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Abstract 

Fruits and seeds resulting from fertilization of flowers, represent an incredible evolutionary advantage in angiosperms 
and have seen them become a critical element in our food supply.

Many studies have been conducted to reveal how fruit matures while protecting growing seeds and ensuring their 
dispersal. As result, several transcription factors involved in fruit maturation and senescence have been isolated both 
in model and crop plants. These regulators modulate several cellular processes that occur during fruit ripening such 
as chlorophyll breakdown, tissue softening, carbohydrates and pigments accumulation.

The NAC superfamily of transcription factors is known to be involved in almost all these aspects of fruit development 
and maturation. In this review, we summarise the current knowledge regarding NACs that modulate fruit ripening 
in model species (Arabidopsis thaliana and Solanum lycopersicum) and in crops of commercial interest (Oryza sativa, 
Malus domestica, Fragaria genus, Citrus sinensis and Musa acuminata).
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Background
It is widely accepted that fruits play a key role in the 

evolutionary history of angiosperms [1, 2]. Fruits pro-

tect seeds during their growth and development, as well 

as favour their dispersion, providing a remarkable evo-

lutionary advantage [3]. At the same time, they are an 

essential nutritional component of our diet and one of 

the most important pillars of the world economy [4, 5]. 

�erefore, studies regarding the formation and ripen-

ing of fruit are crucial to unveil the mechanisms at play 

during fruit development, as this may lead to possible 

applications in the optimization of yield, quality, and 

post-harvest storage.

Transcription factors regulate the expression of many 

genes in different tissues and are classified accord-

ing to their functional domains and binding specific-

ity [6]. Among their many targets, they regulate the 

transcription of genes involved in environmental stress 

response [7, 8], response to pathogens [9], and fruit rip-

ening [10, 11] all of which impact proper fruit develop-

ment and maturation. Many transcription factors are 

known to be involved in such processes, as example, the 

MADS-box (MCM1/AGAMOUS/DEFICIENS/SRF) 

transcription factor family counts numerous key play-

ers of fruit development and maturation [12], together 

with the MYB (MYeloBlastosis) [13, 14] and the AP2/

ERF (APETALA 2/Ethylene Response Factors) DNA 

binding proteins [15, 16]. Beside these wide groups of 

transcription factors, smaller families also participate 

to the regulation of fruit development and ripening like 

SPL (SQUAMOSA promoter binding protein-like), TCP 

(TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFER-

ATING4 CELL FACTORS) and Dof (DNA binding with 

one finger) proteins [17–19]. However, one of the larg-

est and most famous groups of plant-specific transcrip-

tion factors known to be involved in such processes is 

the NAC (NAM/ATAF1/CUC2) superfamily [20–23]. In 

the next paragraphs, we discuss the pivotal role of NAC 
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transcription factors in fruit development and matura-

tion, focusing not only on fruit model species (Arabidop-

sis thaliana and Solanum lycopersicum) but also on other 

relevant species.

Synopsis of NAC transcription factors
A plant-speci�c family

NAC superfamily is a large group of plant-specific tran-

scription factors whose name is an acronym of NAM, 

ATAF1,2, and CUC2, the first members characterized. 

NAM (No Apical Meristem) was characterized in Petu-

nia x hybrida; in nam mutants, embryos fail to develop 

SAM (Shoot Apical Meristem), cotyledons are fused, and 

occasionally they display an abnormal number and distri-

bution of organ primordia in flowers [24]. In Arabidopsis 

thaliana, CUC2 (Cup-Shaped Cotyledon) displays high 

homology with the NAM sequence. CUC2 acts redun-

dantly with CUC1, and the double mutant cuc1 cuc2 fails 

to develop a SAM and its cotyledons are fused on both 

sides [25]. Arabidopsis Transcription Activator Factors 

(ATAF) are a subgroup of the NAC family which includes 

two of the first NAC proteins characterized, ATAF1 and 

2, as being involved in stress response and senescence 

[26, 27]. For a deeper characterization of these transcrip-

tion factors and their conserved structure, see below 

(paragraph 2.2 “NAC transcription factors’ structure” and 

3.1 “Arabidopsis fruit and NAC transcription factors”).

Members of the NAC superfamily can be found in 

many different plant species (see Table  S1). However, 

numbers and species are constantly increasing together 

with the improvement of genome annotations (see par-

agraph 3.3 “A constantly increasing number of species 

relies on NAC transcription factors”). In Table 1, we list 

the NAC transcription factors presented and discussed in 

the next paragraphs.

NAC family is one of the largest groups of transcrip-

tion factors and they modulate several processes dur-

ing a plant’s lifetime (Fig. 1). �ey participate in various 

developmental programmes, such as the formation of 

shoot and root apical meristem during embryogenesis, 

interacting with homeotic proteins and establishing 

organ boundaries [29–35]. Some NAC transcription fac-

tors have also been shown to play a role in lateral root 

development [36, 37] and in flower formation [29]. �ey 

also regulate senescence processes in leaves and fruits 

[38–50].

NAC transcription factors mainly modulate the 

response to environmental stresses [51–58], such as 

drought stress [59–65] and salt stress [66, 67]. At the 

same time, NAC transcription factors also regulate the 

stress response triggered by pathogens [52, 55, 68–71]. 

Furthermore, they participate in fibre development [72, 

73], and secondary cell wall deposition [74–79] through 

the binding of a NAC-specific sequence in the promoter 

of the target genes [80]. Among several other targets, 

NACs regulate MYB transcription factors involved in 

secondary cell wall and lignin biosynthesis. Further still, 

they target either, other NACs or enzymes involved in 

cell wall modification and programmed cell death [80, 

81]. As important regulators of plant processes, NAC 

transcription factors respond to phytohormones [82] 

such as abscisic acid (ABA) [83], ethylene [84], cytokinins 

[85], jasmonic acid [86], gibberellins [87, 88], and auxin 

[36, 89].

Among all the regulatory processes they govern, NAC 

transcription factors also modulate fruit development 

and maturation. Hereby, a complete overview of the fruit-

related NACs, identified and characterized so far, will be 

provided.

NAC transcription factors’ structure

�e modular structure of NAC TFs is characterized by 

a highly conserved N-terminal NAC domain (of about 

150 amino acids) and a C-terminal Transcription Regula-

tory Region (TRR) which is more divergent (Fig. 2) [90, 

91]. �e NAC domain is responsible for the DNA bind-

ing activity and it is divided into five subdomains A-E 

[92, 93]. �e subdomain A is involved in the formation of 

functional dimers, while the C and D subdomains, which 

are highly conserved, contain several positively charged 

amino acids necessary to interact with the DNA. �e 

B and E subdomains are divergent, and they might be 

responsible for the functional diversity of NAC genes [90, 

94]. Putative Nuclear Localization Signals (NLS) have 

been detected in C and D subdomains, while the DNA 

Binding Domain (DBD) is a 60 amino acid region located 

within subdomains D and E [92, 93]. In many NAC pro-

teins, the NLS is present at the N-terminal end, however, 

Mohanta and collaborators also described some NLS 

placed in the C-terminal region [23]. �ey also described 

NAC TFs that contain more than one NLS, as many as 

four NLS in a single NAC protein. �e NLS is charac-

terized by the presence of a cluster of positively charged 

amino acids, and NAC proteins can contain single or 

more than one cluster defining mono-, bi-, or multi-par-

tite motifs [23].

�e N-terminal DBD is also involved in the formation 

of homo- and/or hetero-dimers: NAC TFs can bind DNA 

as homo- or hetero-dimers and the dimerization is nec-

essary for a DNA stable binding [20, 95]. In soybean, it 

has been demonstrated that the D subdomain contains a 

hydrophobic Negative Regulatory Domain (NRD) to sup-

press the transcriptional activity [96]. Such a transcrip-

tional repressor motif was recently identified in several 

plant species [23].
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At the C-terminal, the presence of several group-spe-

cific motifs in the TRR allow the activation or repres-

sion of the transcription [23]. Its divergence determines 

the function of each NAC protein and modulates the 

interaction between NAC TFs and their target proteins. 

Welner and collaborators [95] suggested that NAC 

genes present a conserved consensus sequence for 

specific DNA recognition that increases DNA binding 

affinity. Recently, this consensus sequence was detected 

in 160 plant species [23].

Several NACs possess a transmembrane domain; it can 

be located at both the terminal ends of the proteins but 

were prominently found at the C-terminal end [23].

In 2004, Ernst and collaborators solved the NAC 

domain’s structure of ANAC019 by X-ray crystallog-

raphy [90]. Some years later, Chen and collaborators 

Table 1 NAC transcription factors described in this manuscript, listed in order of appearance

a ID as reported in [28]

Species NAC TF Gene ID/Genbank 
reference number

Main function in fruit

Arabidopsis thaliana NARS1/ANAC056/NAC2 AT3G15510 Embryogenesis and silique senescence

Arabidopsis thaliana NARS2/ANAC018/NAM AT1G52880 Embryogenesis and silique senescence

Arabidopsis thaliana AtNAP/ANAC029 AT1G69490 Silique senescence

Arabidopsis thaliana ANAC058 AT3G18400 Silique senescence

Arabidopsis thaliana AtJUB1/ANAC042 AT2G43000 Silique growth

Solanum lycopersicum NOR Solyc10g006880 Ethylene biosynthesis, carotenoid accumulation, fruit softening

Solanum lycopersicum NOR-like1/SlNAC3 /SNAC4/SlNAC48 Solyc07g063420 Seed development, carotenoid accumulation, ethylene biosyn-
thesis, fruit softening

Solanum lycopersicum SlNAC1/SlNAC033 Solyc04g009440 Fruit softening, pigmentation

Solanum lycopersicum SlORE1S02 Solyc02g088180 Fruit senescence, sugar accumulation

Solanum lycopersicum SlNAP2/SNAC9/SlNAC19 Solyc04g005610 Sugar and carotenoid accumulation, ethylene production

Oryza sativa OsNAC020 Os01g01470 Grain size and weight

Oryza sativa OsNAC023 Os02g12310 Grain size and weight

Oryza sativa OsNAC026 Os01g29840 Grain size and weight

Oryza sativa ONAC127 Os11g31340 Starch accumulation, carbohydrate transport

Oryza sativa ONAC129 Os11g31380 Starch accumulation, carbohydrate transport

Malus domestica MdNAC1 103,451,803 Ethylene signalling, ABA biosynthesis

Malus domestica MdNAC2 103,446,449 Ethylene signalling

Malus domestica MdNAC47/MdNAC63 MG099900 Ethylene production

Malus domestica NAC18.1 103,436,128 Fruit softening, harvest date

Malus domestica MdNAC52 MG099889 Anthocyanin accumulation

Malus domestica MdNAC042 818,902 Anthocyanin accumulation

Fragaria x ananassa FaNAC006 FvH4_1g27900 Fruit softening

Fragaria x ananassa FaNAC021 FvH4_3g04630 Fruit softening

Fragaria x ananassa FaNAC022 FvH4_3g08490 Fruit softening

Fragaria x ananassa FaNAC035 FvH4_3g20700 Fruit softening, pigment and sugar accumulation

Fragaria x ananassa FaNAC042 FvH4_4g23130 Fruit softening

Fragaria x ananassa FaNAC092 FvH4_6g48120 Fruit softening

Fragaria chiloensis FcNAC1 KP966107 Cell wall remodelling

Citrus sinensis CitNAC62 Ciclev10019368m Lowering of citric acid content

Citrus sinensis CsNAC EF596736 Response to citrus peel pitting

Musa acuminata MaNAC1/ MaNAC087 Achr6T27000a Ethylene signalling

Musa acuminata MaNAC2/ MaNAC092 Achr6T31585a Ethylene signalling

Musa acuminata MaNAC3 Achr9T27530a Ethylene signalling

Musa acuminata MaNAC4 Achr7T00860a Ethylene signalling

Musa acuminata MaNAC5/ MaNAC140 Achr9T26140a Ethylene signalling, response to biotic stress

Musa acuminata MaNAC6 Achr11T00880a Ethylene signalling



Page 4 of 14Forlani et al. BMC Plant Biol          (2021) 21:238 

Fig. 1 NACs play a role in numerous processes during a plant’s lifecycle, summarized in the figure using Solanum lycopersicum as representative 
plant. Each box represents a process, significant examples of NAC TFs involved are reported as references between brackets

Fig. 2 Structural domains and subdomains of NAC TFs
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determined the crystal structure of the NAC domain of 

the STRESS-RESPONSIVE NAC1 (SNAC1) protein in 

rice [94]. �e NAC domain consists of a twisted antipar-

allel β-sheet, used for DNA binding, packed between an 

N-terminal α-helix on one side and a short helix on the 

other [90]. Several amino acids located in subdomains C, 

D and E were identified as having biochemical functions 

crucial for DNA binding [90, 91, 94].

�e sequence of the NAC binding site has been 

addressed with several techniques (X-ray, SELEX, EMSA, 

footprint, PBM, ChIP). �e binding site contains the 

CGT[AG] core motif, and the flanking sequences are 

involved in the determination of the target promoter 

binding affinity and specificity (for a review see [97]).

Same family, di�erent species
�e NAC superfamily includes only plant-specific tran-

scription factors, widespread in an increasing number 

of species. First, we will focus on model species, such 

as Arabidopsis thaliana and Solanum lycopersicum, for 

their role as reference plants in studies focused on fruit 

development, ripening and senescence [98].

Arabidopsis thaliana siliques and NAC transcription factors

�e first NACs described as regulators of fruit senescence 

were NARS1 and NARS2 (NAC-REGULATED SEED 

MORPHOLOGY1 and -2, also known as ANAC056/NAC2 

and ANAC018/NAM, respectively). NARS1 and NARS2 

regulate embryogenesis, through the control of ovule 

integument development and degeneration, seed mor-

phogenesis, and silique senescence [99]. While the single 

mutants do not show any phenotype, the double mutant 

nars1 nars2 has delayed silique senescence. Currently, 

no molecular data are available regarding NARS1 and/or 

NARS2’s involvement in hormonal signal pathways. It has 

been shown that NARS1 and/or NARS2 work to ease an 

intracellular environment triggered by programmed cell 

death in the integument, and similarly could also occur 

in the silique. Recently, Ma and colleagues [50] proposed 

NARS1 and NARS2 as NOR (NONRIPENING) homologs. 

NOR is a NAC transcription factor involved in tomato 

fruit ripening (see below, [100]). However, on the basis 

of their expression pattern and their phenotype, Ma and 

co-workers [50] concluded that NARS1 and NARS2 act 

differently from NOR. Indeed, while NARS1 and NARS2 

are expressed in aging leaves, as well as in ripening fruits, 

in nars1 nars2 mutant senescence was delayed only in 

siliques, while no effect was observed in leaves. �is sug-

gests a different mode of action compared to NOR.

AtNAP (NAC-LIKE, ACTIVATED BY AP3/PI, 

ANAC029) was initially described as promoter of leaf 

senescence [38], but was later shown to promote silique 

maturation as well [43]. Indeed, AtNAP messenger 

accumulates with fruit maturation progression and 

atnap siliques delay senescence by 4–5  days. Moreover, 

the ethylene and respiratory surges are decoupled, and 

exogenous ethylene treatments cannot anticipate the 

respiratory surge [43]. Few genes, whose products par-

ticipate in ethylene biosynthesis, perception, and signal 

transduction pathways, were downregulated in atnap 

mutant. However, it is still not clear how the changes in 

the expression of these genes could affect the senescence 

in mutant plants. AtNAP might be NOR orthologue, but 

such conclusion is not fully supported [43].

�e role of few other Arabidopsis NAC proteins has 

been described in siliques, among them NAC058 which 

represses silique senescence. In the nac058 knock-down 

mutant the maturation of the fruit is precocious as 

demonstrated by the premature yellowing, the reduced 

chlorophyll content and the reduced photosynthetic per-

formance [101].

JUNGBRUNNEN1 (JUB1/ ANAC042) is not involved 

in the maturation process rather in the growth of the 

silique. �e silique of plants that overexpress JUB1 are 

shorter than normal, but it is interesting to report that in 

tomato the overexpression of AtJUB1 delays fruit ripen-

ing by 6 days [87, 88]. �e overexpression of AtJUB1 in 

tomato represses several ethylene-related ripening genes 

such as ACS (ACC synthase) and ACO (ACC oxidase, 

[88]). In Arabidopsis and in tomato, AtJUB1 represses 

the transcription of GA3ox1(GA 3-oxidase1) and DWF4 

(DWARF4), genes important for gibberellin (GA) and 

brassinosteroid (BR) biosynthesis, thus phenocopying 

GA and BR deficiency. AtJUB1 also directly represses 

PIF4 (PHYTOCHROME INTERACTING FACTOR4), 

a positive regulator of cell elongation, and activates the 

DELLA genes, repressors of cell proliferation and expan-

sion [87, 88].

Tomato fruit and their NAC transcription factors

�e complete sequencing of the tomato genome [102] 

provided a fundamental tool for the prediction and iden-

tification of numerous genes. 104 SlNAC genes have been 

identified so far [103], mapping to all 12 chromosomes.

�e nor mutant fails to produce the climacteric peak 

of ethylene, thereby causing an arrested ripening [100, 

104] which cannot be rescued by exogenous application 

of ethylene [105, 106]. Positional cloning demonstrated 

that NOR encodes a NAC transcription factor [105, 106]. 

Another spontaneous allele of NOR is alcobaca (alc) found 

in the Penjar tomatoes which have a very long shelf life 

[107, 108]. �e alc allele is weaker compared to nor, but 

its ripening delay is comparable to the newer nor alleles 

that have been recently obtained using the CRISPR-Cas9 

methodology [108–111]. All these alleles are caused by 

amorphic mutations, and mutant plants display milder 
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phenotypes compared to the classical nor mutant, that 

is actually a gain-of-function [111–113]. Similar results 

have also been obtained with CRISPR null alleles of other 

tomato transcription factors involved in fruit maturation, 

such as RIN and CNR [111]. RIN encodes a MADS-box 

transcription factor [114, 115] that directly binds NOR 

promoter [116–118]. However, Wang and collaborators 

[111] have recently suggested that such transcription fac-

tors might act redundantly in a complex network that 

integrates multiple signals, more so than being master 

regulators alone. Indeed, their effect on ethylene produc-

tion, lycopene accumulation and other ripening traits has 

been shown to be quantitative and additive [119]. Moreo-

ver, although both NOR and RIN play a role in fruit senes-

cence, only NOR has been found involved in the mediation 

of pathogen susceptibility in ripening fruit [120].

Some NAC transcription factors, able to influence 

fruit development and maturation, were initially classi-

fied as stress-responsive genes, and for this reason NAC 

genes are often referred to using different names, com-

plicating literature data screenings [121]. NOR-like1 was 

originally identified as SlNAC3, a negative regulator of 

drought stress under the control of ABA [122]. Later, 

analysing RNA interference lines, SlNAC3 was revealed 

to be essential for appropriate embryo and endosperm 

development in seeds [123]. Polygalacturonase-2 (PG-2) 

was eventually isolated as one of SlNAC3’s direct targets 

through co-immunoprecipitation assays [124]. At the 

same time, Zhu and collaborators also referred to NOR-

like1 as SNAC4 (SlNAC48), identifying it as regulator of 

salt stress and drought tolerance [125]. It shares 49.2% of 

nucleotide sequence with NOR and its disruption causes 

a decrease in carotenoid accumulation, chlorophyll 

breakdown and ethylene biosynthesis [126]. Moreover, 

NOR-like1 can bind directly both RIN and NOR, suggest-

ing that it could act upstream of these ripening regula-

tors, and its predicted tertiary structure reveals a high 

degree of similarity with ANAC072, involved in chlo-

rophyll degradation during leaf senescence [126–128]. 

Recently, NOR-like1 has been shown to directly bind the 

promoter of genes involved in ethylene production, fruit 

firmness and colour change [129].

Tweneboah and Oh [55] summarized the stress-related 

NAC transcription factors in different Solanaceae and, as 

pointed out previously, some of them participate in fruit 

development and ripening. As an example, SlNAC1 (also 

known as SlNAC033) participates in heat and chilling 

tolerance [130, 131] and defence against Pseudomonas 

syringae [132], thus modulating biotic and abiotic stress 

responses. SlNAC1 binds the regulatory regions of genes 

related to ethylene or lycopene biosynthesis [133] and its 

suppression or overexpression can alter fruit softening 

and pigmentation [133, 134].

SlORE1S02, SlORE1S03, and SlORE1S06 are the ortho-

logues of the Arabidopsis ORESARA1 (ORE1/NAC092) 

[135]. ORESARA means “long-living” in Korean; indeed, 

the ore1 mutant delays leaf senescence in Arabidopsis 

[136]. SlORE1S02, SlORE1S03, SlORE1S06 and ORE1 are 

all regulated by the microRNA miR164. In tomato, they 

are expressed in leaves where their overexpression accel-

erates senescence. �e reduction of SlORE1S02 via RNAi 

interference leads to increased carbon assimilation, con-

sequently transgenic plants show a higher harvest index 

with no consequences on fruit size. Transgenic fruit delay 

senescence and also accumulate more soluble solids in 

ripe fruit [135].

SlNAP2 impacts fruit yield and metabolism, since its 

inhibition causes fruits to retain more sugars [83]. �is 

transcription factor is structurally similar to AtNAP 

(described in the previous paragraph [43]). Kou and 

co-workers [127] described SlNAP2 naming it SNAC9 

(SlNAC19). Fruit of slnac19 exhibit a reduced carotenoid 

content and ethylene production [137]. �e same pheno-

type has been observed in nor-like1 fruits, but they accu-

mulate more ABA than SlNAC19 ones [137]. SlNAP2 

modulates NOR expression [50] and, together with NOR 

and NOR-like1, it is considered one of the key tomato 

ripening regulators [138].

A constantly increasing number of species relies 
on NAC transcription factors
Beside model species for dry and fleshy fruits, NAC 

transcription factors have been identified and analysed 

in many other species of commercial interest. Here 

are listed the most recent findings in a few select spe-

cies. We will review their role in Oryza sativa, Malus 

domestica, Fragaria genus, Citrus sinensis and Musa 

acuminata.

Rice (Oryza sativa)

Although grains do not resemble the classic idea of fruit, 

they are actually composed of fruit coat strongly bound 

to the seed coat, and they enclose the germ and the 

endosperm. �is non-canonical one-seeded fruit is pro-

duced by cereals, such as rice, barley and wheat, and it is 

called caryopsis.

One of the most widely cultivated cereals is rice, and 

for this reason it represents the topic of many researches. 

In rice, NAC transcription factors are involved in biotic 

and abiotic stress [52, 139]. OsNAC020, OsNAC023 

and OsNAC026 have been identified as grain-specific 

conserved NAC genes in rice [140]. Indeed, previ-

ous studies on OsNAC020, OsNAC023 and OsNAC026 

detected a higher expression in caryopsis [141]. Moreo-

ver, OsNAC020 and OsNAC023 can dimerize with 
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OsNAC026 and localize in the nucleus to regulate genes 

involved in seed size and weight [142].

Since rice seeds are mostly intended for human con-

sumption, their composition is one of the principle fea-

tures to be considered. ONAC127 and ONAC129 are 

expressed in caryopsis and the corresponding gene prod-

ucts regulate starch accumulation and genes related to 

carbohydrates transport during grain filling [143].

Another important commercial feature is the grain 

yield, determined by numerous factors, e.g. resistance 

to drought stress and shoot branching. Overexpression 

of OsNAC5, OsNAC9 and OsNAC10 causes changes 

in root diameter and architecture leading to increased 

drought tolerance and grain yield [144–146]. Similarly, 

OsNAP and SNAC1 overexpression leads to a greater 

seed production in restricted water conditions [147, 148]. 

However, it is interesting to note that not all the NAC 

transcription factors involved in drought stress mitiga-

tion can increase the grain yield, as for ONAC022 [149]. 

Shoot branching can eventually influence grain yield. 

For example, OsNAC2 regulates shoot branching [150] 

and plant height [151]. OsNAC2 is negatively regulated 

by miR164b; if the sequence is mutated to be resistant to 

miR164b, the final grain number increases [152].

Apple (Malus domestica)

In the apple cultivar “Golden delicious”, Wang and Xu 

[153] found that MdNAC1 and MdNAC2 interact and 

are co-expressed, respectively, with the ethylene recep-

tors MdRTE1a (Malus domestica REVERSION-TO-ETH-

YLENE SENSITIVITY1a) and MdRTE1b. �is pinpoint 

a possible involvement in pome growth and ripening. 

Later, MdNAC1 was also found to be responsible for 

plant height and drought tolerance, since its overexpres-

sion leads to a dwarf phenotype [154] with reduced water 

loss and a stable photosynthetic rate [155]. Moreover, Jia 

and co-workers hypothesized that MdNAC1 controls the 

biosynthesis of ABA [154].

NAC transcription factors mediate ethylene and auxin 

crosstalk in apple, especially when the production of eth-

ylene is impaired [156], as already suggested in Arabidop-

sis [91].

Zhang and collaborators [157] found that 13 NAC 

genes are differentially expressed in numerous tissues 

during fruit growth and ripening. �e evaluation of their 

response to 1-MCP treatment and ethylene exposure 

indicates that NACs could regulate pome development 

in both an ethylene-dependent and independent man-

ner. �e mediation of ethylene signalling was further 

confirmed by MdNAC47, which directly binds the posi-

tive regulator of ethylene biosynthesis MdERF3 (Malus 

domestica ETHYLENE RESPONSE FACTOR), modulat-

ing salt stress tolerance [158]. MdNAC47 was so called 

since it was thought to be the orthologue of Arabidopsis 

ANAC047, however its genomic locus has been recently 

annotated as MdNAC63 [159].

Fruit firmness, an important trait in post-harvest con-

servation, is also controlled by NAC transcription fac-

tors. In particular, the NAC18.1 protein displays high 

similarity with tomato NOR, and could be a major deter-

minant of fruit softening and harvest date [160, 161]. 

Another process typical of the ripening of fleshy fruits 

is the accumulation of flavonoids such as anthocyanins, 

which give the fruit colour to attract frugivorous animals 

[162]. MdNAC52 overexpression leads to anthocyanin 

accumulation in apple calli and it can induce the expres-

sion of MdMYB9 and MdMYB11, regulating proantho-

cyanidin biosynthesis [163]. Recently, MdNAC042 was 

also discovered to positively correlate with anthocyanin 

content in red apples, regulating pigmentation through 

dimerization with MdMYB10 [164].

Strawberry (Fragaria genus)

112 NAC genes have been identified in the commercial 

strawberry (Fragaria x ananassa), thanks to the com-

parison with the woodland strawberry (Fragaria vesca) 

genome [165]. Six of them are associated with fruit ripen-

ing and senescence: FaNAC006, FaNAC021, FaNAC022, 

FaNAC035, FaNAC042, FaNAC092. �eir expression 

pattern correlates with anthocyanin biosynthesis [166] 

and their products play a role in tissue softening [167]. 

Recently, FaNAC035 was demonstrated to regulate rip-

ening by controlling fruit softening and pigment and 

sugar accumulation. Moreover, it regulates ABA biosyn-

thesis and signalling and cell wall degradation and modi-

fication [168].

FaNAC087 and FaNAC038 are negatively modulated 

by miRNA164 [169], as happens in Arabidopsis thali-

ana with ORE1 [170]. Since FaNAC087 and FaNAC038 

increase their expression in the last stages of ripening 

[169], Li and co-workers [171] analysed their regula-

tion in post-harvest storage conditions, confirming the 

negative correlation between miRNA164 and its NAC 

messenger targets. �e role of sRNAs as regulators of 

post-harvest shelf life has been recently corroborated, 

highlighting that NAC and other families of transcription 

factors represent important targets [172].

�e commercial strawberry (Fragaria x ananassa) 

was obtained by crossing the parental species Fragaria 

chiloensis and Fragaria virginiana. Due to great interest 

in its limited post-harvest period, transcription factors 

involved in fruit ripening regulation and cell wall remod-

elling have been characterized in Fragaria chiloensis, 

including NAC TFs. Among them, FcNAC1 which inter-

acts with FcPL (Fragaria chiloensis pectin lyase), contrib-

uting to cell wall remodelling [173].
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Orange (Citrus sinensis)

Given the economic and nutritional importance of sweet 

orange, the discovery of the regulators of fruit quality 

and duration have always been an essential goal to reach. 

In orange, transcription factors belonging to the NAC 

superfamily represent one of the key elements of these 

processes. NAC genes differentially expressed between 

a late-ripening mutant and a wild type variety of sweet 

orange have been identified [174], among them NAC61, 

NAC74, NAC84 and RD26 (RESPONSIVE TO DESICCA-

TION 26). In particular, RD26 displays high correlation 

with fructose and glucose accumulation; the Arabidopsis 

orthologue RD26/ANAC072 is a transductor of the ABA 

signal [175] and activates the expression of genes whose 

products participates in chloroplast protein degradation 

during leaf senescence [176].

CitNAC is expressed in peel and pulp during orange 

fruit ripening and is phylogenetically similar to AtNAP 

[177]. �is suggests the possible involvement of CitNAC 

in sweet orange fruit development and senescence.

In order to lower the citric acid content in mature fruit, 

CitNAC62 acts in a synergic way with CitWRKY1 mod-

ulating CitAco3, an aconitate hydratase involved in the 

catabolism of citric acid [178].

As in tomato, stress-related NAC transcription factors 

play an active role in determining fruit quality, thus influ-

encing the postharvest conservation. Fan and co-workers 

[179] point out that CsNAC, the orthologue of Arabi-

dopsis ATAF1, participates to citrus peel pitting, a dis-

order that affects the quality and the economic value of 

citrus fruits. NAC transcription factors are also involved 

in the response to cold storage, probably increasing the 

anthocyanin content [180]. Mitalo and collaborators 

[181] have found that the NAC superfamily participates 

in transcriptional cascades whose products help to coun-

teract citrus greening, a destructive disease for citrus 

fruits (Bove, 2006). �ey may also be involved in a simi-

lar resistance process in lemon fruit [181]. In particular, 

NAC-1 and RD26 transcripts are detected during the 

symptomatic and asymptomatic phases of citrus green-

ing [182]. In addition, many other citrus NAC transcrip-

tion factors involved in response to multiple stresses have 

been found [183]. However, further studies are required 

to unveil their role in the determination of fruit quality 

and proper development.

Banana (Musa acuminata)

Studies on NAC superfamily in banana started with the 

prediction of loci potentially coding for such transcrip-

tion factors, and the definition of orthologous groups 

comparing sequences from monocots and dicots [28]. 

Recent works implemented the previous findings, iden-

tifying 181 NACs mapped in all the 12 chromosomes 

[184]. 10 MaNACs were associated with ripening in 

ethylene-treated banana fruits, some of them carrying 

ethylene responsive elements in their promoter. Six of 

them (MaNAC1 to MaNAC6) have already been pre-

viously characterized as part of the ethylene mediated 

fruit ripening [185]. MaNAC1 (MaNAC087) is known 

for its role in both stress tolerance and fruit maturation, 

it is induced after cold stress and physically interacts 

with cold signalling pathway elements [185]. Moreover, 

MaNAC1 interacts with MaEIL5 (Musa acuminata ETH-

YLENE INSENSITIVE 3-like 5), a downstream compo-

nent of the ethylene signalling pathway [186]. MaNAC2 

(MaNAC092), like MaNAC1, directly interacts with 

MaEIL5 and its expression is upregulated by ethylene 

both in the peel and pulp of banana fruit [186]. Addition-

ally, the expression of MaNAC1 and MaNAC2, together 

Fig. 3 Overview of the principle fruit-related processes which NAC 
transcription factors are involved in. Each colour represents a specific 
aspect of fruit ripening, and the NAC genes listed in this review are 
located accordingly
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with MaNAC5 (MaNAC140), is upregulated in fruit after 

infection with Colletotrichum musae [187]. Furthermore, 

MaNAC5 can interact with WRKY transcription fac-

tors and activate pathogenesis-related genes to counter-

act the disease [187]. Other NAC transcription factors 

characterized so far in banana play a role in leaves senes-

cence [188] or drought stress [189, 190]. Further studies 

are necessary to deepen the role of NAC superfamily in 

banana fruit ripening.

Conclusions
�e economic and dietary relevance of fruit is an impor-

tant stimulus to explore fruit maturation and senescence 

in non-model species. In respect to fruit maturation, a piv-

otal role is played by NAC transcription factors and there-

fore they are proposed as interesting targets to modulate 

development and ripening, and to prolong fruit shelf life. 

In this work we provide a synopsis of the fruit-related 

NAC transcription factors identified in model species and 

in major crop species (Fig. 3). �e processes of maturation 

and ripening must be fine-tuned to ensure the protection 

of growing seeds and the correct release of offspring. For 

this reason, they are regulated by a network of intercon-

nected transcription factors belonging to different families.

Unfortunately, the non-model species have yet to be 

deeply investigated but, from the data available, it is clear 

that NAC transcription factors represent a conserved 

family necessary for the regulation of fruit development, 

maturation and post-harvest life. Due to their ubiquitous 

presence in numerous species, unveiling NAC TF regu-

lation network could represent a potential tool for the 

regulation of post-harvest fruit conservation and patho-

gen resistance in economically relevant species. Within 

this view, as suggested by Singh and collaborators [191], 

future researches could focus on the analysis of redun-

dancy among these TFs, in order to identify pivotal play-

ers in the regulation of fruit maturation.

In parallel, the identification of NAC interactors could 

reveal potential inhibitors or enhancers of their activity, 

helping the conservation and response to pathogens in 

commercial fruits.
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