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Abstract—This paper describes a new evolutionary algorithm
that is especially well suited to AI-Assisted Game Design. The
approach adopted in this paper is to use observations of AI
agents playing the game to estimate the game’s quality. Some
of best agents for this purpose are General Video Game AI
agents, since they can be deployed directly on a new game
without game-specific tuning; these agents tend to be based on
stochastic algorithms which give robust but noisy results and tend
to be expensive to run. This motivates the main contribution
of the paper: the development of the novel N-Tuple Bandit
Evolutionary Algorithm, where a model is used to estimate the
fitness of unsampled points and a bandit approach is used to
balance exploration and exploitation of the search space. Initial
results on optimising a Space Battle game variant suggest that
the algorithm offers far more robust results than the Random
Mutation Hill Climber and a Biased Mutation variant, which
are themselves known to offer competitive performance across
a range of problems. Subjective observations are also given by
human players on the nature of the evolved games, which indicate
a preference towards games generated by the N-Tuple algorithm.

I. INTRODUCTION

Automatic game design algorithms are systems capable

of designing proper and playable games with close to none

human intervention. Designing a “playable” game usually

involves tuning an appropriate set of game parameters. Man-

ually doing this might be time-consuming due to large search

space of game parameters. Evolutionary Algorithms (EAs) are

therefore employed to evolve game parameters, one of the first

attempts being that of Togelius and Schmidhuber [1]. Their

results inspired the usage of EAs for game parameter tuning

in later works. This paper presents the results of a project

that was solely focused on AI informed game design using

three different Evolutionary Algorithms. The main aim is to

explore the possibility of using AI controllers with different

skill levels as human-player representations to evolve suitable

game parameter sets using the same fitness criteria. In this

context, a suitable game parameter set should be reflected in

a game that better distinguishes player skill levels.

To achieve this goal, a simple game Space Battle was chosen

and redesigned to Space Battle Evolved by adding three new

mechanics. A set of parameters of this game variant was

selected (an interesting problem in itself) and evolved using a

Random Mutation Hill Climbing algorithm [2], an improved

version of RMHC called Biased-Mutation RMHC (B-RMHC)

and a proposed noisy optimization N-Tuple Bandit Mutation.

In order to reduce the dimensions of the game space, the rules

were kept fixed and only several parameters of the game were

tuned, having all 3 Evolutionary Algorithms generate unique

variants of Space Battle Evolved. Several runs of automatic

play testing were also carried out to ensure fine-tuned results,

as well as human play testing to assess subjective game quality.

This paper is organised as follows: Section II briefly re-

views the related work on automatic game design. Section III

describes the game and AI controllers used in this paper.

Section IV introduces our approach of evolving game instances

using three Evolutionary Algorithms. The experimental results

are presented in Section V and Section VI concludes the paper.

II. LITERATURE REVIEW

This section contains a brief review of several materials

consulted as part of this research work.

Automatic game design is a sub-field of Game Artificial

Intelligence that explores the idea of developing a system

capable of generating dynamic and playable games. One of

the first attempts at game design using such a system was

developed by Togelius and Schmidhuber [1]. The benefits of

the work they pioneered include the possibility of creating

multiple new and unique games automatically by making use

of advanced computation methods and speed of execution.

Their results suggested that evolutionary algorithms can indeed

be used to automatically search a space of possible games.

Nelson and Mateas [3] used a generative process in their

paper, which refers to factoring a game design process into

four interacting domains: abstract game mechanics, game

representation, thematic content and control mapping. The

game design space, which is the space of all possible games

that the resultant system can reason about, is defined by the

specific knowledge given for each of these domains.

The basic methodology of creating a generative system

was employed by Isaksen et al. [4], [5], [6]. They explored

the possibilities of discovering useful variants of games by

tuning aspects of the game space and analysing the resulting

player experience. Their paper is focused on the possibilities

of achieving this effect by varying game parameters without

changing the game rules and how this process could yield

games of varying difficulties.

Another application is the Physical Traveling Salesman

Problem map evolution. Perez et al. [7] use three AI players

of different skill levels to evaluate the maps produced by their

algorithm, the hypothesis described in the paper being based

on the fact that the players rankings would be kept consistent
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in a good map; the higher the skill depth, the better the map.

A similar approach was used in the experiments carried out

for this present paper, with a fitness calculation aiming to

distinguish the between the skill levels of three AI players.

Additionally, research has looked at automated maze gener-

ation for Ms Pac-Man. Safak et al. [8] use genetic algorithms

to this end, using as a measure of fitness the ability of a

player to finish the game in the newly created map. Their

results show that Evolutionary Algorithms can be used to

generate interesting mazes quite different from the original

design, offering the players new challenging experiences.

A detailed account of the all game design aspects through

search-based Procedural Content Generation is given by To-

gelius et al. in [9]. One thing highlighted in this survey is the

importance of efficiently encoding the search space, not only

for the EA to be able to process it correctly, but also for the

evaluation function to analyse it effectively. To this extent, an

emphasis is put on the necessity of search space constraints

and a clear encoding in [10], which in turn would result in the

same genotype being easily adapted to different phenotypes in

other applications by simply varying the mapping functions.

Therefore the work in the present paper focuses on describing

the game space in terms of a set of interesting parameters

with limited value ranges, adapted for fitness evaluations by

inserting the generated values into games to be analysed.

Nielsen et al. [11] expand the automated design process

to general video games and game rules, using the Video

Game Description Language. A similar fitness measure as

the one employed in our study is used, therefore comparing

bad players against good players and using the difference in

their performance to quantify the quality of the game. The

authors analyse the differences in human-designed games,

mutated variants of these games and newly generated games,

reporting mixed results, with interesting but hardly playable

games resulting from their study. They finally recommend

evolutionary algorithms to be used only for idea generation

and improvement, instead of actually creating complete games.

Menezes et al. [12] present their initial conceptual model

incorporating a novel approach to generating engaging and

surprising game worlds, based on the theory that complex

things may emerge from simple interactions. They focus on

co-evolution as the core of a Complex Adaptive System and

encourage less human involvement in the evolutionary process,

instead making use of auto-organizative systems.

III. BACKGROUND

This sections offers a brief description of the games and AI

controllers used in the experiments.

A. Space Battle game

The original Space Battle game is a 2-player competitive

game wherein players pilot ships and aim to shoot their

opponent. The ships are in convex-quadrilateral shapes, as

shown in Figure 1, with the front being indicated by a single

acute angle point. The first player controls the blue ship while

Fig. 1: Space Battle (left) and Space Battle Evolved (right)

the second players ship is green. The starting positions of the

player ships are as depicted in Figure 1 (left).

Both players act simultaneously and have the same range of

actions available, these being: turn clockwise, turn anticlock-

wise, thrust (move forward) and shoot a missile. Rotation,

acceleration and shooting actions can be performed together

in one game tick. Turn actions simply rotate the ship into the

corresponding directions, without moving it from its current

position. Therefore, the ship can only move forward when the

thrust action is operated. When a player chooses to shoot, a

round-shaped missile appears at the players ship location and

moves into the ship’s forward direction with a specific velocity.

Each player has 1000 lives, which decrease by 1 if their ship

is hit by one of the opponents missiles. They each start with

only 100 missiles. The game ends when one of two constraints

is met: one players lives dropping to zero or the game-end

being reached after a set amount of game ticks (2000 by

default). At the end of the game, the player with most points

is declared the winner.

The framework uses the same interface as the Two-Player

General Video Game AI (GVGAI) framework [13], [14],

making it easy to plug in agents submitted to the GVGAI

competition and use them for game testing in this new prob-

lem. All AI controllers have access to a Forward Model (FM),

which allows the agents to simulate possible future game states

by providing an in-game action. Additionally, as the game is

real-time, the agents only have 40ms for making a decision

during a game step, with 1s for initialization.

This game appears in recent literature as an interesting

challenge for AI agents. Liu et al. [15] analyse a novel co-

evolution approach to two player games and test it on a

simplified Space Battle game, in which the shooting action

is removed and instead players score by positioning behind

the enemy ship. The game states are evaluated by calculating

the distance the players are from the ideal position.

B. AI controllers

Six different game playing agents were used in this ex-

periment for game testing purposes. These are separated into

two sets: first, the enemy player set, containing all agents

mentioned in this section. The enemy player is an evolvable

parameter (see Section IV-B), therefore the EA has access to

all possible enemies when evolving the game.

In order to analyse the skill-depth of games produced by

the Evolutionary Algorithm, a second set is used, containing



only three players: One Step Look Ahead (1SLA), which

delegates a non-skill player, Rotate and Shoot (RAS), portray-

ing an intermediate-skill player and Monte Carlo Tree Search

(MCTS), representing a skillful player.

1) Do Nothing: Do Nothing is a dummy controller that

returns no action in every game tick.

2) Random: The random controller returns a randomly

chosen action in every time step, out of all those available

to it. This agent can prove to be challenging to beat due to its

unpredictable nature.

3) One Step Look Ahead (1SLA): This is the most simple

AI algorithm which accesses the Forward Model. One Step

Look Ahead (1SLA) simply simulates the next state for all

available actions and chooses for execution the most promising

action. The agent uses a simple heuristic to quantify the value

of a game state, by considering the game score and, in cases

of end-game states, whether it won or lost (receiving either

a large bonus or a large penalty, respectively). The general

behaviour of this agent observed in the game used for this

experiment is moving randomly without shooting, unless the

missile is due to hit the other player in the next game tick.

It was considered a low skilled player for this study because

it is fairly easy to beat, as long as the other player keeps its

distance and avoids being right in the missile spawn point.

4) Rotate and Shoot (RAS): As the name suggests, this

controller returns a combination of actions at each time step,

clockwise turning and shooting. This strategy has proven to

be unbeatable in a game which allows unlimited or a large

number of missiles. In the game used in this paper, the players

only have 100 missiles available in the beginning. Therefore,

in theory, RAS should not perform well after the first 100
time steps. It was chosen as a mid-skilled AI player in this

experiment, as it has a potential to survive and shoot the enemy

at least in at the beginning of the game.

5) Monte Carlo Tree Search (MCTS): Monte Carlo Tree

Search (MCTS) is a well-known tree search algorithm for

game AI controllers. The main strength of MCTS is its

ability to deal with huge search space by balancing between

known and non-explored states using UCB1 equation (See

Equation 1). For more information on this technique, the

reader is referred to [16]. MCTS was chosen to represent a

skillful player because its behaviour in the game was mostly

unpredictable, unlike 1SLA and RAS, and able to perform

well for the whole duration of the game.

a∗ = argmax
a∈A(s)

{

Q(s, a) + C

√

lnN(s)

N(s, a)

}

(1)

6) Microbial Evolutionary Algorithm (MEA): This con-

troller picks the first action of the best action plan generated

by a Evolutionary Algorithm. It starts with a population of

random individuals encoded as sequences of in-game actions.

It then selects individuals through a microbial tournament,

from which an offspring is generated via crossover. The newly

generated individual is mutated, its fitness evaluated (using

the same heuristic as 1SLA on the game state reached after

playing the actions in one individual, in order) and the best

individuals are carried forward to the next generation. This

process is reiterated until the budget limit is reached (e.g. time,

memory or specific number of iterations).

C. Random Mutation Hill Climber (RMHC)

A Random Mutation Hill Climber is the simplest version

of an evolutionary algorithm, with only one individual in the

population. It starts by randomly assigning values to each gene

of the individual. One gene is selected for mutation uniformly

at random, the fitness value of the resulting individual is

calculated (similarly to the MEA evaluation) and compared

with the previous one. The better individual is kept for the

next iteration of the algorithm, repeated while allowed by the

budget offered. In the implementation used for this paper, both

the parent and the offspring are evaluated in each generation.

This algorithm is often used as a game playing agent in

literature due to the great results produced while keeping

simplicity. Buzdalov et al. [17] use an RMHC algorithm

combined with Q-Learning for adaptive behaviour and analyse

its runtime complexity on a modified OneMax problem (with

an obstructive fitness function meant to lead the algorithm

in the wrong direction), reporting good results. Liu et al. [2]

explore modifications of the vanilla RMHC method, by using

Upper Confidence Bounds (UCB) to guide evolution.

IV. APPROACH

Three EA algorithms were used to evolve Space Battle

Evolved game parameters, using a fitness function meant to

distinguish between good and bad players and optimize games

in order to maximise the skill depth (See Section IV-F).

For each algorithm, 50 trials were experimented, due to

the noisy game environment, as the same parameter set might

return different fitness values in different runs. Each iteration

of the evaluation process was carried out for 100 evaluations.

The final games were analysed statistically by their fitness, as

well as tested by a number of human players who offered their

subjective opinions.

A. Space Battle Evolved

Space Battle Evolved (See Figure 1 for an example) is a

variation of the simple Space Battle game that was designed

for this project. Following on from the original rules of Space

Battle, there are three main changes made to produce this

variant.

Firstly, black holes were created, which have a set range

and add forces to nearby objects in order to drag them towards

their center. The players receive a penalty for each game tick

in which they remain within a certain distance to a black hole

center. There are, however, areas inside the black holes where

no penalty is applied, called safe zones.

Secondly, two additional types of missiles were included in

this version: a twin shot type, which fires two normal missiles

at 45 and −45 degree angles from its direction and a bomb

type which explodes in a large radius after a set time or upon

collision with another object.



Lastly, due to the limited missiles available, the players have

now at their disposal collectible packs of 20 missiles, which

spawn on the map in a random position, disappear after a

specified time (or after being collected by a player) and re-

spawn again after a certain amount of time.

B. Evolvable game parameters

There were 30 evolvable game parameters in total, as

summarized in Table I. These can be divided into 4 categories:

missiles, black holes, resources and enemy.

1) Missile related: 6 of the parameters refer to missiles,

including the type of the missile, its maximum speed, its

cooldown (how many game ticks until the player is allowed to

shoot a new missile), its radius, its time to live and, finally, the

bomb explosion radius (for bomb type missile only). As the

primary way of obtaining a score advantage over the opponent

(and thus possibly ultimately winning the game), these could

be considered key parameters.

2) Black hole related: 21 of the game parameters involve

black holes, 17 relating to black hole locations and the rest

specifying black hole characteristics. We divided the game

map into a grid and allowed the evolutionary algorithms to

decide whether to include a black hole in the center of each

grid cell or not. The grid size varies between 1 and 4 (with a

step of 1), therefore there could be up to 16 (4 × 4) black

holes in a game. The black holes layout depict the main

environment of the game. Other parameters needed for black

hole mechanics include radius, force, penalty score (negative

score given when the player is inside the black hole) and

the safe-zone radius (non-penalization area around the inside

border of the black hole).

3) Resource related: This game object refers to a pack of

20 missiles which eventually spawn on random positions on

the map for collection. 2 resource-related parameters are time

to live (number of game ticks before the resource disappears)

and cooldown (number of game ticks for the resource to be re-

spawned). Due to the limited missiles in Space Battle Evolved,

the resources dictate whether the players may gain more than

the maximum possible 10000 points which can be achieved

with the initial missile budget.

4) Enemy related: The algorithms presented in this paper

evolve the AI enemy as part of the game parameters, a novel

aspect which greatly impacts the resulting gameplay. This

parameter can refer to either of the AI controllers mentioned

in Section III-B.

C. Baseline algorithm

We applied Random Mutation Hill Climber as a baseline

algorithm. The algorithm uses an array of 30 parameters

for evolution, initializing each one to a random value. One

parameter is then chosen uniformly at random and mutated

(1 random gene being changed to a different value). The

fitness value of this mutated game is calculated by playing

three games with the three AI controllers of different skill

levels and following the method in Section IV-F. If the

mutated game ends up with a higher fitness than its parent,

Algorithm 1 Random Mutation Hill Climber (RMHC)

1: Input: game parameter list params, number of trials ntrials,
2: number of evaluations nEvals
3: Output: evolved parameter sets
4: BEGIN
5: paramList ← ∅

6: REPEAT ntrials times
7: params ← randomly assign each value
8: bestSoFar ← fitness(params)
9: REPEAT nEvals times

10: p ← randomly select one parameter
11: mutatedParams ← mutate(params,p)
12: newFitness ← fitness(mutatedParams)
13: IF newFitness ≥ bestSoFar
14: params ← mutatedParams
15: bestSoFar ← newFitness
16: add params to paramList
17: RETURN paramList
18: END

the offspring is the individual carried forward to the next

generation. RMHC algorithm implementation details can be

observed in Algorithm 1.

D. Biased Mutation RMHC

Biased Mutation RMHC (B-RMHC) was inspired by the

idea that different parameters affect the change in fitness

values at different rates. That is, modifying one parameter

might significantly affect the fitness value more than others.

Therefore, a biased mutation towards more interesting param-

eters was used to obtain more diverse games and speed up

evolution. The algorithm is made up of two parts: parameter

pre-processing and actual evolution.

1) Pre-processing: The parameters were divided into two

groups, separating the black hole cells (Group B) from the

rest (Group A). For Group A’s pre-processing, the parameters

received random values to start with. Then, for each parameter,

the importance metric was calculated by using the standard

deviation from the fitness in N tests, where N is the total

number of values the parameter tested can take. For each value,

the game taking the new parameter list was evaluated using

the same fitness function employed during evolution. This

assessment is based on the assumption that larger differences

in fitness lead to larger standard deviation values.

For Group B, the parameters were analyzed separately for

each possible grid size value, starting from all the black hole

cells being empty and evaluating the effect of enabling a black

hole in each cell. Similarly to Group A, the standard deviation

of the fitness values resulted from each cell’s evaluation was

used to rank these parameters.

Pre-processing step outputs two list of parameters sorted by

how much they affect the game fitness value. Details of this

algorithm can be seen in Algorithm 2. This ordering was then

used in the evolution step.

2) Evolution: A softmax function was employed to do a

biased parameter selection at the beginning of the evolution

process. This ensures that more important parameters are more

likely to be selected. After that, the algorithm follows the



TABLE I: Evolvable parameters, their value ranges and step.

Parameter Value Range Step Parameter Value Range Step Parameter Value Range Step

MISSILE MAX SPEED 1 - 10 1 BLACKHOLE CELL x 16 0 or 1 1 BOMB RADIUS 10 - 50 10
MISSILE COOLDOWN 1 - 9 1 BLACKHOLE RADIUS 25 - 200 25 MISSILE TYPE 0 - 2 1

MISSILE RADIUS 2 - 10 2 BLACKHOLE FORCE 0 - 3 1 RESOURCE TTL 400 - 600 100
MISSILE MAX TTL 40-160 20 BLACKHOLE PENALTY 0 - 9 1 RESOURCE COOLDOWN 200 - 300 50

GRID SIZE 1 - 4 1 SAFE ZONE 0 - 20 10 ENEMY ID 0 - 5 1

Algorithm 2 Biased Mutation Pre-processing (MutPrep)

1: Input: game parameter list params
2: Output: sorted lists of important parameters
3: BEGIN
4: PriorityQParams ← ∅

5: PriorityQBH ← ∅

6: ParamsN ← GroupA parameters
7: FOR EACH p in paramsN
8: value ← ∅

9: rand← randomly assign other parameter values
10: FOR EACH possible value v of p
11: rand[p] ← v
12: add fitness(rand) to value
13: PriorityQParams[p] ← SD(value)
14: rand← randomly assign other parameter values
15: rand← disable all black holes
16: FOR gSize ∈ {0, 1, 2, 3, 4}
17: bhpriorityQ ← ∅

18: fitnessOff ←fitness(rand)
19: FOR b = 1 to gSize2

20: enable black hole at position b in rand
21: bhpriorityQ[b] ← fitnessOff − fitness(rand)
22: PriorityQBH[gSize] ← bhpriorityQ
23: RETURN PriorityQParams, PriorityQBH
24: END

design of simple RMHC and the fitness is evolved for a fixed

number of iterations.

E. N-Tuple Bandit Evolutionary Algorithm

The N-Tuple Bandit Evolutionary Algorithm is an algorithm

we developed to be particularly useful for evolving game

designs and game parameters, especially when using agent-

based evaluation methods. The evaluation function used in this

paper will be noisy if the game is played by stochastic agents,

such as MCTS, and fairly expensive in CPU time to run each

game. Hence, it is desirable to have an evolutionary algorithm

that is able to operate very efficiently, making the best possible

use of the available fitness evaluation budget, and also one

that is robust to noise. The N-Tuple Bandit EA satisfies these

criteria.

1) Algorithm: The algorithm operates as follows. It begins

by choosing a random point in the search space, which

is called the current point. It then makes a noisy fitness

evaluation and stores it in the N-Tuple Fitness Landscape

Model as the value for that point. Using a mutation operator

to generate a set of unique neighbours of the current point,

and using the fitness landscape model, the algorithm gets

the estimated Upper Confidence Bound (UCB) value of each

point (see Equation 1). Finally, it sets the current point as the

neighbour from the previous step with the highest UCB value.

Algorithm 3 N-Tuple Bandit Mutation (NTuple)

1: Input: game parameter list params,
2: number of evaluations nEvals
3: Output: the best parameter set
4: BEGIN
5: current ← randomly assign each value
6: LModel ← ∅

7: REPEAT nEvals times
8: value ← fitness(current)
9: add <current, value> to LModel

10: neighbors ← generate neighbours from LModel
11: current ← n in neighbors with Max(UCB(n))
12: RETURN n in LModel with highest average value
13: END

These steps are displayed in Algorithm 3. When the fitness

evaluation budget has been exhausted, the method searches a

set of neighbours of all of the evaluated points and returns the

one with the highest mean value (Q(s, a)).

2) N-Tuple Fitness Landscape Model: N-Tuple systems

have ideal properties for use as fitness landscape models, in

that they offer super-fast one-shot training and good accuracy.

While their use for optical character recognition dates back to

the 1950s, Lucas [18] introduced their use for game position

evaluation functions. The concept is as follows. Given an D-

dimensional search space, we sub-sample its dimensions with

a number of N -tuples. The value of N ranges from 1 up to

D, though may miss out values in between. The results in this

paper are based on using D 1-tuples and 1 D-tuple.

Each N-Tuple has a look-up table (LUT) that stores statis-

tical summaries of the values it encounters; the basic numbers

stored are the number of samples, the sum of the samples, and

the sum of the square of the samples. This enables the mean,

the standard deviation and the standard error to be calculated

for each entry in the table. More details can be found in [18].

F. Fitness evaluation

The fitness value of each game was evaluated with 3

gameplays, by using 1SLA, RAS and MCTS as players. For

each game played, both of the players scores were divided by

100 to lower the scale, then a 1000 bonus points were awarded

to the winner to prioritize winning result in producing the final

score. The difference in the final score between player 1 and

player 2 was assigned as the fitness of one game. Equation

2 shows the final score calculation for each gameplay. Wk =

1000 if the player k won the game and 0 otherwise.

Tg = (
S1

100
+W1)− (

S2

100
+W2) (2)



After the total score Tg for every game g is computed,

it was brought into the final fitness calculation as depicted

in Equation 3, where T1 is the weak player’s game fitness

(1SLA), T2 is the mediocre player’s game fitness (RAS) and

T3 is the strong player’s game fitness (MCTS).

Fitness = Min(T3 − T2, T2 − T1) (3)

Equation 3 is similar to that used for the Physical Traveling

Salesman Problem by Perez et. al. [7]. Based on this fitness

evaluation, the aim of the algorithms is to maximize the

smallest gap between final scores of each game in the order

T3 >T2 >T1, which would result in the maximum skill-depth.

V. EXPERIMENTAL RESULTS

We apply the RMHC, the Biased Mutation RMHC (denoted

as B-RMHC) and the N-Tuple Bandit Mutation algorithm

(denoted as N-Tuple) independently 50 times to evolve game

instances, thus 150 games are designed in total. 100 game

evaluations are allocated to each of the algorithms during

the evolution. Then we pick up some of the evolved game

instances for human players to test and analyse their feedback.

A. Selection of designed games by reevaluation

To select the game instance for human testing, each of the

evolved game instances is then evaluated 100 times, where

each evaluation takes into account the outcomes of three games

played by the 1SLA, RAS and MCTS controllers (detailed

in Section IV-F). The sorted average fitness values over 100
evaluations and standard errors are presented in Figure 2.

The N-Tuple algorithm (green markers) outperforms both

the RMHC and its variant. Moreover, N-Tuple is more robust

and has a more stable performance (negligible standard error).

Among 50 game instances evolved by the N-Tuple Bandit

Mutation algorithm, only a few of them (very left part in

Figure 2) have an average fitness below zero. Nevertheless,

the lowest average fitness is still much higher than most of

the games evolved by both RMHC and B-RMHC.

A two-tailed Mann-Whitney U test shows that the results

are significant when comparing the worst average games of

each algorithm (p ≪ 0.0001 for N-Tuple over RMHC and B-

RMHC). The differences between RMHC and B-RMHC are

not statistically significant (p = 0.5774). If taking into account

all 50 trials, then N-Tuple remains significantly better than the

other two algorithms (p ≪ 0.0001). However, B-RMHC is not

significantly better than RMHC (p = 0.6080).

Table II provides the parameters of the games, optimized

by the RMHC, the B-RMHC and the N-Tuple algorithm, with

the highest and lowest average fitness.

B. Evaluation by human players

We picked up the games with the highest and lowest average

fitness designed by the 3 algorithms and invited two human

players to evaluate them. The human players were asked to

play the 6 games and provide feedback without being told

the fitness level of each game. One screenshot of each of the

games is presented in Figure 3, as well as the feedback from

TABLE II: Optimized parameters of game instances with the

highest or lowest average fitness, designed by three algorithms.

Parameter
Value optimised by different algorithms

RMHC B-RMHC N-Tuple
High Low High Low High Low

MISSILE MAX SPEED 6 1 10 1 9 10
MISSILE COOLDOWN 9 5 5 3 2 5

MISSILE RADIUS 2 10 10 4 4 4
MISSILE MAX TTL 140 60 40 80 40 140

GRID SIZE 4 3 1 1 3 1
BLACKHOLE CELL(1,1) 0 1 0 1 1 1
BLACKHOLE CELL(1,2) 0 0 1 1 0 1
BLACKHOLE CELL(1,3) 0 1 1 0 0 1
BLACKHOLE CELL(1,4) 1 0 0 0 0 0
BLACKHOLE CELL(2,1) 0 0 1 1 0 1
BLACKHOLE CELL(2,2) 1 1 0 1 0 0
BLACKHOLE CELL(2,3) 1 0 1 0 0 1
BLACKHOLE CELL(2,4) 1 1 1 0 1 0
BLACKHOLE CELL(3,1) 1 1 1 0 0 0
BLACKHOLE CELL(3,2) 1 0 1 0 1 1
BLACKHOLE CELL(3,3) 1 0 0 0 1 1
BLACKHOLE CELL(3,4) 1 1 0 0 1 1
BLACKHOLE CELL(4,1) 1 0 0 1 0 0
BLACKHOLE CELL(4,1) 1 0 0 0 0 1
BLACKHOLE CELL(4,3) 1 0 0 1 0 1
BLACKHOLE CELL(4,4) 0 1 0 0 1 1
BLACKHOLE RADIUS 200 75 100 100 150 25
BLACKHOLE FORCE 2 1 3 3 3 1

BLACKHOLE PENALTY 3 4 0 7 7 8
SAFE ZONE 20 0 20 20 10 10

BOMB RADIUS 10 50 20 40 20 20
MISSILE TYPE 2 1 2 0 2 0

RESOURCE TTL 400 500 500 500 400 500
RESOURCE COOLDOWN 200 250 250 200 200 200

ENEMY ID 0 2 1 0 0 5

both players. The two human players evaluated the games

differently, according to their playing preference. Player A

cares more about the challenging aspect of the game and is

attracted more towards uncommon game scenarios; Player B

is less easily satisfied and found most of the games boring.

Interestingly, though they have ranked the games differently,

they both have a preference for the game G3H (with the

highest average fitness value, optimised by N-Tuple) and

dislike the games G1H (with the highest average fitness value,

optimised by RMHC) and G2H (with the highest average

fitness value, optimised by B-RMHC).

C. Manual tuning of the evolved game

It’s notable that the game G2H uses a doNothing opponent.

We manually edited the ENEMY ID parameter to use an

MCTS controller as opponent instead and asked the two

human players to play the edited game. Player A found the new

game improved but still a basic game with big missiles, not

very interesting compared to the previous games. However,

Player B found the new game better with the agent now

moving around the map and even increased its position in

their personal ranking.

VI. CONCLUSION

One of the big challenges in Game Design is the tuning of

game parameters. Given a set of parameter values, a new game

instance is created. The difficulty of a game could change

significantly when varying one single parameter of a game.

The behavior of a human player or an AI agent and the fun



Fig. 2: Sorted average fitness values over 100 evaluations of 50 game instances evolved using three different algorithms. The

x-axis shows the game indices after sorting. The standard errors are shown as well.

level of the game will also be affected. For instance, doubling

the gravity in Flappy Bird will expect to increase the frequency

of calling the “jump” actions. However, the selection of game

parameters and tuning are not trivial due to the number of

parameter to be tuned and the number of possible values of

each of the parameters, resulting in a large search space. This

motivates the research presented in this paper.

The authors applied the Random Mutation Hill Climber

(RMHC) and two new algorithms, the Biased Mutation RMHC

(B-RMHC) and the N-Tuple Bandit Evolutionary Algorithm

(N-Tuple), to evolving game instances based on a real-time

continuous 2-player competitive game called Space Battle

Evolved (detailed in Section IV-A).

The Biased Mutation RMHC exploits some particular pa-

rameters which are considered to be more important after

some pre-selection process. The N-Tuple Bandit Evolutionary

Algorithm uses a bandit approach to balance the exploration

and exploitation of the search space of every game parameter

and a model to estimate the quality of unsampled game

instances. The statistical results based on the final fitness of the

solutions found by the three algorithms suggest the N-Tuple

to be significantly better than the other two methods, being

able to produce high fitness games.

Two human players have tested some of the evolved games

and provided valuable reviews. Both players preferred the new

game evolved using the N-Tuple Bandit Evolutionary Algo-

rithm, although they offered mixed opinions on the RMHC

games. One highlight of this study is evolving the enemy AI

as part of the game parameters. The effect of changing the

opponent player was explored in the human trials, indicating

that even though this aspect has a great effect on the quality of

the gameplay, an outstandingly easy or difficult environment

reduces this effect slightly.

The experimental results on optimising Space Battle

Evolved (Section V) illustrate the outstanding and robust

performance of the N-Tuple Bandit Evolutionary Algorithm.

With this in mind, we can foresee a bright future for the N-

Tuple Bandit Evolutionary Algorithm in AI-Assisted Game

Design. Further work will look into the benefits of increasing

the number of fitness evaluations, meant to reduce the noise in

the evolution. Additionally, although the novel approach used

in the Biased Mutation RMHC shows promise, improvements

should be considered, such as increasing the re-sampling when

measuring parameter importance metrics to produce more

accurate results. Another possible future work is to apply this

evolutionary algorithm with other game framework, such as

GVG-AI [13].
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