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Abstract. The recent advances in MEMS, embedded systems and wireless communication technologies are making the realization and
deployment of networked wireless microsensors a tangible task. In this paper we study node localization, a component technology that
would enhance the effectiveness and capabilities of this new class of networks. The n-hop multilateration primitive presented here, enables
ad-hoc deployed sensor nodes to accurately estimate their locations by using known beacon locations that are several hops away and
distance measurements to neighboring nodes. To prevent error accumulation in the network, node locations are computed by setting up and
solving a global non-linear optimization problem. The solution is presented in two computation models, centralized and a fully distributed
approximation of the centralized model. Our simulation results show that using the fully distributed model, resource constrained sensor
nodes can collectively solve a large non-linear optimization problem that none of the nodes can solve individually. This approach results
in significant savings in computation and communication, that allows fine-grained localization to run on a low cost sensor node we have

developed.
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1. Introduction

Precise knowledge of node location in ad-hoc deployed mi-
crosensor networks yields a wide variety of profound advan-
tages. Knowledge of location can be used to report the ge-
ographical origin of events, to assist in target tracking, geo-
graphic aware routing [11], to administer the sensor network
and evaluate its coverage [12]. These together with security
and smart environment applications such as the Smart Kinder-
garten [20] are only a few of the applications where location
aware nodes are required.

In many situations, wireless sensor nodes are expected to
be deployed in an ad-hoc fashion (i.e., air-dropped over an
area). With ad-hoc deployment however, one cannot accu-
rately predict or plan a-priori the location of each sensor.
Based on this and the fact that direct line-of-sight with bea-
cons is not always feasible, we seek to develop an algorithm
that can perform precise localization of sensor nodes with in-
direct line-of-sight by utilizing location information and dis-
tance measurements over multiple hops. To achieve this goal,
nodes use their ranging sensors to measure distances to their
neighbors and share their measurement and location infor-
mation for a small subset of similar nodes that are already
aware of their locations, the beacon nodes. This sharing al-
lows nodes to collectively estimate their locations.

In this paper we present the n-hop multilateration primitive
that we also refer to as collaborative multilateration. Collab-
orative multilateration consists of a set of mechanisms that
enables nodes found several hops away from beacon nodes to
collaborate with each other and estimate their locations with
high accuracy. This multihop operation waives the line-of-
sight to beacons requirement making fine-grained localization

possible in the presence of very few beacon nodes. Position
estimates are obtained by setting up a global non-linear opti-
mization problem and solving it using iterative least squares.
Collaborative multilateration is presented in two computation
models, centralized and distributed. These can be used in a
wide variety of network setups from fully centralized where
all the computation takes place at a base station, to locally
centralized (i.e., computation takes place at a set of cluster
heads) to fully distributed where computation takes place at
every node.

The fully distributed computation model presented here is
an approximation of its centralized counterpart and has sev-
eral properties favorable to sensor networks. It offers a sig-
nificant reduction in computation requirements thus allow-
ing the execution of collaborative multilateration on resource
constrained sensor nodes such as the Medusa MK-2 node
described in this paper. Using this mechanism, resource-
constrained nodes can collaborate with each other to jointly
estimate their locations, a task that none of the nodes can per-
form individually because of their computation and memory
limitations. The use of a fully distributed computation model
is also tolerant to node failures, and distributes the commu-
nication cost evenly across the sensor nodes and does not re-
quire any additional supporting mechanisms such as leader
election and multihop routing that would be required for a
fully centralized implementation.

The algorithms presented in this paper are validated on a
combined ns-2 and MATLAB simulation testbed, using the
measured parameters of our experimental sensor nodes. The
remainder of this paper is organized as follows. Next sec-
tion briefly describes the related work. Section 3 provides
some preliminary information and overview of our approach.
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Section 4 describes the initial setup configuration for collab-
orative multilateration. Section 5 explains the centralized and
distributed computation models. Our simulation results and
a brief comparison to the corresponding Cramér—Rao bound
results are presented in section 6 and section 7 concludes the

paper.

2. Related work

Node localization has been the topic of active research and
many systems have made their appearance in the past few
years. A detailed survey of such systems is provided by High-
tower and Boriello in [7]. Despite these efforts, very few sys-
tems are actually ad-hoc. Even fewer methods are have been
proposed that offer a fully distributed operation. Doherty’s [3]
convex position estimation approach for instance describes a
method for localizing ad-hoc nodes based only on connectiv-
ity. This method is based on semi-definite programming and
requires rigorous centralized computation so it is not always
suitable for many ad-hoc setups.

Some forms of ad-hoc localization also exist in the domain
of mobile robotics [8,15]. The localization problem in mo-
bile robotics bears many similarities to the ad-hoc localization
problem investigated in sensor networks. One main differ-
ence however is that mobile robots have additional odometric
measurements that can help with estimating the initial robot
positions, something that is not available in sensor networks.
Furthermore, localization studies in the sensor network com-
munity also consider scalability communication and power
consumption issues that are not studied by the robotics com-
munity.

The AHLoS system we proposed in [17] uses iterative
multilateration which relies on a small set of nodes initially
configured as beacons to estimating node locations in an ad-
hoc setup. This work identified two main problems: (1) iter-
ative multilateration is sensitive to beacon densities and can
easily get stuck in places where beacon densities are sparse,
(2) error propagation becomes an issue in large networks. The
collaborative multilateration algorithms presented in this pa-
per address these two issues.

In parallel to our work some other ad-hoc node localiza-
tion approaches have been independently proposed in [13]
and [16]. In both these approaches anchor node location in-
formation is propagated across the network. When anchors
become aware of other anchor node locations, they use this in-
formation to estimate the average hop length in their vicinity
and broadcast it back into the network. Nodes with unknown
locations also note the shortest hop distance to each of the an-
chor nodes and multiply it with the broadcasted average hop
length to get an approximate distance to each of the anchor
nodes. With this information nodes perform a multilateration
to get an initial estimate of their locations. To obtain better
estimates, the authors of [16] also use a further refinement
phase that uses least squares to refine node positions based on
local computation. Simulation studies have shown that these
technologies are independent of ranging technologies and can
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deliver localization accuracy within one third of the commu-
nication range.

Despite the similarities, the work presented here has sev-
eral fundamental differences from the aforementioned ap-
proaches. Error propagation is limited by computing in the
context of over-constrained node configurations. We also
provide a computation cost comparison between the central-
ized and distributed computation models and we examine the
scalability of this approach by comparison to the Cramér—
Rao bounds. Our algorithm development is tuned for a fine-
grained ad-hoc localization system comprised of resource
constrained sensor nodes equipped with an ultrasonic rang-
ing system for measuring inter-node distances.

3. Preliminaries
3.1. Establishing local coordinate systems

The initial beacon locations can be derived from manual
placement or by automatically establishing a local coordinate
system. One method for establishing a coordinate system is
to use a tiered system in which some nodes that are capable
of accurate long distance ranging (i.e., long range ultrasound
or laser range finders). These nodes establish a local coordi-
nate system as shown in figure 1. The individual coordinate
systems can then be merged into a global coordinate system.
One possible method for this is described in [2]. In this pa-
per we focus our attention in the fine-grained localization of
nodes inside a local coordinate system (i.e., inside one of the
triangles in figure 1).

3.2. Example sensor node and ranging considerations

Figure 2 shows our second generation node, the Medusa
MK-2, a low cost wireless sensor node we have developed for
experimenting with node localization problems. This node
consists of a 4 MHz 8-bit AVRMegal28L microcontroller
from Atmel and a low power RFM radio, in a configuration
that is similar to UC Berkeley’s Mica motes. In addition, the
MK-2 node carries a more powerful 40 MHz AT91FR4081
ARM THUMB coprocessor with 136 KB of RAM and 1 MB
of on-board FLASH memory for more intensive computation
tasks. The details and additional features of the MK-2 ar-
chitecture are described in [19]. For localization, the node

Figure 1. Establishing local coordinate systems.
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Figure 2. The Medusa MK-2 experimental node.
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Figure 3. (a) One-hop multilateration, (b) two-hop multilateration, (c) sym-
metric case, (d) each unknown has one independent reference.

is equipped with 40 KHz ultrasonic sensors that have an ef-
fective range of 5 meters and approximately 1 cm accuracy.
Similar technologies [6] can produce longer ranges, but we
found this range to be more appropriate for indoor settings.

3.3. Solution outline

In a single hop setups, such as the one in figure 3, where nodes
are within range from a set of beacons, nodes with unknown
locations can determine their locations between measured and
estimated distances to the beacons [17]. In this paper we con-
sider a multilateration that spans over multiple hops. This en-
ables nodes that are not directly connected to beacon nodes to
collaborate with other intermediate nodes with unknown loca-
tions situated between themselves and the beacons to jointly
estimate their locations. One of the main challenges in this
problem is to prevent error accumulation inside the network.
To prevent error accumulation, the node localization problem
is set up a least squares estimation problem with respect to
the global network topology. At the same time, the limited
communication and computation resources and the need for
robust behavior, suggest that a multilateration operation over
multiple hops should also operate in a distributed manner.
Collaborative multilateration takes place in three main
phases and a post-processing phase. In the first phase, the
nodes self-organize into groups, collaborative subtrees so that
nodes with unknown positions are over-constrained and can
have only one possible solution. At this point, any nodes
that do not satisfy the required constrains do not become part
of any collaborative subtree. During the second phase, the
nodes use simple geometric relationships between measured
distances and known beacon locations to obtain a set of ini-
tial position estimates. The third phase is a refinement phase
that uses iterative least squares to obtain the final position es-
timates. Finally, the post processing phase very similar to the
second phase, and uses all the new location information to
further refine the positions of under-constrained nodes.
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4. Initial configuration
4.1. Phase 1: collaborative subtrees

A computation subtree constitutes a configuration of un-
knowns and beacons for which the solution to the position es-
timates of the unknowns can be uniquely determined. This is
achieved by obtaining a well-determined or preferably over-
determined set of equations — n variables to be estimated and
at least n equations. Before attempting to solve these equa-
tions, the solution uniqueness is determined to prevent the es-
timation of erroneous locations. Collaborative subtrees have
another desirable property that will become apparent when
we discuss our distributed computation model in section 4.2.
To determine the requirements for solution uniqueness we de-
velop our discussion by reviewing the requirements of the sin-
gle hop multilateration. Later on, we augment these require-
ments to cover the multihop case.

4.1.1. One-hop multilateration requirements

In the single hop setup of figure 3(a), the basic requirement for
one unknown node to have a unique solution on a 2D plane is
that it is within range of at least three non-collinear beacons.
If the beacons lie in a straight line, the node configuration is
symmetric, and there is more than one possible solution.

4.1.2. Two-hop multilateration requirements

Using the one-hop multilateration requirements as a starting
point, the corresponding set of requirements for a two-hop
multilateration can be established. A two-hop multilateration
represents the case where the beacons are not always directly
connected to the node but they are within a two-hop radius
from the unknown node. In this situation, two or more un-
known nodes can utilize the beacon location information and
the intermediate distance measurements between themselves
and the beacons to jointly estimate their locations. Like the
one-hop case, each unknown node needs to be connected to
at least three nodes, but these nodes are not required to be
beacons. Instead, unknown nodes need to determine which of
their neighbors have only one possible position solution and
use them as reference points to determine if their position so-
lution is unique. From this perspective, a position solution
is tentatively unique if it has at least three neighbors that are
either beacons or their solutions are tentatively unique. Fig-
ure 3(b) illustrates the most basic case. Nodes 3 and 4 are
unknown and they are both connected to three nodes. Note
that from the perspective of node 3, one of its links termi-
nates to an unknown, node 4. Node 4, however, has two more
outgoing links to beacons 5 and 6. If we assume that node 3
has a unique position solution, then node 4 also has a unique
position solution. If, however, node 4 has a unique position
solution, then node 3 is also collaborative because it is con-
nected to 3 collaborative nodes — 1, 2 and 4. This condition
is necessary but not sufficient to guarantee that there is only
one possible node position estimate. Many symmetric topolo-
gies that meet the above requirement can yield more than one
possible position estimate.
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Figure 4. Detecting collinear configurations.

Condition 1. To have a unique possible position solution, it
is necessary that an unknown node be connected to at least
three nodes that have unique possible positions.

The fist symmetric case follows from the conditions of the
single hop setup — the nodes with tentatively unique solutions
used as references for an unknown should not lie in a straight
line. If they lie in a straight line, then the unknown node
will have two possible positions so the solution to the location
estimate is not unique.

Condition 2. It is necessary for an unknown node to use at
least one reference point that is not collinear with the rest of
its reference points.

Although the positions of the reference points are not
known, one can test for this condition using basic trigonome-
try. In figure 4, assuming that nodes A, C and D are known to
have unique solutions, node B tries to establish if its position
solution is unique. To do so node B computes the angles ABC,
CBD and ABD. Using the angle ABD, node B can calculate
the distance AD. If the computed distance AD is equal to the
sum of distances AC and CD then the nodes are collinear!
hence node B decides that its solution is not unique.

Another type of setup that can cause symmetry problems
is shown in figure 3(c). Nodes 3 and 4 both have 3 links to
nodes with tentatively unique positions but the setup is sym-
metric since the two nodes can be swapped without any vi-
olation of the constraints imposed by the intra-node distance
measurements. To avoid this situation where the whole net-
work can be rotated over two pivot points (nodes 1 and 2 in
this example) an additional condition is set.

Condition 3. In each pair of unknown nodes that use the link
to each other as a constraint, it is necessary that each node
has at least one link that connects to a different node from the
nodes used as references by the other node.

The network in figure 3(d) is an example configuration that
satisfies this property. Both unknown nodes 3 and 4 have at
least one independent reference. Node 4 has beacon 1 and
node 3 has beacon 2. The above three conditions are indi-
vidually necessary but jointly sufficient to guarantee that if an

I Here we loosely use the term ‘equal’ for clarity and simplicity of the ex-
planation, in practice we also need to consider the noise incurred by the
distance measurement process.
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Figure 5. Initial estimates.

unknown node is within two hops from at least three beacons
then the unknown has a single possible position solution.

4.1.3. n-hop multilateration requirements

To determine if nodes located within n hops from the bea-
cons have unique solutions a similar set of criteria is applied.
Starting from an unknown node we test if it has at least three
neighbors with tentatively unique positions. If the node has
three neighbors that do not already know if their solution is
unique, then a recursive call is executed at each neighbor to
determine if its position is unique. To meet the requirements
of condition 3 each node used as an independent reference is
marked as used. This prevents other nodes from subsequent
recursive calls to re-use that node as an independent reference.
At every step, each node checks if the criteria for condition 2
are also met.

4.2. Phase 2: obtaining initial estimates

The initial estimates are obtained by applying the distance
measurements as constraints on the x and y coordinates of the
unknown nodes. Figure 5 shows how the distance measure-
ment from two beacons A and B can be used to obtain the x
coordinate bounds for the unknown node C. If the distance
between an unknown and the beacon A is a then the x coor-
dinates of node C are bounded by a to the left and to the right
of the x coordinate of beacon A, x4 —a and x4 + a. Simi-
larly, beacon B which is two hops away from C, bounds the
coordinates of C through the length of the minimum weight
path to C, b + ¢, so the bounds for C’s x-coordinates with
respect to B are xgp — (b + ¢) and xp + (b + ¢). By knowing
this information C can determine that its x coordinate bounds
with respect to beacons A and B are xgp + (b+c¢) and x4 —a.
This operation selects the tightest left-hand side bound from
and the tightest right-hand side bound from each beacon. The
same operation is applied on the y coordinates. The node then
combines its bounds on the x and y coordinates, to obtain a
bounding box of the region where the node lies. To obtain this
bounding box, the locations of all the beacons are forwarded
to all unknowns along a minimum weight path. This forward-
ing is the same idea as distance vector routing but using the
measured distances instead of hops as weights.

The initial position estimate of a node is set at the center
of the bounding box. To obtain a good set of initial estimates
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with this method we assume that some of the beacons must
lie on the perimeter of the network.

5. Phase 3: position refinement

In the third phase, the initial node positions are refined, us-
ing least-squares estimation. Position refinement can be im-
planted in one of two possible computation models, central-
ized or distributed that are described next.

5.1. Computing at a central node

Using the collaborative subtrees and the initial position esti-
mates, the unknown node position estimates can be computed
at a central point. The edges of the computation subtree give
a well-determined or over-determined set of equations, which
can be solved using non-linear optimization. The non-linear
of equations for the network in figure 3(b) is shown in equa-
tion (1).2 As in the one hop case, the objective is to mini-
mize the residuals between the measured distances between
the nodes and the distances computed using the node location
estimates.

H3=Ry3— \/(X2 —ex3)?2+ (2 — ey3)?,

f35=R35— \/(€X3 —x5)% 4 (ey3 — y5)2,

faz=R43— \/(€X4 — ex3)? + (eyy — ey3)?, (1

fas=Rss5— \/(€X4 —x5)2 + (eyq + ¥5)2,

fa1=Ra1— \/(€x4 —x1)? + (eyy — y1)>.

The R; ; quantities represent the measured distances be-
tween two nodes and the quantities under the square root in-
dicate the estimated distances. f; ; represent the residual be-
tween the measured and estimated quantities. The objective
function in (2) is to minimize the mean-square error over all
equations; the difference of this from its one hop counterpart
is that in this process, unknown—unknown links are also used
as constraints:

F(x3, y3, X4, y4) = minZ flzj )

The solution to this optimization problem can be obtained
using some of the standard least squares methods. Our im-
plementation uses a Kalman filter [1,22], which provides the
same location estimates as iterative least-squares in a static
network [5]. The Kalman filter was chosen because of its
ability to fuse measurements from multiple sensing modal-
ities and to track the nodes after the localization process is
complete.

5.2. Computing at every node

In the distributed version, of our algorithm, computation is
spatially distributed across the network and each unknown

2 The prefix e in front of x, y denotes estimated coordinates.
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node is responsible for computing its own location estimate.
This is achieved by performing local computation and com-
munication with the neighboring nodes. This idea is similar
to using a distributed Kalman filter [14,15], but also has some
differences. First, the Kalman filter executes in the context
of a computation subtree and each node executes a one hop
multilateration based on its distance measurements and the
location information from its neighbors. Second, instead of
using a decentralized Kalman filter, we use an approxima-
tion in which nodes do not exchange covariance information
is used. This conserves energy since it reduces communica-
tion, and simplifies implementation. Third, the computation
is driven by ad-hoc networking protocols.

The underlying principle of our distributed scheme is that
after the completion of the first two phases, each node in-
side the computation tree computes an estimate of its location.
Since most unknown nodes, are not directly connected to bea-
cons, they use the initial estimates (obtained in section 3.2) of
their neighbors as the reference points for estimating their lo-
cations. As soon as an unknown computes a new estimate,
it broadcasts this estimate to its neighbors, and the neighbors
use it to update their own position estimates. This computa-
tion is repeated from node to node across the network until
all the nodes reach the pre-specified tolerance A, represented
by the convergence gradient. Figure 6 is a pictorial represen-
tation of the computation process.> First node 4 computes its
location estimate using beacons 1 and 5 and node 3 as refer-
ences. Once node 4 broadcasts its update, node 3 recomputes
its own estimate using beacons 2 and 5 and the new estimate
received from node 4. Node 3 then broadcasts the new esti-
mate and node 4 uses this to compute a new estimate that is
more accurate than its previous estimate.

If this process proceeds uncontrolled, then the nodes will
converge at local minima and erroneous estimates will be pro-
duced. Imagine a computation subtree with many unknown
nodes (i.e., 20). If two neighboring unknown nodes A and B
that compute and broadcast their updates as soon as an update
from each other is received, then their updating process will
proceed faster than the remaining nodes in the computation
subtree. This introduces a “local oscillation” in the compu-
tation that makes the nodes converge to their final estimates
much faster but without complying with the global gradient,
thus yielding erroneous estimates.

3 Note that in practice the position uncertainties are represented by ellipses
rather than circles.
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To prevent this problem, the multilaterations at each node
are executed in a consistent sequence across all the unknown
members of the computation subtree. This sequence is re-
peated until the multilaterations of all the members of the
computation subtree converge to the pre-specified tolerance.
The in-sequence execution of the multilaterations inside the
computation subtree establishes a gradient with respect to the
global topology constraints at each node, thus enabling the
node to compute its global optimum locally.

Figure 7 is an excerpt from our combined ns-2-MATLAB
simulation which demonstrates the execution of distributed
position refinement on a network of 34 nodes and 6 beacons.*
The unknown nodes in the network have an average degree of
4, 15 meters’ range and the 20 mm white-Gaussian noise in
the distance measurement system. The x-axis shows the num-
ber of packets (estimate updates) transmitted by each node,
the node ids are shown in the y-axis and the z-axis shows the
error in millimeters. The values of the error before any pack-
ets are transmitted, at packets = O on the x-axis, represent
the errors of the initial estimates (obtained in section 3.2). As
it can be seen form the figure, each node starts at different
levels of error. After a few iterations of executing the node
sequences in the computation subtree, a global gradient is es-
tablished that drives the error down across the whole subtree.
In the end, each node succeeds in estimating its node loca-
tion with a 3-centimeter accuracy. Error accumulation is pre-
vented by the global constraints of the collaborative subtree.

The order of nodes executing in the computation subtree
sequence does not need to be specified but it needs to be con-
sistent over successive iterations of the sequence. This entails
that the order with which nodes compute their position up-
dates has to be consistent across iterations. One possible way
to initiate this distributed computation process is to use Dis-
tributed Depth First Search (DDFS) [21]. DDEFS search is
started at an arbitrary unknown node within the computation
tree and it runs for two iterations. During the traversal of the
subtree by DDFS, when each node is marked visited, the node
it computes and broadcasts its location estimate and starts a

4 For clarity and good visibility purposes the graph only shows how the
process proceeds on the even numbered nodes.

5 In our actual node testbed this is reduced to 5 meters to facilitate multiple
hops in a lab setting.
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timer. In the second iteration of DDFS, nodes compute and
broadcast their locations. At this point the nodes also stop the
previously set timer. The time between the two visits denotes
the time interval at which each node should recompute and
broadcast a new position update.

6. Evaluation

We evaluate the performance of the collaborative multilater-
ation through a set of simulations. The Kalman filters are
implemented in MATALB and they are linked into the ns-2
simulator using the MATLAB compiler and the MATLAB
C++ library. The required protocols for communication are
implemented inside ns-2. Using this simulation setup we car-
ried out a series of experiments on a test suite of 200 different
scenarios. Our simulation parameters are set to match the pa-
rameters of our experimental node. Each node has an effec-
tive radio range of 15 meters and a raw data rate of 20 kbps.
Each node can measure distances between its neighbors with
the same range as the radio. For the centralized implementa-
tion we also used DSR as the routing later. The measurement
noise is modeled as a zero-mean Gaussian random variable
with 20 mm standard deviation.

6.1. Computation cost comparison

Our first experiment compares the computation overhead be-
tween the distributed and centralized computation methods
by recording the number of FLOPS consumed by MATLAB
to compute the position estimates in each case. The scenar-
ios used for this test have 6 beacons and varying number of
unknowns ranging from 10 to 100 nodes. The number of un-
knowns was used in increments of 10, and the results show
the average for 20 scenarios of each type. In all cases the
network density is kept constant and each node has an av-
erage of 6 neighbors. The cumulative number of MFLOPS
for the centralized and distributed implementation are shown
in figure 8. From this result, we found that the computation
overhead of the centralized computation model increases fast
with the number of unknown nodes. In this particular test,
the computation overhead appears to be cubic with the num-
ber of nodes. The distributed computation model on the other
hand scales linearly with the number of nodes. The slope for
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Figure 8. Computation cost comparison.
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the distributed case in figure 8 is 3.7 Mflops, meaning that
each node spends approximately 3.7 Mflops to compute an
estimate of its location. This makes localization feasible on
small resource constrained nodes such as the MK-2 node de-
scribed in section 3.2 feasible.

6.2. Communication cost and convergence latency
considerations

The convergence latency and communication aspects of col-
laborative multilateration are more difficult to evaluate be-
cause of their dependence on multiple system attributes. In
the fully distributed case, convergence latency depends on the
available communication bandwidth and the node processing
power. Convergence latency also depends on the size of the
computation tree. As the number of nodes increases, the se-
quence of Kalman filter executions will take longer to com-
plete and more iterations of the sequence are required. The
communication pattern is uniform across all the nodes.

Evaluating the communication cost is more complex. In
a clustered architecture, the communication cost depends on
the cost of electing a cluster head and the routing cost for
propagating the information back and forth from the cluster
head. A notable trend in communication cost is shown in fig-
ure 9. The average number of bytes transmitted is 4596 for
the centralized scheme and 4485 for the distributed scheme.
Although on average the communication cost is almost the
same, the distributed scheme has an even distribution of trans-
mitted bytes.

6.3. Localization accuracy

Our simulations evaluate the accuracy of the localization
process based on the measurement noise parameters of our ul-
trasonic distance measurement system. Figure 10 shows the
cumulative error distribution over all scenarios used in this
experiment for both the distributed and centralized cases. In
both cases the average error was 27.7 mm with a standard
deviation of 16 mm. These results are also consistent with
simple topologies tested on our localization testbed.
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Figure 10. Error distribution for estimated locations.

6.4. Comparison to the Cramér—Rao bounds

To further evaluate the scalability and performance of collab-
orative multilateration, we performed a comparison with the
Cramér—Rao (CR) bound. The CR bound is a classical result
from statistics that gives a lower bound on the error covari-
ance matrix for an unbiased estimate of a certain parameter.
For our purposes we have developed the CR bound for a mul-
tihop localization setup by assuming a zero-mean Gaussian
error distribution [18]. Using this result, we run a set of sim-
ulations to test the scalability of multihop localization and to
compare our collaborative multilateration algorithms against
the theoretical bounds.

Figure 11 indicates how the RMS localization error bound
behaves as the number of nodes with unknown locations in-
creases, at a constant density of 6 neighbors per node and
a constant percentage of beacons set to 10%. The resulting
bounds indicate that error propagation can be contained as
the number unknowns in the network scales. By repeating the
same simulation over different measurement error variances
we note that similar behavior can be expected for different
ranging technologies other than ultrasound.

Finally, in figure 12 shows a comparison of the collabora-
tive multilateration algorithm to the CR bound. From this
comparison, both the centralized and distributed computa-
tion models of collaborative multilateration closely follow the
bound but we also notice some differences. First, the critical
density breakpoint is shifted from 6 neighbors per node to
8 neighbors per node. Second, the distributed computation
model appears to diverge at some points. A closer exami-
nation has shown that this is attributed to isolated scenarios.
This divergence can be eliminated by enforcing a series of
consistency checks that restart the distributed multilateration
at a different point in the network when an inconsistent gra-
dient is detected. At higher densities (12 neighbors or more),
the two computation models give consistent results. This is
attributed to the increased network redundancy that prevents
isolated cases from diverging. It also implies that at large den-
sity deployments, consistency checking can be suppressed in
the interest of implementation complexity and power conser-
vation.
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7. Conclusions and future work

In this paper we have described collaborative multilateration
for node localization problems. We have shown that using this
three phase approach nodes that are indirectly connected to
beacon nodes can estimate their locations with similar accu-
racies at the single hop multilateration. Also, with our distrib-
uted approach colonies of resource constrained sensor nodes
can collectively solve a global optimization problem that an
individual node cannot solve. The use of a global gradient for
computing a global optimum locally reinforces a distributed
computation model with other potential applications in sensor
networks. In addition to the distributed computation model,
the collaborative multilateration appears to be an attractive
choice for assisting infrastructure based localization systems
to better handle obstructions. A comparison to the bounds has
shown that localization of nodes over multiple hops would be
scalable to larger networks. The work in this paper focuses
on the computational aspects of collaborative multilateration.
The remaining challenge is to study its feasibility with respect
to the physical effects. To this end, as part of our future work
we plan to study the interaction of our algorithms with the
physical world using our sensor network testbed of Medusa
MK-2 nodes.
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