider a fixed point given by the masses m1, . . . ,mn that lie on a
great circle of S2. Then for every nonzero angular velocity, this configuration gener-
ates a relative equilibrium that rotates along the great circle.

We can now state and prove the following result.

Theorem 2 Place an odd number of equal bodies at the vertices of a regular n-gon
inscribed in a great circle of S2. Then the only elliptic relative equilibria that can be
generated from this configuration are those that rotate along the original great circle.

Proof Without loss of generality, we prove this result for the equator, z = 0. Consider
an elliptic relative equilibrium of the form

xi = ri cos(ωt + αi), yi = ri sin(ωt + αi),

zi = ±(
1 − r2

i

)1/2
, i = 1, n,

(13)

with + taken for zi > 0 and − for zi < 0. The only condition we impose on this
solution is that ri and αi , i = 1, n, are chosen such that the configuration is a regular
n-gon inscribed in a moving great circle of S2 at all times. Therefore the plane of the
n-gon can have any angle with, say, the z-axis. This solution has the derivatives

ẋi = −riω sin(ωt + αi), ẏi = riω cos(ωt + αi), żi = 0, i = 1, n,

ẍi = −riω
2 cos(ωt + αi), ÿi = −riω

2 sin(ωt + αi), z̈i = 0, i = 1, n.
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Then

ẋ2
i + ẏ2

i + ż2
i = r2

i ω2, i = 1, n.

Since, by symmetry, any n-gon solution with n odd satisfies the conditions
∇qi

U(q) = 0, i = 1, n, system (9) with σ = 1 reduces to

q̈i = −(
ẋ2
i + ẏ2

i + ż2
i

)
qi , i = 1, n.

Then the substitution of (13) into the above equations leads to
{

ri
(
1 − r2

i

)
ω2 cos(ωt + αi) = 0, i = 1, n,

ri
(
1 − r2

i

)
ω2 sin(ωt + αi) = 0, i = 1, n.

But assuming ω �= 0, this system is nontrivially satisfied if and only if ri = 1, condi-
tions which are equivalent to zi = 0, i = 1, n. Therefore the bodies must rotate along
the equator z = 0. �

Theorem 2 raises the question whether elliptic relative equilibria given by regular
polygons can rotate on other curves than geodesics. The answer is given here.

Theorem 3 Consider m1 = · · · = mn =: m in S2. Then, for any n odd, m > 0 and z ∈
(−1,1), there are a positive and a negative ω that produce elliptic relative equilibria
in which the bodies are at the vertices of an n-gon rotating in the plane z = constant.
If n is even, this property is still true if we exclude the case z = 0.

Proof Substitute into system (9) with σ = 1 a solution of the form (13) with αi = 2πi
n

,
i = 1, n. The equation for z1, similar to any zi , i = 2, n, is

n∑

j=2

m(z − k1j z)

(1 − k2
1j )

3/2
− r2ω2z = 0,

where k1j = x1xj + y1yj + z1zj = (1 − z2) cosαj + z2. For z �= 0, this equation
becomes

ν∑

j=2

2(1 − cosαj )

(1 − k2
1j )

3/2
+ 2η

(1 − k2
1(ν+1))

3/2
= ω2

m
,

where ν is the integer part of n/2, η = 0 for n even, and η = 1 for n odd. The coor-
dinates x1 and y1 lead to the same equation. Writing the denominators explicitly, we
obtain

ν∑

j=2

2

(1 − cosαj )1/2{(1 − z2)[2 − (1 − cosαj )(1 − z2)]}3/2

+ η

4z2|z|(1 − z2)3/2
= ω2

m
.
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The left hand side is positive, so, if n is even, for any m > 0 and z ∈ (−1,1) fixed,
there are a positive and a negative ω that satisfy the equation. If n is odd the same
result holds except for the case z = 0, which introduces antipodal singularities. �

3.3 Lagrangian Solutions

The 3-body problem presents particular interest in the Euclidean case because the
equilateral triangle is an elliptic relative equilibrium for any values of the masses.
But before we check whether this fact holds in S2, let us consider the equal-mass
case in more detail.

Corollary 1 Consider the 3-body problem with equal masses, m := m1 = m2 = m3,
in S2. Then for any m > 0 and z ∈ (−1,1), there are a positive and a negative ω

that produce elliptic relative equilibria in which the bodies are at the vertices of an
equilateral triangle that rotates in the plane z = constant. Moreover, for every ω2/m

there are two values of z that lead to relative equilibria if ω2/m ∈ (8/
√

3,∞) ∪ {3},
three values if ω2/m = 8/

√
3, and four values if ω2/m ∈ (3,8/

√
3).

Proof The first part of the statement is a consequence of Theorem 3 for n = 3. Al-
ternatively, we can substitute into system (9) with σ = 1 a solution of the form (13)
with i = 1,2,3, r := r1 = r2 = r3, z = ±(1 − r2)1/2, α1 = 0, α2 = 2π/3, α3 = 4π/3,
and we obtain the equation

8√
3(1 + 2z2 − 3z4)3/2

= ω2

m
. (14)

The left hand side is positive for z ∈ (−1,1) and tends to infinity when z → ±1. So
for any z in this interval and m > 0, there are a positive and a negative ω for which
the above equation is satisfied. �

Remark 5 A similar result to Corollary 1 can be proved for two equal masses that
rotate on a non-geodesic circle, when the bodies are situated at opposite ends of a
rotating diameter. Then, for z ∈ (−1,0) ∪ (0,1), the analogue of (14) is the equation

1

4z2|z|(1 − z2)3/2
= ω2

m
.

The case z = 0 yields no solution because it involves an antipodal singularity.

We can now decide if the equilateral triangle of non-equal masses is an elliptic rel-
ative equilibrium in S2. The following result shows that, unlike in the Euclidean case,
the answer is negative when the bodies move on the sphere in the same Euclidean
plane.

Proposition 2 In the 3-body problem in S2, if the bodies m1,m2,m3 are initially at
the vertices of an equilateral triangle in the plane z = constant for some z ∈ (−1,1),
then there are initial velocities that lead to an elliptic relative equilibrium in which
the triangle rotates in its own plane if and only if m1 = m2 = m3.
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Proof The implication showing that for equal masses the rotating equilateral trian-
gle is a relative equilibrium follows from Theorem 1. To prove the converse, sub-
stitute into system (9) with σ = 1 a solution of the form (13) with i = 1,2,3, r :=
r1, r2, r3, z := z1 = z2 = z3 = ±(1 − r2)1/2, and α1 = 0, α2 = 2π/3, α3 = 4π/3.
Then

m1 + m2 = γω2, m2 + m3 = γω2, m3 + m1 = γω2, (15)

where γ = √
3(1 + 2z2 − 3z4)3/2/4. But for any z = constant in the interval (−1,1),

the above system has a solution only for m1 = m2 = m3 = γω2/2. �

Our next result leads to the conclusion that Lagrangian solutions in S2 can occur
only in Euclidean planes of R

3. This property has its analogue in the Euclidean case
(Wintner 1947), but Wintner’s proof does not work in our case because it uses the
integrals of the centre of mass, which do not exist here. Most importantly, our result
also implies that Lagrangian orbits with non-equal masses cannot exist in S2.

Theorem 4 For all Lagrangian solutions in S2, the masses m1,m2, and m3 have to
rotate on the same circle, whose plane must be orthogonal to the rotation axis, and
therefore m1 = m2 = m3.

Proof Consider a Lagrangian solution in S2 with bodies of masses m1,m2, and m3.
Then the solution, which is an elliptic relative equilibrium, must have the form

xi = ri cos(ωt + φi), yi = ri sin(ωt + φi), zi = (
1 − r2

i

)1/2
,

where i = 1,2,3, φ1 = 0, φ2 = a, and φ3 = b, with b > a > 0. In other words, we
assume that this equilateral triangle forms a constant angle with the rotation axis, z,
such that each body describes its own circle on S2. But for such a solution to exist
it is necessary that the total angular momentum is either zero or is given by a vector
parallel with the z axis. Otherwise this vector rotates around the z axis, in violation
of the angular-momentum integrals. This means that at least the first two components
of the vector

∑3
i=1 miqi × q̇i are zero. Then

m1r1z1 sinωt + m2r2z2 sin(ωt + a) + m3r3z3 sin(ωt + b) = 0,

assuming that ω �= 0. For t = 0, this equation becomes

m2r2z2 sina = −m3r3z3 sinb. (16)

Using now the fact that

α := x1x2 + y1y2 + z1z2 = x1x3 + y1y3 + z1z3 = x3x2 + y3y2 + z3z2

is constant because the triangle is equilateral, the equation of motion corresponding
to ÿ1 takes the form

Kr1
(
r2

1 − 1
)
ω2 sinωt = m2r2 sin(ωt + a) + m3r3 sin(ωt + b),
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where K is a nonzero constant. For t = 0, this equation becomes

m2r2 sina = −m3r3 sinb. (17)

Dividing (16) by (17), we find that z2 = z3. Similarly, we can show that z1 =
z2 = z3, therefore the motion must take place in the same Euclidean plane on a circle
orthogonal to the rotation axis. Proposition 2 then implies that m1 = m2 = m3. �

3.4 Eulerian Solutions

In agreement with the Euclidean case, the bodies of an Eulerian solution lie on the
same rotating geodesic, so it is now natural to ask whether such elliptic relative equi-
libria exist. The answer in the case n = 3 of equal masses is given by the following
result.

Theorem 5 Consider the 3-body problem in S2 with masses m1 = m2 = m3 =: m.
Fix m1 at (0,0,1) and m2 and m3 at the opposite ends of a diameter on the circle
z = constant. Then, for any m > 0 and z ∈ (−0.5,0)∪ (0,1), there are a positive and
a negative ω that produce elliptic relative equilibria.

Proof Substituting into the equations of motion (9) with σ = 1 a solution of the
form

x1 = 0, y1 = 0, z1 = 1,

x2 = r cosωt, y2 = r sinωt, z2 = z,

x3 = r cos(ωt + π), y3 = r sin(ωt + π), z3 = z,

with the constants r and z satisfying r2 + z2 = 1, we are led either to identities or to
the algebraic equation

4z + |z|−1

4z2(1 − z2)3/2
= ω2

m
. (18)

The function on the left hand side is negative for z ∈ (−1,−0.5), 0 at z = −0.5,
positive for z ∈ (−0.5,0)∪ (0,1), and undefined at z = 0. Therefore, for every m > 0
and z ∈ (−0.5,0)∪ (0,1), there are a positive and a negative ω that lead to a geodesic
relative equilibrium. For z = −0.5, we recover the equilateral fixed point. �

Remark 6 If in Theorem 5 we take the masses m1 =: m and m2 = m3 =: M , the
analogue of (18) is

4mz + M|z|−1

4z2(1 − z2)3/2
= ω2.
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Then solutions exist for any z ∈ (−√
M/m/2,0) ∪ (0,1). From the above equation

we see that there are no fixed points for M ≥ 4m.

4 Relative Equilibria in H2

In this section we prove some results about elliptic and hyperbolic relative equilibria
in H2. Since, by the Principal Axis theorem for the Lorentz group, every Lorentzian
rotation (see the Appendix) can be written, in some basis, as an elliptic rotation about
the z axis, a hyperbolic rotation about the x axis, or a parabolic rotation about the line
x = 0, y = z, we can define three kinds of relative equilibrium: elliptic, hyperbolic,
and parabolic, in agreement with the terminology of hyperbolic geometry (Henle
2001).

Definition 3 An elliptic relative equilibrium in H2 is a solution qi = (xi, yi, zi), i =
1, n, of system (9) with σ = −1, where xi = ρi cos(ωt + αi), yi = ρi sin(ωt + αi),
and zi = (ρ2

i + 1)1/2, with ω,αi , and ρi, i = 1, n, constants.

Definition 4 A hyperbolic relative equilibrium in H2 is a solution of system (9) with
σ = −1 of the form qi = (xi, yi, zi), i = 1, n, where

xi = constant, yi = ρi sinh(ωt + αi), and zi = ρi cosh(ωt + αi), (19)

and ω,αi , and ρi = (1 + x2
i )1/2 ≥ 1, i = 1, n, are constants.

Remark 7 We could also define parabolic relative equilibria in terms of parabolic
rotations (see the Appendix), but it is easy to show that such orbits do not exist (Diacu
2011, 2012).

Remark 8 H2 is free of fixed points, i.e. there are no solutions of (9) with σ = −1
such that ∇qi

U(q)(t) = pi (t) = 0, t ∈ R, i = 1, n.

4.1 Elliptic Relative Equilibria in H2

We now consider elliptic relative equilibria. The proof of the following result is sim-
ilar to the one we gave for Theorem 3.

Theorem 6 Consider the n-body problem with equal masses in H2. Then, for any
m > 0 and z > 1, there are a positive and a negative ω that produce elliptic relative
equilibria in which the bodies are at the vertices of an n-gon rotating in the plane
z = constant.

Corollary 2 Consider the 3-body problem with equal masses, m := m1 = m2 = m3,
in H2. Then for any m > 0 and z > 1, there are a positive and a negative ω that
produce relative elliptic equilibria in which the bodies are at the vertices of an equi-
lateral triangle that rotates in the plane z = constant. Moreover, for every ω2/m > 0
there is a unique z > 1 as above.
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Proof Substituting in system (9) with σ = −1 a solution of the form

xi = ρ cos(ωt + αi), yi = ρ sin(ωt + αi), zi = z, (20)

with z = (ρ2 + 1)1/2, α1 = 0, α2 = 2π/3, α3 = 4π/3, we are led to the equation

8√
3(3z4 − 2z2 − 1)3/2

= ω2

m
. (21)

The left hand side is positive for z > 1, tends to infinity when z → 1, and tends to
zero when z → ∞. So for any z in this interval and m > 0, there are a positive and a
negative ω for which the above equation is satisfied. �

As we already proved in the previous section, an equilateral triangle rotating in its
own plane forms an elliptic relative equilibrium in S2 only if the three masses lying
at its vertices are equal. The same result is true in H2, as we will further show.

Proposition 3 In the 3-body problem in H2, if the bodies m1,m2,m3 are initially at
the vertices of an equilateral triangle in the plane z = constant for some z > 1, then
there are initial velocities that lead to an elliptic relative equilibrium in which the
triangle rotates in its own plane if and only if m1 = m2 = m3.

Proof It follows from Theorem 6 that if m1 = m2 = m3 then the rotating equilateral
triangle is an elliptic relative equilibrium. To prove the converse, substitute into sys-
tem (9) with σ = −1 a solution of the form (20) with i = 1,2,3, ρ := ρ1, ρ2, ρ3,
z := z1 = z2 = z3 = (ρ2 + 1)1/2, and α1 = 0, α2 = 2π/3, α3 = 4π/3. The computa-
tions then lead to the system

m1 + m2 = ζω2, m2 + m3 = ζω2, m3 + m1 = ζω2, (22)

where ζ = √
3(3z4 − 2z2 − 1)3/2/4. But for any z = constant with z > 1, the above

system has a solution only for m1 = m2 = m3 = ζω2/2. �

The following result resembles Theorem 4. The proof works the same way, by
taking σ = −1 and replacing the elliptical trigonometric functions with hyperbolic
ones.

Theorem 7 For all Lagrangian solutions in H2, the masses m1,m2 and m3 have to
rotate on the same circle, whose plane must be orthogonal to the rotation axis, and
therefore m1 = m2 = m3.

We can further prove an analogue of Theorem 5.

Theorem 8 Consider the 3-body problem in H2 with masses, m1 = m2 = m3 =: m.
Fix the body m1 at (0,0,1) and the bodies m2 and m3 at the opposite ends of a
diameter on the circle z = constant. Then, for any m > 0 and z > 1, there are a
positive and a negative ω, which produce elliptic relative equilibria that rotate around
the z axis.
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Proof Substituting into system (9) with σ = −1 a solution of the form

x1 = 0, y1 = 0, z1 = 1,

x2 = ρ cosωt, y2 = ρ sinωt, z2 = z,

x3 = ρ cos(ωt + π), y3 = ρ sin(ωt + π), z3 = z,

where ρ ≥ 0 and z ≥ 1 are constants satisfying z2 = ρ2 + 1, we are led either to
identities or to the algebraic equation

4z2 + 1

4z3(z2 − 1)3/2
= ω2

m
. (23)

The function on the left hand side is positive for z > 1. Therefore, for every m > 0
and z > 1, there are a positive and a negative ω that lead to a geodesic elliptic relative
equilibrium. Moreover, for every ω2/m > 0, there is one z > 1 that satisfies (23). �

4.2 Hyperbolic Relative Equilibria in H2

Since parabolic relative equilibria do not exist, it is natural to ask whether hyper-
bolic relative equilibria show up. For three equal masses, the answer is given by the
following result, which shows that, in H2, three bodies can move along hyperbolas
lying in parallel planes of R

3, maintaining the initial distances among themselves and
remaining on the same geodesic, which rotates hyperbolically.

Theorem 9 In the 3-body problem with m1 = m2 = m3 =: m in H2, for any given
m > 0 and x �= 0, there exist a positive and a negative ω that lead to hyperbolic
relative equilibria.

Proof We will show that qi = (xi, yi, zi), i = 1,2,3, is a hyperbolic relative equi-
librium of system (9) with σ = −1 for

x1 = 0, y1 = sinhωt, z1 = coshωt,

x2 = x, y2 = ρ sinhωt, z2 = ρ coshωt,

x3 = −x, y3 = ρ sinhωt, z3 = ρ coshωt,

where ρ = (1 + x2)1/2. Notice first that

x1x2 + y1y2 − z1z2 = x1x3 + y1y3 − z1z3 = −ρ,

x2x3 + y2y3 − z2z3 = −2x2 − 1,

ẋ2
1 + ẏ2

1 − ż2
1 = ω2, ẋ2

2 + ẏ2
2 − ż2

2 = ẋ2
3 + ẏ2

3 − ż2
3 = ρ2ω2.

Substituting the above coordinates and expressions into system (9) with σ = −1, we
are led either to identities or to the equation

4x2 + 5

4x2|x|(x2 + 1)3/2
= ω2

m
, (24)

from which the statement of the theorem follows. �
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Remark 9 Theorem 9 is also true if, say, m := m1 and M := m2 = m3. Then the
analogue of (24) is

m

x2|x|(x2 + 1)1/2
+ M

4x2|x|(x2 + 1)3/2
= ω2,

and it is obvious that for any m,M > 0 and x �= 0, there are a positive and negative
ω satisfying the above equation.

Remark 10 Theorem 9 also works for two bodies of equal masses, m := m1 = m2,
of coordinates x1 = −x2 = x, y1 = y2 = ρ sinhωt, z1 = z2 = ρ coshωt, where x is a
positive constant and ρ = (x2 + 1)3/2. Then the analogue of (24) is

1

4x2|x|(x2 + 1)3/2
= ω2

m
,

which supports a statement similar to the one in Theorem 9.

5 Saari’s Conjecture

In 1970, Don Saari conjectured that solutions of the classical n-body problem with
constant moment of inertia are relative equilibria (Saari 1970, 2005). The moment
of inertia is defined in classical Newtonian celestial mechanics as 1

2

∑n
i=1 miqi · qi ,

a function that gives a crude measure of the bodies’ distribution in space. But this
definition makes no sense in S2 and H2 because qi � qi = σ for every i = 1, n. To
avoid this problem, we adopt the standard point of view used in physics, and define
the moment of inertia about the direction of the angular momentum. But while fixing
an axis in S2 does not restrain generality, the symmetry of H2 makes us distinguish
between two cases. Indeed, in S2 we can assume that the rotation takes place around
the z axis, and thus define the moment of inertia as

I :=
n∑

i=1

mi

(
x2
i + y2

i

)
. (25)

In H2, all possibilities can be reduced via suitable isometric transformations (see the
Appendix) to: (i) the symmetry about the z axis, when the moment of inertia takes
the same form (25), and (ii) the symmetry about the x axis, which corresponds to
hyperbolic rotations, when in agreement with the definition of the Lorentz product
we define the moment of inertia as

J :=
n∑

i=1

mi

(
y2
i − z2

i

)
. (26)

The parabolic rotations will not be considered because there are no parabolic relative
equilibria. These definitions allow us to formulate the following conjecture.
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Saari’s Conjecture in S2 and H2 For the gravitational n-body problem in S2

and H2, every solution that has a constant moment of inertia about the direction
of the angular momentum is either an elliptic relative equilibrium in S2 or H2, or a
hyperbolic relative equilibrium in H2.

By generalizing an idea we used in the Euclidean case (Diacu et al. 2005, 2008),
we can now settle this conjecture when the bodies undergo another constraint. More
precisely, we will prove the following result.

Theorem 10 For the gravitational n-body problem in S2 and H2, every solution with
constant moment of inertia about the direction of the angular momentum for which
the bodies remain aligned along a geodesic that rotates elliptically in S2 or H2,
or hyperbolically in H2, is either an elliptic relative equilibrium in S2 or H2, or a
hyperbolic relative equilibrium in H2.

Proof Let us first prove the case in which I is constant in S2 and H2, i.e. when the
geodesic rotates elliptically. According to the above definition of I, we can assume
without loss of generality that the geodesic passes through the point (0,0,1) and
rotates about the z-axis with angular velocity ω(t) �= 0. The angular momentum of
each body is Li = miqi ⊗ q̇i , so its derivative with respect to t takes the form

L̇i = mi q̇i ⊗ q̇i + miqi ⊗ q̈i = miqi ⊗ ∇̃qi
Uκ(q) − mi q̇2

i qi ⊗ qi

= miqi ⊗ ∇̃qi
Uκ(q),

with κ = 1 in S2 and κ = −1 in H2. Since qi � ∇̃qi
Uκ(q) = 0, it follows that

∇̃qi
Uκ(q) is either zero or orthogonal to qi . (Recall that orthogonality here is meant

in terms of the standard inner product because, both in S2 and H2, qi � ∇̃qi
Uκ(q) =

qi · ∇qi
Uκ(q).) If ∇̃qi

Uκ(q) = 0, then L̇i = 0, so L̇z
i = 0.

Assume now that ∇̃qi
Uκ(q) is orthogonal to qi . Since all the particles are on a

geodesic, their corresponding position vectors are in the same plane, therefore any
linear combination of them is in this plane, so ∇̃qi

Uκ(q) is in the same plane. Thus
∇̃qi

Uκ(q) and qi are in a plane orthogonal to the xy plane. It follows that L̇i is
parallel to the xy plane and orthogonal to the z-axis. Thus the z-component, L̇z

i , of
L̇i is 0, the same conclusion we obtained in the case ∇̃qi

Uκ(q) = 0. Consequently,
Lz

i = ci , where ci is a constant.
Let us also remark that since the angular momentum and angular velocity vectors

are parallel to the z-axis, Lz
i = Iiω(t), where Ii = mi(x

2
i + y2

i ) is the moment of in-
ertia of the body mi about the z-axis. Since the total moment of inertia, I, is constant,
and ω(t) is the same for all bodies because they belong to the same rotating geodesic,
it follows that

∑n
i=1 Iiω(t) = Iω(t) = c, where c is a constant. Consequently, ω is a

constant vector.
Moreover, since Lz

i = ci , it follows that Iiω(t) = ci . Then every Ii is constant, and
so is every zi , i = 1, n. Hence each body of mass mi has a constant zi -coordinate, and
all bodies rotate with the same constant angular velocity around the z-axis, properties
that agree with our definition of an elliptic relative equilibrium.
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We now prove the case J = constant, i.e. when the geodesic rotates hyperbolically
in H2. According to the definition of J, we can assume that the bodies are on a
moving geodesic whose plane contains the x axis for all time and whose vertex slides
along the geodesic hyperbola x = 0. (This moving geodesic hyperbola can be also
visualized as the intersection between the sheet z > 0 of the hyperboloid and the plane
containing the x axis and rotating about it. For an instant, this plane also contains the
z axis.)

The angular momentum of each body is Li = miqi � q̇i , so we can show as before
that its derivative takes the form L̇i = miqi �∇qi

U(q). Again, ∇qi
U(q) is either zero

or orthogonal to qi . In the former case we can draw the same conclusion as earlier:
that L̇i = 0, so in particular L̇x

i = 0. In the latter case, qi and ∇qi
U(q) are in the

plane of the moving hyperbola, so their cross product, qi � ∇qi
U(q) (which differs

from the standard cross product only by its opposite z component), is orthogonal to
the x axis, and therefore L̇x

i = 0. Thus L̇x
i = 0 in either case.

From here the proof proceeds as before by replacing I with J and the z axis with
the x axis, and noticing that Lx

i = Jiω(t), to show that every mi has a constant xi

coordinate. In other words, each body is moving along a (in general non-geodesic)
hyperbola given by the intersection of the hyperboloid with a plane orthogonal to the
x-axis. These facts, in combination with the sliding of the moving geodesic hyperbola
along the fixed geodesic hyperbola x = 0, are in agreement with our definition of a
hyperbolic relative equilibrium. �
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Appendix

Since the Weierstrass model of the hyperbolic (Bolyai–Lobachevsky) plane is little
known among nonlinear analysts or experts in differential equations, we present here
its basic properties. This model is appealing for at least two reasons: (i) it allows
an obvious comparison with the sphere, both from the geometric and analytic point
of view; (ii) it emphasizes the differences between the Bolyai–Lobachevsky and the
Euclidean plane as clearly as the well-known differences between the Euclidean plane
and the sphere. As far as we are concerned, this model was the key for obtaining the
results we proved for the n-body problem for κ < 0.

The Weierstrass model is constructed on one of the sheets of the hyperboloid
x2 + y2 − z2 = −1 in the 3-dimensional Minkowski space M

3 := (R3,�), in which
a � b = axbx + ayby − azbz, with a = (ax, ay, az) and b = (bx, by, bz), represents
the Lorentz inner product. We choose the z > 0 sheet of the hyperboloid, which we
identify with the Bolyai–Lobachevsky plane H2.

A linear transformation T : M
3 → M

3 is orthogonal if T (a) � T (a) = a � a for
any a ∈ M

3. The set of these transformations, together with the Lorentz inner prod-
uct, forms the orthogonal group O(M3), given by matrices of determinant ±1. There-
fore the group SO(M3) of orthogonal transformations of determinant 1 is a subgroup
of O(M3). Another subgroup of O(M3) is G(M3), which is formed by the trans-
formations T that leave H2 invariant. Furthermore, G(M3) has the closed Lorentz
subgroup, Lor(M3) := G(M3) ∩ SO(M3).
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An important result is the Principal Axis Theorem for Lor(M3) (Hano and No-
mizu 1983). Let us define the Lorentzian rotations about an axis as the 1-parameter
subgroups of Lor(M3) that leave the axis pointwise fixed. Then the Principal Axis
Theorem states that every Lorentzian transformation has one of the forms:

A = P

⎡

⎢
⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎥
⎦P −1, B = P

⎡

⎢
⎣

1 0 0

0 cosh s sinh s

0 sinh s cosh s

⎤

⎥
⎦P −1, or

C = P

⎡

⎢
⎣

1 −t t

t 1 − t2/2 t2/2

t −t2/2 1 + t2/2

⎤

⎥
⎦P −1,

where θ ∈ [0,2π), s, t ∈ R, and P ∈ Lor(M3). They are called elliptic, hyperbolic,
and parabolic, respectively. The elliptic transformations are rotations about the z axis;
the hyperbolic transformations are rotations about the x axis; and the parabolic trans-
formations are rotations about the line x = 0, y = z. This result resembles Euler’s
Principal Axis Theorem, which states that any element of SO(3) can be written, in
some orthonormal basis, as a rotation about the z axis.

The geodesics of H2 are the hyperbolas obtained by intersecting the hyperboloid
with planes passing through the origin of the coordinate system. For any two distinct
points a and b of H2, there is a unique geodesic that connects them, and the distance
between these points is given by d(a,b) = cosh−1(−a � b).

In the framework of Weierstrass’s model, the parallels’ postulate of hyperbolic
geometry can be translated as follows. Take a geodesic γ , i.e. a hyperbola obtained
by intersecting a plane through the origin, O , of the coordinate system with the upper
sheet, z > 0, of the hyperboloid. This hyperbola has two asymptotes in its plane: the
straight lines a and b, intersecting at O . Take a point, P , on the upper sheet of the
hyperboloid but not on the chosen hyperbola. The plane aP produces the geodesic
hyperbola α, whereas bP produces β . These two hyperbolas intersect at P . Then α

and γ are parallel geodesics meeting at infinity along a, while β and γ are parallel
geodesics meeting at infinity along b. All the hyperbolas between α and β (also
obtained from planes through O) are non-secant with γ .

Like the Euclidean plane, the abstract Bolyai–Lobachevsky plane has no priv-
ileged points or geodesics. But the Weierstrass model has convenient points and
geodesics, such as (0,0,1) and the geodesics passing through it. The elements of
Lor(M3) allow us to move the geodesics of H2 to convenient positions, a property
we frequently use in this paper to simplify our arguments. Other properties of the
Weierstrass model can be found in Faber (1983) and Reynolds (1993). The Lorentz
group is treated in some detail in Baker (2002), but the Principal Axis Theorems for
the Lorentz group contained there fails to include parabolic rotations, and is there-
fore incomplete. Weierstrass’s model of hyperbolic geometry was first mentioned in
Killing (1880) with more details in Killing (1885).
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